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Landmines Ground-Penetrating Radar Signal
Enhancement by Digital Filtering

Delphine Potin, Emmanuel Duflos, Member, IEEE, and Philippe Vanheeghe, Senior Member, IEEE

Abstract—Until now, humanitarian demining has been unable
to provide a solution to the landmine removal problem. Fur-
thermore, new low-cost methods have to be developed quickly.
While much progress has been made with the introduction of new
sensor types, other problems have been raised by these sensors.
Ground-penetrating radars (GPRs) are key sensors for landmine
detection as they are capable of detecting landmines with low
metal contents. GPRs deliver so-called Bscan data, which are,
roughly, vertical slice images of the ground. However, due to the
high dielectric permittivity contrast at the air-ground interface,
a strong response is recorded at an early time by GPRs. This
response is the main component of the so-called clutter noise,
and it blurs the responses of landmines buried at shallow depths.
The landmine detection task is therefore quite difficult, and a
preprocessing step, which aims at reducing the clutter, is often
needed. In this paper, a difficult case for clutter reduction, that
is, when landmines and clutter responses overlap in time, is
presented. A new and simple clutter removal method based on
the design of a two-dimensional digital filter, which is adapted
to Bscan data, is proposed. The designed filter must reduce the
clutter on Bscan data significantly while protecting the landmine
responses. In order to do so, a frequency analysis of a clutter
geometrical model is first led. Then, the same process is applied
to a geometrical model of a signal coming from a landmine. This
results in building a high-pass digital filter and determining its
cutoff frequencies. Finally, simulations are presented on simulated
and real data, and a comparison with the classical clutter removal
algorithm is made.

Index Terms—Clutter removal, digital filtering, Fourier analy-
sis, ground-penetrating radar (GPR), landmines.

I. INTRODUCTION

HE MILLIONS of landmines spread out over the planet

are not only a humanitarian disaster; they also hinder the
social and economic development of the concerned countries.
Removal of landmines, which is also called humanitarian dem-
ining, has therefore become one of the major stakes since the
beginning of this century. Unfortunately, humanitarian demi-
ning faces many technical, scientific, and operational problems.
For instance, landmines are small, their metallic part becomes
less and less important, and they could have been laid for many
years. These considerations have led scientists to the conclusion
that only multisensor systems could be efficient enough to bring
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Fig. 1. Typical Ascan record obtained by a GPR pulse radar. Clutter is
characterized by large amplitude oscillations at early times. This Ascan is
represented by a vertical dash line on the Bscan of Fig. 2.

a solution to landmine detection problems and, therefore, to
humanitarian demining. Thanks to the sensors, the technology
is available. The ground-penetrating radar (GPR) has an im-
portant detection potential and has been a part of numerous
multisensors systems developed these past few years. Generally
speaking, in landmine detection applications, there are two
kinds of GPRs, namely: 1) frequency-stepped continuous-wave
(FSCW) radars and 2) pulse radars [1]. FSCW radars emit
stepped radio-frequency signals toward the ground and record
the response. Pulse radars emit short-duration electromagnetic
(EM) pulses that propagate into the soil and reflect on the
dielectric permittivity discontinuities. When recorded at a given
location, the recorded pulse radar response is an Ascan, which
is actually the magnitude of the reflected wave with respect to
time. Due to propagation time, waves reflected on an object
arrive to the GPR with a time lag, which is related! to the
distance between the object and the GPR. The image obtained
by concatenating Ascans recorded along a survey line is called
a Bscan. The horizontal axis of a Bscan corresponds to the GPR
spatial location,? whereas the vertical axis corresponds to time
(i.e., depth). A Bscan can be seen as an image of a vertical
slice of the ground. Typical Ascans and Bscans recorded in the
context of landmine detection are plotted in Figs. 1 and 2.

This paper deals with pulse radar. When such radar is
used for landmine detection, the emitted EM pulse strongly
reflects at the air—ground interface. This results in a hindering

'The wave arrival time lag is almost proportional to the buried-object
distance. The proportionality coefficient depends on the physical parameters
of the soil.

2It is assumed here that the GPR is moved along a straight line. The
horizontal axis actually gives the distance covered by the GPR from its initial
position.

0196-2892/$20.00 © 2006 IEEE
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Fig. 2. Bscan image obtained by concatenating consecutive Ascans recorded
along a survey line. Two typical landmine signatures (hyperbola) can be seen
below the horizontal clutter stripes (arrows).

high-amplitude response, which appears at the early time of the
Ascan (Fig. 1). This phenomenon is known as “clutter” and
makes the detection of landmines from Ascans/Bscans difficult.
More specifically, contrary of antitank mines, many landmines
are actually just laid flush on the ground or buried at shallow
depths (1-5 cm); thus, their responses to the GPR-emitted
pulse overlap with clutter. Moreover, their metallic contents
can be very low; their responses to the GPR-emitted wave
are therefore much weaker than to the one coming from the
air—ground interface. As a consequence, landmine responses
are hidden in the response of the air—ground interface resulting
in a poor signal-to-clutter ratio. As previously stated, clutter
is mainly caused by the air—ground interface response. To a
lower extent, it is also created by antenna coupling problems
and multiple reflections on the air—ground interface. Therefore,
one of the key problems to solve in order to improve the
detection processes is clutter reduction so that the signal-to-
clutter ratio rises when there is a landmine or a potentially
dangerous object.

