High accuracy handwritten Chinese character recognition using quadratic classifiers with discriminative feature extraction

Abstract : We aim to improve the accuracy of handwritten Chinese character recognition using two advanced techniques: discriminative feature extraction (DFE) and discriminative learning quadratic discriminant function (DLQDF). Both methods are based on the minimum classification error (MCE) training method of Juang et al. [7], and we propose to accelerate the training process on large category set using hierarchical classification. Our experimental results on two large databases show that while the DFE improves the accuracy significantly, the DLQDF improves only slightly. Compared to the modified quadratic discriminant function (MQDF) with Fisher discriminant analysis, the error rates on two test sets were reduced by factors of 29.9% and 20.7%, respectively.
Type de document :
Communication dans un congrès
Pattern Recognition, 2006. ICPR 2006. 18th International Conference on, Aug 2006, Hong-Kong / Chine, IEEE, 2, pp.942-945, 2006, Proc. 18th Int. Conf. on Pattern Recognition. 〈10.1109/ICPR.2006.624〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00120419
Contributeur : Chine Publications Liama <>
Soumis le : jeudi 14 décembre 2006 - 18:45:28
Dernière modification le : mercredi 10 octobre 2018 - 14:28:07
Document(s) archivé(s) le : mercredi 7 avril 2010 - 00:46:22

Fichier

liama4.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Cheng-Lin Liu. High accuracy handwritten Chinese character recognition using quadratic classifiers with discriminative feature extraction. Pattern Recognition, 2006. ICPR 2006. 18th International Conference on, Aug 2006, Hong-Kong / Chine, IEEE, 2, pp.942-945, 2006, Proc. 18th Int. Conf. on Pattern Recognition. 〈10.1109/ICPR.2006.624〉. 〈inria-00120419〉

Partager

Métriques

Consultations de la notice

229

Téléchargements de fichiers

582