Efficient polynomial $L^{\infty}$-approximations

Nicolas Brisebarre 1, 2 Sylvain Chevillard 1
1 ARENAIRE - Computer arithmetic
Inria Grenoble - Rhône-Alpes, LIP - Laboratoire de l'Informatique du Parallélisme
Abstract : We address the problem of computing good floating-point-coefficient polynomial approximation to a function, with respect to the supremum norm. This is a key step in most processes of evaluation of a function. We present a fast and efficient method, based on lattice basis reduction, that often gives the best polynomial possible and most of the time returns a very good approximation.
Document type :
Conference papers
Complete list of metadatas

Cited literature [23 references]  Display  Hide  Download

https://hal.inria.fr/inria-00119513
Contributor : Rapport de Recherche Inria <>
Submitted on : Monday, December 11, 2006 - 10:35:15 AM
Last modification on : Friday, April 19, 2019 - 3:24:04 PM
Long-term archiving on : Monday, September 20, 2010 - 5:59:36 PM

Files

RR-6060.pdf
Files produced by the author(s)

Identifiers

Citation

Nicolas Brisebarre, Sylvain Chevillard. Efficient polynomial $L^{\infty}$-approximations. 18th IEEE Symposium on Computer Arithmetic, Jun 2007, Montpellier, France. pp.169-176, ⟨10.1109/ARITH.2007.17⟩. ⟨inria-00119513v2⟩

Share

Metrics

Record views

1169

Files downloads

793