Many clutter reduction methods can be summed up into two
classes, which correspond to two possible signal processing
approaches to increase the signal-to-clutter ratio. The first class
contains methods based on classical filtering [1]-[4] in the time
or frequency domains. The main method of this class is the
classical clutter reduction algorithm (CCRA), which is actually
a clutter processing in the time domain by a digital filter whose
coefficients are not optimized with respect to the noise and
signal spectra [1]. Another, but less used, approach consists of
eliminating the part obtained for all instants before a given time
ts from the signal. After ¢, the clutter is no more considered as
being the predominant component of the whole signal. From a
signal processing point of view, this is equivalent to windowing
the signal in the time domain and therefore to filtering the
spectrum as the convolution operation is done in the frequency
domain. This method, which is also called “early-time gating,”
has a drawback, which is the elimination of responses coming
from targets buried at shallow depths and whose responses
would be situated at time instants of the remote time interval.
Moreover, the choice of ¢, can be hard to solve [4] as the
clutter is nonstationary. The second class of clutter removal
processing is composed of more complex statistically based
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methods which model the clutter [4]-[8]. Among this class, the
first method consists of removing the peak response due to the
response of the air—ground interface. This peak is modeled and
then subtracted to the measurements. Methods vary depending
on the chosen approach to model the peak. In [5] and [6], the
method is based on peak modeling by a linear combination of
complex exponentials whose parameters are estimated by the
Prony method. Generally speaking, these methods are based on
peak modeling that result from the response of the air—ground
interface and eventually from antenna coupling and the subtrac-
tion of this modeled peak from the recorded signal. However,
whatever the method used, the presence of a shallow buried
object modifies the early time response, which includes the
clutter, and thus calls into question the validity of the model,
which can be a serious drawback from an operational point of
view. Van der Merwe and Gutpa [4] propose an iterative method
based on the same idea which takes into account the presence
of shallow buried objects and the incoherent component of
the clutter, i.e., noise and nondeterministic perturbations. The
main drawback of this method is that a reference signature of
the buried object is needed. Other methods [7], [8] consist of
using linear prediction theory to cancel the clutter. In [8], the
method deals with a nonstationnary clutter environment, and
the linear prediction coefficients are computed adaptively. The
main drawback of this method is that it makes the assumption of
Gaussian noise for the prediction error, which is not proven. In
[9]-[14], clutter/signal separation techniques based on principal
or independent component analysis are used. GPR data are
decomposed into suitable subspace components, which make it
possible to select a subset of components that contain primarily
landmines and others that contain mainly clutter information.
However, there is no efficient technique to select automati-
cally which components come from clutter or a buried object,
and often the selection is done by visual inspection of the
components. Finally, the approach in [15] consists of studying
the frequency-domain features from the GPR signal in order
to improve the detection of plastic landmines. However, the
preprocessing method used to remove ground bounce does not
take into account the case where clutter and landmine responses
overlap in time.

In this paper, we focus on a difficult case for clutter reduction,
that is, when landmines and clutter responses overlap in time. A
new and simple clutter removal method, based on the design of
a two-dimensional (2-D) digital filter which is adapted to Bscan
data, is proposed. As shown in Fig. 2, clutter appears in Bscans
as three almost horizontal stripes whereas a buried object
appears as a hyperbolic spreading function resulting from the
imperfect directivity of the GPR antenna. The designed filter
must reduce the clutter (i.e., horizontal bands) significantly on
Bscan data while protecting the landmine responses (i.e., hyper-
bolas). Thus, detection techniques that search for hyperbolas in
Bscans [16]-[18] can then be used.

This paper is organized as follows. Section II presents the
real GPR data used in order to build our clutter reduction
method. In Section III, a geometrical model of both clutter and
landmine signatures in a Bscan is described. Then, a frequency
analysis of the modeled clutter and landmine signal yields in
deriving a 2-D digital filter adapted to Bscan data. Section IV
presents the design of this filter. Finally, simulations results
on simulated and real data are given in Section V, and a
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Fig. 3. Laying configurations of the mines for the different scenarios.
comparison with a classical clutter reduction method is made in
Section VI in order to evaluate the performances of our method.

II. GPR DATA

The pulse radar used is a handheld radar originally designed
for civil engineering from ERA Technology. The transmitting
antenna regularly emits a short pulse of EM energy. The part of
the emitted signal that is reflected and/or diffracted is recorded
by the radar receiving antenna. The radar frequency, which is
the central frequency of the emitted pulse spectrum, is 1 GHz.
The set of real data was recorded during the Multisensor Acqui-
sition Campaign for Analysis and Data Fusion of Antipersonnel
Mines campaign of measurement. The bench allows scanning,
line by line in the abscissa direction, of an area of the ground
measuring 1 X 1.5 m with a 2-cm step in both directions, that
is, an amount of N, = 50 by IV, = 75 Ascans for each scanned
area. By concatenating all the Ascans in the x direction, a set
of N, = 75 Bscan data is obtained. Each area contains six
landmines in six different laying configurations and is called
a scenario. For each scenario, the laying configurations and
positions of the mines are unchanged (Fig. 3). Only the type
of the landmines and the nature of the soil change. There are
three types of soils (clean agricultural soil, sand, and existing
soil type) and three types of landmines. The MAUSI is a metal
landmine, while the AUPS and VSMK?2 are plastic landmines
(with low metal contents). These mines have a cylindrical shape
with similar sizes (the diameter is about 9 cm, and the height is
about 3 cm). Typical Ascan and Bscan data recorded by such
radar are displayed in Figs. 1 and 2.

III. MODELING AND ANALYSIS OF CLUTTER AND
LANDMINE SIGNATURE

The chosen clutter reduction method is based on the use of
a 2-D digital filter that is adapted to GPR data. A compari-
son between the clutter- and landmine-signature-approximated
spectra should be made in order to find which frequency com-
ponents can be filtered out to reduce clutter without distorting
the landmine signatures too much.

