HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Conference papers

Bayesian Inference for Dynamic Models with Dirichlet Process Mixtures

Francois Caron 1 Manuel Davy 2, 3 Arnaud Doucet 4 Emmanuel Duflos 3 Philippe Vanheeghe 3
2 SEQUEL - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, Inria Lille - Nord Europe, LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal
3 LAGIS-SI
LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal
Abstract : Using Kalman techniques, it is possible to perform optimal estimation in linear Gaussian state-space models. We address here the case where the noise probability density functions are of unknown functional form. A flexible Bayesian nonparametric noise model based on mixture of Dirichlet processes is introduced. Efficient Markov chain Monte Carlo and Sequential Monte Carlo methods are then developed to perform optimal estimation in such contexts.
Document type :
Conference papers
Complete list of metadata

Cited literature [13 references]  Display  Hide  Download

https://hal.inria.fr/inria-00119993
Contributor : Manuel Loth Connect in order to contact the contributor
Submitted on : Tuesday, December 12, 2006 - 4:26:12 PM
Last modification on : Thursday, January 20, 2022 - 4:16:21 PM
Long-term archiving on: : Thursday, September 20, 2012 - 3:51:16 PM

File

Caron_Fusion_2006.pdf
Publisher files allowed on an open archive

Identifiers

  • HAL Id : inria-00119993, version 1

Collections

Citation

Francois Caron, Manuel Davy, Arnaud Doucet, Emmanuel Duflos, Philippe Vanheeghe. Bayesian Inference for Dynamic Models with Dirichlet Process Mixtures. 9th IEEE International Conference on Information Fusion, 2006, Florence, Italy. ⟨inria-00119993⟩

Share

Metrics

Record views

230

Files downloads

579