F. Desobry, M. Davy, and C. Doncarli, An online kernel change detection algorithm, IEEE Transactions on Signal Processing, vol.53, issue.8, 2005.
DOI : 10.1109/TSP.2005.851098

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.1469

L. Devroye and G. L. Wise, Detection of Abnormal Behavior Via Nonparametric Estimation of the Support, SIAM Journal on Applied Mathematics, vol.38, issue.3, pp.480-488, 1980.
DOI : 10.1137/0138038

B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-taylor, and J. C. Platt, Support vector method for novelty detection, NIPS, pp.582-588, 2000.

W. Polonik, Measuring Mass Concentrations and Estimating Density Contour Clusters-An Excess Mass Approach, The Annals of Statistics, vol.23, issue.3, pp.855-881, 1995.
DOI : 10.1214/aos/1176324626

A. Berlinet and C. Thomas-agnan, Reproducing kernel hilbert spaces in probability and statistics, Kluwer academic press, 2004.

S. Canu, X. Mary, and A. Rakotomamonjy, Functional learning through kernel, Advances in Learning Theory: Methods, Models and Applications. NATO Science Series III: Computer and Systems Sciences, 2003.

L. Devroye and G. Lugosi, Combinatorial Methods in Density Estimation, 2001.
DOI : 10.1007/978-1-4613-0125-7

R. Vert and J. P. Vert, Consistency of one-class svm and related algorithms, NIPS, 2005.

P. Hayton, B. Scholkopf, L. Tarassenko, and P. Anuzis, Support vector novelty detection applied to jet engine vibration spectra, NIPS, 2000.

M. Davy, F. Desobry, and A. Gretton, An online support vector machine for abnormal events detection, Signal Processing, vol.86, issue.8, 2005.
DOI : 10.1016/j.sigpro.2005.09.027

URL : https://hal.archives-ouvertes.fr/inria-00120256

A. Baillo, A. Cuevas, and A. , Set estimation and nonparametric detection, Canadian Journal of Statistics, vol.26, issue.4, pp.765-782, 2000.
DOI : 10.2307/3315915

V. Kadirkamanathan, P. Li, M. H. Jaward, and S. G. Fabri, An smc filtering approach to fault detection and isolation in nonlinear systems, IEEE CDC, 2000.