A. Clutter Geometrical Modeling and Frequency Analysis

In a typical Bscan (see Fig. 4), the clutter appears as three
horizontal bands. These bands have a very high contrast, i.e.,
they can be modeled as a rectangle function. Let Bscans be
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Fig. 4. Bscan of Fig. 2 before clutter reduction.
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Fig. 5. Zoom of the Bscan of Fig. 4. t1 1 and t1 2 indicate the edges of the
first clutter band.

defined as functions I(z,t), where = represents the spatial
coordinate ranging from O to x; and ¢ represents the time
coordinate ranging from 0 to 7.

Each clutter band appearing on a Bscan can be modeled by a
function II; (z, t) defined as follows:

I (z,t) = I0; 1 ()15 2(t) (D

with
{Hi,l(x) =A; we(0,z4] {Hi,2(t) =A;, teltitio]
ILi(x) =0 & 0,z1] | Li2(t) =0  t¢&[ti1,t2]

where A; is the magnitude of the ith clutter band and ¢; ; and

t; 2 are the time instants that delimit the ¢th clutter band (Fig. 5).
Let us now consider Bscan data containing only the ith

clutter band, which can be modeled by the following function:

Ic($7t) = H,(Jf,t) 2)

In order to design a clutter removal filter, we map the data into
the frequency domain. This can be done by using the following
definition of the Fourier transform:

xq ti2
I (v, v) = I (x,t)e” 2imoVe g =200t o (it |

0 t;1

3)
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The derivation of I.(v,,v) is very classical and leads to the
following result:

I (ve,v) = Ay (tig — ti 1 )e T @vattiattio)

sinc(mzyvy) sine (w2 —ti1)v). (4)

Hence, the ¢th clutter band has the following 2-D magnitude
spectrum:

|TL; (v, v)| = Asaq T; sine(mxy v, sine(nTiv) (5)

where v, is the spatial frequency parameter, v is the frequency,
and T; is the width of the ith clutter band (T; = t; 2 — t;1). By
considering that the main energy of such a function is located
inside the first two lobes of the sinc functions, the clutter band
energy is located inside the subspace S, defined as

Se = {(l/x,u) such that |v,| € [0, 2} and |v| < 2}. (6)
z1 T;
An example of such a clutter band spectrum is represented
in Fig. 6 for a Bscan with the parameters 1 =1 m, ¢;; =
1.5107% s, and 1 o = 2107 s (Fig. 5). As depicted in Fig. 6,
the main part of the energy is well located in the subspace
S, with

Se = {wav)llval € [0,2], ] € [0,4109}. (D)

On a real Bscan data as the one displayed in Fig. 4, clutter
appears as three horizontal bands. Hence, a clutter model for
this Bscan data can be defined as follows:

3
Icluttcr(x, t) = Z II; (.T, t) (8)
i=1
The total clutter spectrum is obtained by using the 2-D Fourier
transform defined by (3) and is given by

3

Iclutter(”zyy) :ZHi(Vz7V) (9)

i=1

where II; (v, v) is the spectrum of the ith clutter band.

It is then important to notice that the magnitude of the
total clutter spectrum is not the sum of the magnitude of each
individual clutter band spectrum. Rather, it is the magnitude of
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Fig. 7. Hyperbola that models the response of a buried object and its asymp-
tote (dashed line).

the coherent sum of each individual spectrum. Having said that,
the resulting spectrum cannot be wider than the spectrum of the
widest individual clutter band, and thus, this widest individual
spectrum provides the worst case for the purposes of selecting
the cutoff frequencies of the digital filter for clutter reduction.
As a consequence, to design our filter for the clutter model, we
only consider the clutter band that has the widest spectrum (the
smallest value for 7;) and whose main energy is situated inside
the subspace S.(1, Vmax ), which is defined as follows:

2
Se(Z1, Vmax) = {(1/3:, v) such that |v,| < — and || < I/max}
T
(10)

where Viax = 2/Tmin With Ty = min(7;), i =1,...,3.
Hence, the filter design does not depend on the number of
clutter bands that appear in the Bscan.

B. Landmine Signature Geometrical Modeling and Analysis

As opposed to clutter, a buried object appears as a hyperbola
in Bscans. In fact, the antenna spatial response is convolved
with the target spatial response. A geometrical straightforward
approach can be used in the case of a soil with known constant
velocity v [1]. For a pointlike object buried at depth z and at
position xg, the reflected signal will be centered on a time

t:t0+% (z —z0)? + 23 (11)
depending on the velocity v of the pulse radar in the soil and
the known constant time ¢y of the signal reflected from the
air—ground interface. It is assumed that the distance between the
GPR and the ground is kept constant during the measurement
and that the air—ground interface is flat. Therefore, the equation
of a hyperbola appearing in a Bscan (see Fig. 7) is

(t — t0)2 (J) — x0)2

a? B b2 =1

12)

with a = 2z¢/v and b = 2.

Using this classical result, the modeling of a Bscan contain-
ing only a hyperbola such as (12) can be done by defining this
Bscan as

— )2
Is(x,t):§<t—t0—a (331)2960)_’_1)7 if | — x| <Az

Is(x,t)=0, else

13)
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Fig. 8. Hyperbola approximated spectrum for |Az| < band v = 0.

with §(¢ — «) as the Dirac function at point ¢ = «. The width
of such a hyperbola is 2Ax. As the antenna directivity is finite,
the reflected signal can only be measured from points not too far
from xy. Using definition (3) of the Fourier transform and the
spectrum of the Dirac distribution, the frequency representation
of a buried object can be defined as

ro+Az ﬁ
Y —2iTva %Jrl 9
Is(Va:a V) —e 2imtor / e b e 2”Txumdl'.

