Efficient polynomial $L^{\infty}$-approximations

Nicolas Brisebarre 1, 2 Sylvain Chevillard 1
1 ARENAIRE - Computer arithmetic
Inria Grenoble - Rhône-Alpes, LIP - Laboratoire de l'Informatique du Parallélisme
Abstract : We address the problem of computing good floating-point-coefficient polynomial approximation to a function, with respect to the supremum norm. This is a key step in most processes of evaluation of a function. We present a fast and efficient method, based on lattice basis reduction, that often gives the best polynomial possible and most of the time returns a very good approximation.
Document type :
Reports
Liste complète des métadonnées

https://hal.inria.fr/inria-00119513
Contributor : Nicolas Brisebarre <>
Submitted on : Monday, December 11, 2006 - 12:46:54 AM
Last modification on : Thursday, January 17, 2019 - 3:16:03 PM
Document(s) archivé(s) le : Wednesday, April 7, 2010 - 12:16:07 AM

Files

linfrrhal.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00119513, version 1

Collections

Citation

Nicolas Brisebarre, Sylvain Chevillard. Efficient polynomial $L^{\infty}$-approximations. [Research Report] 2006, pp.11. ⟨inria-00119513v1⟩

Share

Metrics

Record views

43

Files downloads

139