B. B. Mandelbrot and J. W. Van-ness, Fractional Brownian Motions, Fractional Noises and Applications, SIAM Review, vol.10, issue.4, pp.422-437, 1968.
DOI : 10.1137/1010093

J. A. Barnes and D. W. Allan, A statistical model of flicker noise, Proceedings of the IEEE, pp.176-178, 1966.
DOI : 10.1109/PROC.1966.4630

C. W. Granger and R. Joyeux, AN INTRODUCTION TO LONG-MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING, Journal of Time Series Analysis, vol.7, issue.1, pp.15-29, 1980.
DOI : 10.2307/3212527

J. R. Hosking, Fractional differencing, Biometrika, vol.68, issue.1, pp.165-176, 1981.
DOI : 10.1093/biomet/68.1.165

URL : http://biomet.oxfordjournals.org/cgi/content/short/68/1/165

O. Magré and M. Guglielmi, Modelling and analysis of fractional Brownian motions, Chaos, Solitons & Fractals, vol.8, issue.3, pp.377-388, 1997.
DOI : 10.1016/S0960-0779(96)00103-8

P. Carmona, L. Coutin, and G. Montseny, A diffusive Markovian representation of fractional Brownian motion with hurst parameter less than 1, Prepublication, issue.2, 1998.

B. Yaz?c? and R. L. Kashyap, A class of second-order stationary self-similar processes for 1/f phenomena, IEEE Transactions on Signal Processing, vol.45, issue.2, pp.396-410, 1997.
DOI : 10.1109/78.554304

C. J. Nuzman, H. Vincent, and . Poor, Reproducing Kernel Hilbert Space Methods for wide-sense self-similar Processes, The Annals of Applied Probability, vol.11, issue.4, pp.1199-1219, 2001.
DOI : 10.1214/aoap/1015345400

J. Lamperti, Semi-stable stochastic processes, Transactions of the American Mathematical Society, vol.104, issue.1, pp.62-78, 1962.
DOI : 10.1090/S0002-9947-1962-0138128-7

P. Amblard, P. Borgnat, and P. Flandrin, Scale invariances and Lamperti transformations for stochastic processes, Journ. Phys. A: Math. Gen, vol.38, issue.10, pp.2081-2101, 2005.

O. Cappé, E. Moulines, J. Pesquet, A. Petropulu, and X. Yang, Long-range dependence and heavy-tail modeling for teletraffic data, IEEE Signal Processing Magazine, vol.19, issue.3, pp.14-27, 2002.
DOI : 10.1109/79.998079

Y. Meyer, F. Sellan, and M. S. Taqqu, Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion, The Journal of Fourier Analysis and Applications, vol.21, issue.4, pp.465-494, 1999.
DOI : 10.1007/BF01261639

P. Abry, P. Gonçalvès, and P. Flandrin, Wavelets, spectrum analysis and 1/f processes, Wavelets and statistics. Lecture notes in Statistics, 1995.
DOI : 10.1007/978-1-4612-2544-7_2

URL : https://hal.archives-ouvertes.fr/inria-00570663

R. Narasimha, S. Lee, W. Zhao, and R. M. Rao, Discrete-time models for statistically self-similar signals, IEEE Trans. Signal Processing, vol.51, issue.5, pp.1221-1230, 2003.

M. Mboup, On the Structure of Self-similar Systems: A Hilbert Space Approach, Operator Theory: Advances and applications OT- 143, pp.273-302, 2003.
DOI : 10.1007/978-3-0348-8077-0_9

L. R. Ford, Automorphic functions, 1951.

M. Hasumi, Hardy classes on infinitely connected Riemann surfaces, Lecture Notes in Math, vol.1027, 1983.
DOI : 10.1007/BFb0071447

C. Pommerenke, On the Green's function of Fuchsian groups, Annales Academiae Scientiarum Fennicae Series A I Mathematica, vol.2, pp.409-427, 1976.
DOI : 10.5186/aasfm.1976.0228

M. Sodin and P. Yuditskii, Almost periodic Jacobi matrices with homogeneous spectrum, infinite dimensional Jacobi inversion, and hardy spaces of character-automorphic functions, Journal of Geometric Analysis, vol.27, issue.3, pp.387-435, 1997.
DOI : 10.1007/BF02921627

M. V. Samokhin, SOME CLASSICAL PROBLEMS IN THE THEORY OF ANALYTIC FUNCTIONS IN DOMAINS OF PARREAU-WIDOM TYPE, Mathematics of the USSR-Sbornik, vol.73, issue.1, pp.273-288, 1992.
DOI : 10.1070/SM1992v073n01ABEH002545

H. Widom, H p Sections of Vector Bundles Over Riemann Surfaces, The Annals of Mathematics, vol.94, issue.2, pp.304-323, 1971.
DOI : 10.2307/1970862