To—AT

Using the properties of the Fourier transform, the previous
spectrum is also equal to

Az
, o 2o .
I (v, v) = e~ 2im(zotto)v / e Zvman/ yz tlo=2imave g
—Azx

(14)
In the case where |x/b| is small in comparison to 1, the
following approximation holds:

2

15 +1=1. (15)
Hence, for landmines buried at depths zp such that zy >

Az(zg = b), the hyperbola spectrum can be approximated by

Az
Is(l/;w V) 2672iﬂu(mg+t0+a) / 672i7rumm dx (16)
—Azx
I (v, v) w 2Age 2T (zottota) sinc(2rAzv,).  (17)
An approximation of the magnitude spectrum is given as
|Is(ve, v)| = 2Ax |sinc(2rAzv,)| . (18)

The magnitude spectrum is therefore almost independent of
v, and the main energy is located inside the interval v, €
[—(1/Az);1/Ax]. For a hyperbola with Az = 0.05 cm, v, is
inside the interval [—20; 20]. Fig. 8 represents the evolution
of the hyperbola approximated spectrum for v = 0. The spread
of the widest clutter band spectrum along the v, axis is very
small in comparison with the spread of the hyperbola spectrum.
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Typically, the main energy is within a band of 2-m~! width for
the clutter (z; = 1 m) and within a band of 20-m~! width for
the signal. Therefore, using a digital high-pass filter with a very
sharp transition band to remove the clutter, as shown in Fig. 9,
will not degrade the signal too much. The stopband S of this
filter is defined as

2
S = {(Vx,l/) such that |v,| € [O, } VV} . (19)
1

However, for landmines buried at shallow depths (1-5 cm),
the approximation (15) does not hold for several values of x
and b considered. It is therefore much more difficult to find an
approximation of the hyperbola spectrum defined by (14). By
looking at several real Bscans from our real database, such as
the one displayed in Fig. 2, it can be seen that the curvature
of the hyperbola top is slight. Furthermore, with the antenna
directivity being finite, one can see that the hyperbola branches
are of short lengths and almost symmetric. A hyperbola on a
Bscan can therefore be approximated by three line segments.
The hyperbola top is modeled by a line segment of null slope
whose width is directly linked to the size of the buried object.
The hyperbola branches are modeled by two symmetric line
segments of slope +a; (see Fig. 10). A Bscan containing
only one hyperbola such as the one displayed in Fig. 7 can
be modeled approximately by the function I,,,(x,t) plotted in
Fig. 10 and defined as

I (z,t) =6 (t = ap(x — xo) + to), ifz € [z2,23] (20)
=0(t = a), ifz € [zs,24] (21)
=0(t=—ap(x — o) +to), ifzelrs,zs] (22)
=0, else (23)
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with ay,, o, 2, T3, T4, and x5 being real constants. The Fourier
transform I,,,(v,, ) can be written as the sum of the Fourier
transform of each line segment

Im(VI7V) :Iml(vaV)+Im2(vaV)+Im3(vaV) (24)

with I, (v, V), Imy(Va,v), and I, (v, v) as the Fourier
transform of the line segments of slopes ap, 0, and —ay,
respectively. An analysis of each line segment spectrum is now
led in order to see which frequency components of these spectra
must be kept in order to avoid landmine signature distortions by
digital filtering.

The line segment modeling the top of the hyperbola defined
by (21) has the following 2-D magnitude spectrum:

[T, (Va, v)| = |Ag sine (v, Ay)| (25)

with A; = x4 — x3. The main energy of such a function is
located inside the subspace Ss, which is defined as follows:

Sy = {(z/m, v) such that |v,| € {O, Z} Vl/} . (26)
t

The width of the hyperbola top being linked to the size of
the buried object in the landmine detection framework |A]
can be taken around 10 cm. Hence, as depicted in Fig. 11,
the main part of the energy is located in the subspace So =
{(vs,V) such that |v,| € [0,20] Vv}. As the magnitude spec-
trum of the hyperbola top is independent of v, a comparison
between the widest clutter band spectrum and top hyperbola
spectrum can be made at v = 0. It is shown in Fig. 12 that the
spread of the clutter spectrum along the v, axis is ten times
smaller than the spread of the hyperbola spectrum. Hence, a
high-pass filter designed such that the clutter situated inside .S
is filtered out can be used because it should not bring significant
distortions to the hyperbola top.

The line segment of slope a; modeling a hyperbola branch,
defined by (20), has the following 2-D magnitude spectrum:

[ L, (Ve V)| = |Ap sine (m(apy + vz ) Ap)| (27)
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with Ay = x3 — o, whereas the line segment of slope —ay,
modeling the other hyperbola branch, defined by (22), has the
following 2-D magnitude spectrum:

[y (Va, V)| = |Apsine (m(—apv + vy)Ap)| (28)

with A, = x5 — x4 (it is supposed that the two hyper-
bola branches have the same length). The main energy of
| Iy (Y, v)| and |Ip,, (v, v)] is situated inside the first two
lobes of the sinc functions. Due to the finite antenna directivity,
Ay is in the range of 8—12 cm for our real Bscan database. Their
slope depends on the speed at which the EM wave propagates
into the soil. The magnitude spectra of the two line segments
modeling the hyperbola branches, with parameters such that
|Ap| = 10 cm and |ap| = 1, are represented in Figs. 13 and 14.

