L. Babai, On Lov??sz??? lattice reduction and the nearest lattice point problem, Combinatorica, vol.357, issue.1, pp.1-13, 1986.
DOI : 10.1007/BF02579403

N. Brisebarre, J. Muller, and A. Tisserand, Computing machine-efficient polynomial approximations, ACM Transactions on Mathematical Software, vol.32, issue.2, 2006.
DOI : 10.1145/1141885.1141890

URL : https://hal.archives-ouvertes.fr/ensl-00086826

J. W. Cassels, An introduction to the geometry of numbers, Classics in Mathematics, 1997.
DOI : 10.1007/978-3-642-62035-5

E. W. Cheney, Introduction to approximation theory, 1982.

M. Cornea, J. Harrison, and P. T. Tang, Scientific Computing on Itanium-Based Systems, 2002.

W. Gautschi, Numerical analysis, Birkhäuser Boston Inc, 1997.
DOI : 10.1007/978-0-8176-8259-0

O. Goldreich and S. Goldwasser, On the limits of non-approximability of lattice problems, Proceedings of the thirtieth annual ACM symposium on Theory of computing , STOC '98, pp.1-9, 1998.
DOI : 10.1145/276698.276704

P. M. Gruber and C. G. Lekkerkerker, Geometry of numbers, 1987.

R. Kannan, Minkowski's Convex Body Theorem and Integer Programming, Mathematics of Operations Research, vol.12, issue.3, pp.415-440, 1987.
DOI : 10.1287/moor.12.3.415

URL : http://repository.cmu.edu/cgi/viewcontent.cgi?article=2568&context=compsci

A. K. Lenstra, H. W. Lenstra, and L. Lovász, Factoring polynomials with rational coefficients, Mathematische Annalen, vol.32, issue.4, pp.515-534, 1982.
DOI : 10.1007/BF01457454

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Lovász, An algorithmic theory of numbers, graphs and convexity, CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), vol.50, 1986.
DOI : 10.1137/1.9781611970203

P. Markstein, IA-64 and Elementary Functions : Speed and Precision. Hewlett-Packard Professional Books, 2000.

D. Micciancio, The hardness of the closest vector problem with preprocessing, IEEE Transactions on Information Theory, vol.47, issue.3, pp.1212-1215, 2001.
DOI : 10.1109/18.915688

J. Muller, Elementary Functions, Algorithms and Implementation, 1997.
URL : https://hal.archives-ouvertes.fr/ensl-00000008

P. Q. Nguyen and J. Stern, The Two Faces of Lattices in Cryptology, Proceedings of CALC '01, pp.146-180, 2001.
DOI : 10.1007/3-540-44670-2_12

E. Remes, Sur un procédé convergent d'approximations successives pour déterminer les polynômes d'approximation, C.R. Acad. Sci. Paris, vol.198, pp.2063-2065, 1934.

S. Story and P. T. Tang, New algorithms for improved transcendental functions on IA-64, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336), pp.4-11, 1999.
DOI : 10.1109/ARITH.1999.762822

V. Shoup, NTL, a library for doing number theory, version 5.4, 2005.

P. Van-emde and . Boas, Another NP-complete problem and the complexity of computing short vectors in a lattice, 1981.

L. Veidinger, On the numerical determination of the best approximations in the Chebyshev sense, Numerische Mathematik, vol.13, issue.No. 67, pp.99-105, 1960.
DOI : 10.1007/BF01386215

I. Unité-de-recherche and . Rhône, Alpes 655, avenue de l'Europe -38334 Montbonnot Saint-Ismier (France) Unité de recherche INRIA Futurs : Parc Club Orsay Université -ZAC des Vignes 4

I. Unité-de-recherche and . Lorraine, Technopôle de Nancy-Brabois -Campus scientifique 615, rue du Jardin Botanique -BP 101 -54602 Villers-lès-Nancy Cedex (France) Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu -35042 Rennes Cedex (France) Unité de recherche INRIA Rocquencourt : Domaine de Voluceau -Rocquencourt -BP 105 -78153 Le Chesnay Cedex (France) Unité de recherche, 2004.

I. De-voluceau-rocquencourt, BP 105 -78153 Le Chesnay Cedex (France) http://www.inria.fr ISSN, pp.249-6399