Skip to Main content Skip to Navigation
Journal articles

Etude de différentes combinaisons de comportements adaptatives.

Olivier Buffet 1 Alain Dutech 2 François Charpillet 2
2 MAIA - Autonomous intelligent machine
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : This article focusses on the automated synthesis of agents in an uncertain environment, working in the setting of Reinforcement Learning, and more precisely of Partially Observable Markov Decision Processes. The agents (with no model of their environment and no short-term memory) are facing multiple motivations/goals simultaneously, a problem related to the field of Action Selection. We propose and evaluate various Action Selection architectures. They all combine already known basic behaviors in an adaptive manner, by learning the tuning of the combination, so as to maximize the agent's payoff. %This work opens the way to a second step in which the basic behaviors themselves will be selected and designed in an automated manner. The logical continuation of this work is to automate the selection and design of the basic behaviors themselves.
Document type :
Journal articles
Complete list of metadata

Cited literature [29 references]  Display  Hide  Download

https://hal.inria.fr/inria-00119272
Contributor : Alain Dutech <>
Submitted on : Friday, December 8, 2006 - 2:16:45 PM
Last modification on : Friday, February 26, 2021 - 3:28:04 PM
Long-term archiving on: : Tuesday, April 6, 2010 - 8:42:17 PM

File

buffet_etudeCombComportement_R...
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00119272, version 1

Collections

Citation

Olivier Buffet, Alain Dutech, François Charpillet. Etude de différentes combinaisons de comportements adaptatives.. Revue des Sciences et Technologies de l'Information - Série RIA : Revue d'Intelligence Artificielle, Lavoisier, 2006, Décision et planification dans l'incertain, 20 (2-3), pp.311-344. ⟨inria-00119272⟩

Share

Metrics

Record views

392

Files downloads

260