It is then important to notice that the intersection between
the widest clutter band magnitude spectrum and hyperbola
branches magnitude spectra is maximum for v = 0 (see Figs. 15
and 16). The spread of the hyperbola branches magnitude
spectrum is much wider than the spread of the clutter spectrum.
Therefore, the frequency components of the Bscan spectrum
situated inside S can be filtered out without bringing many
distortions to the hyperbola branches.

The analysis developed in this paragraph shows that the use
of a digital high-pass filter with a very sharp transition band,
whose stopband S is defined by (19), must reduce significantly
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Fig. 15. Normalized magnitude spectra of the widest clutter band and of the
segment lines modeling the hyperbola branches for v = 0.
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Fig. 16. Normalized magnitude spectra of the widest clutter band and of the
segment lines modeling the hyperbola branches for v # 0.

the clutter while protecting the landmine signatures on Bscans.
Indeed, whatever the depth at which a landmine is buried, the
important thing to check is that the width of the landmine
signature appearing on a Bscan is small in comparison with
the width z; of this Bscan. This means that the spread of the
clutter spectrum along v,, will be small in comparison with the
spread of a landmine spectrum. In the next section, the design
and implementation of such a filter is given.
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IV. CLUTTER REDUCTION BY DIGITAL FILTERING
A. Specification of the Filter in the Frequency Domain

The modeling and analysis developed in the previous section
can be used to define the bandwidth of a denoising filter. The
gain of the ideal filter should be equal to zero inside the interval
S defined by (19) and equal to one outside. Defining H (v, v)
as the frequency response of this ideal filter, it is expressed as

(29)

It can be noticed that because the spectrum of a landmine
is almost independent of v (Section III-B), the filter has been
designed in order to filter out the clutter spectrum for all (v, )
such that |v,| € [0,2/x1] Yv. As a consequence, there is no
cutoff frequency along the v axis, and the filter does not depend
on the time instants of the widest clutter band ¢; ; and ¢; ».

By taking the inverse Fourier transform, the impulse response
of this filter h(x,t) can be easily computed. However, the
acquired image is sampled on both x and ¢. Before going
on, it is necessary to define an equivalent digital filter. This
is classically done by using a bilinear transformation [19].
Thus, the ideal frequency response Hj(Vxn, Vi) of the digital
denoising filter is defined as

(Vxna Vn) € Sd

(Vxna Vn) ¢ Sd (30)

Hd(l/xn,l/n) = 07
Hd(meVn) =1,

where vy, is the digital spatial frequency such that |vy,| €
[0, vxs/2] With vy being the sampling frequency in x and v,
is the digital time frequency such that (|v,| € [0, v,/2]) with
v being the sampling frequency in ¢. S(d) is defined as
Vs
)

€Y

Sy= {(Vxn, V) such that |, | € [0, o] and |v,| € [0,

where o, the cutoff frequency along v, is given as

Vxs 2w
o, = — arctan .
7T T1Vxs

(32)

B. Derivation of the Impulse Response

Using the inverse discrete Fourier transform, it is possible to
derive from (30) the impulse response h(m,n) of the digital
filter as

20
h(m,n) = §(m,n) — 2% ine
VXS

<M> sinc(mn). (33)
I/XS

Of course, this impulse response is infinite and must be trun-
cated so that it can be implemented. The preceding expression is
multiplied by a hanning window, denoted as w(m, n), resulting
in the following final impulse response A ¢ (m, n):

hf(m,n) = h(m,n) x w(m,n) (34)
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form € [0, M — 1] and n € [0, N — 1] with

(L — cos (5773)) (1 — cos (7))
4

w(m,n) = (35)

where M and N are the space and time samples numbers of
the hanning window, respectively. Therefore, the real frequency
response, denoted as Hg¢(Vxn, Vn ), is the convolution between
the ideal frequency response and the spectrum of the 2-D
hanning window, denoted as W (vxp, vy, ), and is expressed as

de(yxnvyn) = Hd(Vxn;Vn) *W(Vxnayn)~ (36)

C. Tuning the Filter Parameters

The filter parameters are z; and the numbers of filter coef-
ficients M and N. Indeed, M and N are the space and time
samples numbers, respectively, of the hanning window used to
truncate the impulse response (35).

The parameter x; corresponds to the distance along which
the Ascans forming the Bscan data are collected by the GPR.
The real filter is obtained by the convolution in the frequency
domain of the ideal filter frequency response with the hanning
window frequency response (36). This convolution product
should be null inside the subspace S; in order to filter out
clutter. This implies that the hanning window spectrum main
lobe must be situated inside S,. It is then important to notice
that the main lobe width of a one-dimensional (1-D) hanning
window spectrum in normalized frequency? is 4/N;, with Ny,
as the window samples number. Thus, the real filter stopband
width depends on the hanning window samples numbers, i.e.,
M and N. The bigger the filter coefficient numbers M and
N, the narrower the real filter stopband. Indeed, the real filter
stopband should be as close as possible to the ideal filter
stopband, defined by S;. In order to do so, the main lobe width
of the hanning window along vy, denoted as L,, must be taken
less than 2cv,,, while the main lobe width of the hanning window
along v,,, which is denoted as L, must be taken less than v;. In
normalized frequency, M and NN should be chosen as follows:

4 2 xr 2XS

Ly=— <222 > 22 (37)
M Vxs 7%
4 Vg

L=—<—=— N >4. (38)

N v

Moreover, the numbers of filter coefficients M and N should
be chosen odd for the filter to be symmetrical with respect to
the origin. Thus, N can be taken as 5, whereas M is the closest
odd number greater than 2vys/«,.. Knowing z1 and the space
sampling frequency v4s, the filter order can be automatically
computed due to (32) and (37). As an example, the magnitude
spectra of the ideal and real filters designed to filter out clutter
for the Bscan of Fig. 2 are represented in Figs. 17 and 18. The
filter parameters are 1 = 1 m and vys = 50 m~!. Hence, the
values M = 51 and IV = 5 can be taken for the filter order.

3The frequencies, denoted as f, are normalized with respect to the sampling
frequency fs (f/(fs) sothat f € [—-1/2,1/2].
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Fig. 18. Magnitude spectrum of the real filter for v = 0.

V. SIMULATIONS

The digital high-pass filter specified previously is now ap-
plied to simulated and real data in order to test its abilities in
terms of clutter removal.

A. Simulated Data

This new filter is applied to the simulated data depicted
in Fig. 19. These data are made of a horizontal band that
models the clutter and of three line segments that model a
landmine signature buried at a shallow depth, as described
in Section III-B. The horizontal band length 21 is 1 m. The
length of the three line segments is 10 cm, and the slopes of
the two line segments modeling the hyperbola branches are
1 and —1, respectively. The clutter magnitude is taken three
times greater than the landmine signal magnitude. The space
sampling frequency is vys = 50 m~!. Thus, the ideal digital
high-pass filter Hg(vxn, vy,) is defined as

(Vxnv Vn) S Sd

Hd(Vxna Vn) = 07
{ 17 (me Vn) g Sd (39)

Hd(yxn7 Vn) =

with Sy = {(Vxn, Vn) suchthat |vg,| € [0,1.98] and |v,| €
[0,25]}. The values N =5 and M = 51 are chosen for the
filter order. The filtered data are shown in Fig. 20. The clutter
has been significantly reduced, with the magnitude of the
landmine signature being greater now than that of the clutter.
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Fig. 20. Geometrical model of the Bscan shown in Fig. 19 with normalized
magnitude (after digital filtering).

Furthermore, the modeled landmine signature has not been
distorted by the filtering.

Of course, this result was attempted because the filter was de-
signed from the frequency analysis of such data (Section III-B).
More realistic simulated data, where landmine signatures ap-
pear as hyperbolas, are now considered in order to see if the
geometrical model used for the frequency analysis of the hy-
perbola spectrum is good (Fig. 21). The split-step 2-D method
presented in [20] was used to generate this Bscan. An EM pulse,
which is modeled by a Gaussian function, is sent at a height of
12 cm above a homogeneous ground in which two objects have
been placed. The central frequency of the pulse spectrum is
900 MHz. To apply the split-step method, the relative dielectric
permittivity (e,) and the quality factor (@) of the soil and
objects must be known. The coupling effects between antennas
that arise for bistatic GPR are not taken into account. The
simulation parameters are given in Table I.

In order to design the filter, the parameters x;, M, and
N should be determined. The horizontal band length z; is
3.78 m, and the space sampling frequency v, is 33.3 m~!.
The values N =5 and M = 129 are taken for the filter or-
der. The stopband of the digital filter can be found as S; =
{(Vxn,vn) suchthat |vyy,| €[0,0.52] and |v,| € [0,16.6]}.
Fig. 22 shows the simulated Bscan after filtering. It can be seen
that the clutter has been entirely removed and that the buried
objects appear as hyperbolas in the filtered Bscan.
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Fig. 21. Simulated Bscan.
TABLE 1
SIMULATION PARAMETERS FOR THE BSCAN IN FIG. 21
Object 1 Object 2 soil
(er, Q) (3,13.5) (3,13.5) | (10,30)
horizontal positions | {0.84,0.96} | {2.3,2.45} -
depth 2cm Sem -
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Fig. 22. Simulated Bscan in Fig. 21 with normalized magnitude (after digital
filtering).

On the Bscan data of Figs. 19 and 21, clutter appears as
a perfectly horizontal band. This implies that the air—ground
interface is flat, which might not be realistic in the case of
real GPR measurements. The last simulated data are used to
study the case of a rough air—ground interface. The Bscan of
Fig. 23 was created due to the split-step method. An EM pulse,
modeled by a Gaussian function, is sent above a homogeneous
ground in which two objects have been placed. The soil surface
is a random variable which is centered in z = 0 and whose
variance is 5 cm. The simulation parameters for these data are
given in Table II.

The filter parameters are the same as that for the Bscan of
Fig. 21; the filtered Bscan is represented in Fig. 24. It can be
seen that most of the clutter has been canceled by the filtering
but there are some clutter residues. Indeed, in an image, the
low frequencies correspond to low-intensity variations (uniform
zones), and the high frequencies correspond to fast variations
(outlines). Hence, in a general framework, a high-pass filter
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Fig. 23. Simulated Bscan.

TABLE 1I
SIMULATION PARAMETERS FOR THE BSCAN IN FIG. 23

Object 1 Object 2 soil
(er, Q) (10,5000) | (10,5000) | (3,60)
horizontal positions | {1.2,1.5} {2.9,3.2} -
depth Scm 10cm + Scm

18 L L L L L
0 0.5 1 15 2 25 3 35

Spatial coordinates (m)

Fig. 24.
filtering).

Simulated Bscan in Fig. 23 with normalized magnitude (after digital

tends to increase the outlines and cancel the uniform zones.
For clutter bands that are not perfectly horizontal, the outlines
of clutter high-variation zones are at the origin of clutter
residues (Fig. 24). However, the landmine responses are well
represented after digital filtering, and their magnitude is greater
than the one coming from clutter residues. The designed filter is
therefore robust because it cancels most clutter even for rough-
surface soils. This filter is therefore adapted to the Bscan data,
and it can now be tested on real data.

B. Real Data

The MACADAM campaign real Bscan data, presented in
Section II, are used to test our digital filter. The three real
Bscans are selected such that they represent the recordings
of a GPR above different types of soils, where several types
of landmines are buried at different depths. For these Bscans,
the filter parameters are the same, that is, z; =1 m and
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Fig. 25. Bscan recorded above an agricultural soil covered by grass.
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Fig. 26. Bscan in Fig. 25 after digital filtering (N = 5 and M = 51).

Uyxs = 50 m~!. The values M = 51 and N =5 can be taken
for the filter order. The stopband of the digital filter is Sy =
{(Vxn, Vp) such that |v,| € [0,1.98] and |v,| € [0, 25]}.

Consider the Bscan displayed in Fig. 25. In this image,
two landmine responses of MAUSI1 type (metallic content)
have been recorded. One is coming from a landmine buried at
5 cm, and the other is coming from a landmine laid down the
ground at respective horizontal positions x = 0.2 and = = 0.6.
The ground is made of clay covered by grass. The result is
depicted in Fig. 26. The three bands representing the clutter are
well filtered, and the landmine responses are not significantly
distorted by the filtering.

The proposed filter is now tested on the Bscan shown in
Fig. 27. Two VSMK?2 landmine responses have been recorded
on this Bscan, but they are hardly visible because their re-
sponses overlap with the one from the clutter. As shown in
Fig. 28, after digital filtering, the three horizontal bands have
been entirely filtered, and the landmine signatures appear as
hyperbolas in the filtered Bscan.

Finally, the Bscan depicted in Fig. 29 is filtered. In this
record, there are MAUS1 landmines buried at position = 0.2
at 10 cm and at position = 0.6 just below the air—ground
interface. As shown in Fig. 30, the clutter bands have almost
been entirely filtered, but there are some residues. Indeed, our
filter has been constructed for clutter whose bands are almost
horizontal. Now, as shown in Fig. 29, the clutter bands are
not horizontal in the central part of the Bscan. Clutter residues



POTIN et al.: LANDMINES GPR SIGNAL ENHANCEMENT BY DIGITAL FILTERING

VSMK2

0 0.1 0.2 0.3 04 § 0.6 0.7 08
Spatial coordinates (m)

Fig. 27. Bscan recorded above an agricultural soil.
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Fig. 28. Bscan in Fig. 27 after digital filtering (N = 5 and M = 51).
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Fig. 29. Bscan recorded above an agricultural soil.

come from the outlines of the clutter bands in this zone.
However, the two landmines are correctly represented on the
Bscan after digital filtering, and their energy is greater than the
one coming from clutter residues.

C. Discussion

The digital filtering approach for clutter reduction is effective
for the real data set. These data represent different scenarios
because the landmines are buried at different depths (1-10 cm)
or laid down the ground. For all cases, the clutter is significantly
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Fig. 30. Bscan in Fig. 29 after digital filtering (N = 5 and M = 51).

reduced, whereas the landmine signatures are protected, even
for landmines whose responses are hidden by clutter. Thus,
the proposed filter is well adapted to Bscan data. Its main
drawback is that to get a perfect clutter reduction on Bscan
data, the clutter should be made of horizontal bands, implying
that the air—ground interface should be flat. If not, there might
be some clutter residues after digital filtering. These residues
come from the outlines of clutter bands high-variation zones.
However, their magnitudes are attenuated by the filtering and
are often lower than the one of landmine responses. Thus, the
designed filter is robust and can be used to cancel clutter even
for a rough air—ground interface. It can then be noticed that this
digital filter has been successfully used as a preprocessing step
of an abrupt change detection algorithm for the localization of
landmine responses in Bscan records [18].

VI. PERFORMANCES ANALYSIS OF THE
CLUTTER REMOVAL METHOD

A comparison with the commonly used CCRA is made
in order to evaluate the performances of our method. Clutter
reduction by CCRA is achieved by subtracting from each Ascan
an averaged value of the V,, previous Ascans [1], i.e.,

w

zp(n) = x(n) — Nina:(n—z)

=1

(40)

where z(n) is the vector that contains the Ascan samples
recorded at position n and x ¢(n) is the processed Ascan. The z
transform X 7 (z) of the processed Ascan x ¢(n) is defined as

1
1-— o Z; z A1)
where z is a complex variable and X (z) is the z transform
of z(n). Hence, the CCRA realizes a clutter processing in the
time domain by a digital filter whose transfer function H.,(z)
is defined as

(42)
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Fig. 32. Frequency responses of the real and ideal high-pass filter.

TABLE III
Rc, Rt, AND Ry FOR THE DIFFERENT FILTERS
Adapted filter CCRA filter | CCRA filter | CCRA filter
Order | M =51, N=5 Ny =5 Ny =10 Ny =15
R 96% 91, 7% 85% 78.3%
Ry 40% 70% 43.6% 31%
Ry 33.1% 62.4% 36.6% 25.6%

where the filter coefficients a; are given such that ay = 1 and
a; =—1/N,, for i =1,..., Ny. Thus, the filter coefficients
depend only on the filter order N,,. The frequency responses
of a CCRA filter for different values of N,, are represented in
Fig. 31. It can be seen that the settling time of these CCRA
filters is quite long in comparison with the settling time of our
filter and that their peak overshoots are greater (see Fig. 32).
The frequency responses of CCRA filters are more distant
from the ideal high-pass filter frequency response, defined by
Hi(vyn, Vn), than our filter frequency response. This can be
explained by the fact that the CCRA filter coefficients are not
optimized with respect to the clutter and landmine response
approximated spectra.

In order to evaluate the performance of our clutter removal
method against the CCRA, two criteria are used. The first
criterion is the percentage measurement of the clutter power,
denoted as R,., that is filtered out for the two methods in order
to see which method is the most efficient in terms of clutter
removal. The second criterion is the percentage of the landmine
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Fig. 33. Ry is plotted against R, for the two filter types.

signal power that is filtered out for the two methods in order to
see which method brings the least distortions to the landmine
responses.

In Section III, the signatures of landmines buried at shal-
low depths have been modeled by three line segments whose
magnitude spectra are defined by (25), (27), and (28), whereas
the clutter magnitude spectrum is defined by (4). Hence, the
percentage of distortions brought by the filtering on the hyper-
bola top R; can be defined as

J70 Isine(mAw,)[? 1 — H|dv,

x 100
I |sinc(r Ay ) |* dv,

(43)

Rt:

where H is the transfer function of the filter used to reduce
clutter. The maximum percentage of distortions brought by the
filtering on the hyperbola branches Ry, is defined as

[ |sinc(mApvy) |1 — H|?dv,

x 100.
ffooc |Sinc(7‘1’Ab1/ac)|2 dv,

(44)

Ry =

Finally, the percentage of the clutter power that is filtered out
along v, is defined as

f:o |sinc(rz1v,) |21 — H|*dv,

~ 100.
T |sinc(mxivy)|2dy, x

(45)

R. =

From the observations of our real database Bscans, the para-
meters x1, A¢, and Ay can be chosen as follows: x; = 1 m,
A; =10 cm, and Ay = 8 cm. Table III gives the values of
R., R;, and Ry, for our filter and for CCRA filters. The best
filter is the one that offers the best tradeoff between clutter
reduction and landmine signatures protection. R; and R, are
plotted against IR, in Figs. 33 and 34, respectively, in order to
see which filter is the closest to the ideal tradeoff (R, = 100%
and Ry = R; = 0%). It can be seen that our clutter removal
method is better than the CCRA because it offers the best
tradeoff. To illustrate this, the Bscan of Fig. 29 is processed
independently by two CCRA filters whose orders are V,, = 5
and N,, = 10, respectively. Fig. 35 shows that, for N,, = 5, the
clutter is significantly reduced but the signature of the MAUS1
landmine buried at 10 cm is cut into two parts. This can result in
the detection of two buried objects instead of one, which leads
to the increase of the false alarm rate. For N,, = 10, it is shown
in Fig. 36 that landmine signatures are less distorted, however
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Fig. 35. Bscan in Fig. 29 after clutter removal by the CCRA filter (N, = 5).

their magnitudes are lower than that of the clutter residues. The
preprocessing of this Bscan by our filter is better (see Fig. 30).

Finally, the performance of our filter and CCRA filters for
clutter reduction is studied in terms of detection probability
and false alarm probability with the help of receiver operating
characteristic (ROC) curves. The landmine detection method
used is the one proposed in [18]. This method consists of
detecting all abrupt changes in the Bscan data along both time
and spatial dimensions and in finding those coming from the
responses of buried landmines. More precisely, the two steps of
this method are as follows.

Step 1) Spatial abrupt changes are searched in order to
detect the possible horizontal landmines position.
Clutter reduction is not necessary because clutter is
almost constant along the horizontal axis of the real
Bscans.

The time abrupt changes are searched in order to
detect the buried-object response times. Clutter has
to be removed beforehand in order to avoid detecting
clutter bands instead of real landmines.

Here, we are only interested in Step 2) of the landmine-
detection method because clutter reduction is used as a pre-
processing step. In order to build an ROC curve for each filter, a
set of 75 real Bscan data collected by a bench arc, as described
in Section II, is used. The laying configuration of the landmines
is shown in Fig. 3. Five MAUSI1 landmines and one AUPS
landmine have been buried at different depths in an agricultural
soil without any other objects, such as twigs or rocks. For

Step 2)
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Fig. 36. Bscan in Fig. 29 after clutter removal by the CCRA filter
(Nw = 10).
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Fig. 37. ROC curves for the detection of landmine response time [Step 2)]
when the Bscan data are preprocessed by the adapted filter and the CCRA
filters.

each Bscan, we apply Step 2) of the detection method. The
Bscan data are first preprocessed by one of the filters, and
then the abrupt change detection algorithm is applied along the
time direction. The algorithm parameters are mj; = mo = 5,
o =10, and v = 0.5 [18]. A buried object is characterized by
two near-abrupt changes in the time direction which are relative
to the response times of the top and bottom of the object. Hence,
for each detected response time, if it corresponds to a theoretical
response time of a landmine, the detection is true; otherwise, it
is considered a false alarm. Then, the probability of detection
and the probability of false alarm are computed for different
values of the detection threshold 1, (n, € [0,12]). The ROC
curves for the different filters are plotted in Fig. 37. It can be
seen that the detection—false alarm performance is better when
the Bscans from the data set are preprocessed by our filter rather
than by CCRA filters.

VII. CONCLUSION

In this paper, a digital high-pass filter that is adapted to
Bscan data has been proposed to reduce clutter. The different
simulation results show the efficiency of such a filter to re-
move clutter while protecting the landmine signatures, even for
landmines whose responses are hidden by clutter. The perfor-
mances of our method were evaluated due to a comparison
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with the commonly used CCRA method, which shows that
our method gives a better tradeoff in terms of clutter reduc-
tion and landmine signatures protection and a better detection
performance when it is used as a preprocessing step for the
landmine-detection method proposed in [18]. The only thing
that should be checked before applying this filter to any Bscan
data is that the width of the buried object in the Bscan image
is small in comparison with the image width. Moreover, the
implementation of such a filter is simple, and its computational
cost is low.
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