N
N

N

HAL

open science

An asynchronous, decentralised commitment protocol
for semantic optimistic replication

Pierre Sutra, Marc Shapiro, Joao Barreto

» To cite this version:

Pierre Sutra, Marc Shapiro, Joao Barreto. An asynchronous, decentralised commitment protocol for
semantic optimistic replication. [Research Report] 2006, pp.21. inria-00120734v1

HAL Id: inria-00120734
https://inria.hal.science/inria-00120734v1
Submitted on 18 Dec 2006 (v1), last revised 8 Oct 2007 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00120734v1
https://hal.archives-ouvertes.fr

10 N O2NNA

\'I\Iﬁf\:f\lﬂ 4
mmMNia~UU LYV o4, VCIOoIUIl L = 10O UTU £2UVUV

maria NN1O9ON72A

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMAIQUE

An asynchronous, decentralised commitment
protocol for semantic optimistic replication

Pierre Sutra Marc Shapiro
Université Paris VI and INRIA Rocquencourt, France
— Joéao Barreto
INESC-ID and Instituto Superior Técnico, Lisbon, Portugal

N° 2?2?7?

Decembre 2006
Théme COM

apport
derecherche

ISRN INRIA/RR--?2?2??--FR+ENG

ISSN 0249-6399

Zd INRIA

ROCQUENCOURT

An asynchronous, decentralised commitment protocol for
semantic optimistic replication

Pierre Sutra Marc Shapiro
Université Paris VI and INRIA Rocquencourt, France
, Joao Barreto
INESC-ID and Instituto Superior Técnico, Lisbon, Portuga

Théme COM — Systemes communicants
Projet Regal

Rapport de recherche n° ???? — Decembre 2006l— 21 pages

Abstract: We study eventual consistency in an asynchronous systemowiimistic data replica-
tion. A site executes actions submitted by the local cliant] remote actions as they are received.
This state is only tentative, because semantic constrsiiets as conflicts, dependence, or atomicity
may cause it to roll back some of its state and compute a neg §the system should be eventually
consistent, i.e., (i) each local schedule be correct arlista eventually, and (ii) the schedules at
each site eventually converge. We propose a decentratisgdchronous commitment protocol that
ensures this. Each site proposes a set of schedules to atfl siths. A proposal can be decom-
posed into one or more semantically-meaningful unitsedatlandidates. A candidate wins when it
receives a majority or a plurality of the votes in its elentilzaving room for missing votes. The pro-
tocol is fully asynchronous: each site executes its targatthedule independently, and determines
locally when a candidate has won an election. The protoafis in the presence of non-byzantine
faults. It supports a rich repertoire of semantic relatjons., it resolves conflicts, it guarantees
sound executions with respect to dependence or atomicityjtaorders non-commuting pairs of
actions, but not necessarily commuting ones. We descriprihtocol in detail and prove it safe.

Key-words: data replication, optimistic replication, semantic regtion, commitment, voting
protocols.

* LIP6, 104, ave. du Président Kennedy, 75016 Paris, Frinai@o:pierre.sutra@lip6.fr

Unité de recherche INRIA Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chd&3Sedgx (France)
Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

mailto:pierre.sutra@lip6.fr

Un protocole de validation pour la réplication optimiste dans les

sysemes Epartis £mantiquement riches

Résun® : Nous examinons a travers ce document la cohérence dasystésnes répartis répliquant
des données de maniére optimiste. Le paradigme de laa@ph optimiste est que les sites composant
le systeme réparti peuvent ré-éxecuter les requés<lients (actions) si la sémantique liant les
actions le nécessite. Dans de tels systemes le criteooliference est que les sites convergent a
terme vers des exécutions équivalentes. Afin d’assuttr cenvergence, un protocole de validation
est nécessaire. C'est I'objet de cette étude. Notre pobegrocede par éléctions successives sur des
ensembles d’actions exécutées de maniére optimiste pgsteme. La sémantique prise en compte
dans ce protocole est suffisament riche pour exprimer désnsaelles que la nhon-commutativité,

le conflit ou encore la causalité entre les actions. Nousyanes que notre protocole est siir, et ce en
dépit des éventuelles pannes franches pouvant surver@ssites.

Mots-clés : réplication optimiste, validation, protocoles de vote

An asynchronous, decentralised commitment protocol foaseic optimistic replication 3

1 Introduction

Access to shared data is a performance and availabilitiebettk. This problem will only get worse
as more mutable data is shared remotely, and as the gap Ieprnezessing speeds and memory/
network latency continues to widen. One possible solutitoiuse optimistic replication (OR),
where a process may read or update its local replica withmdhsonising with remote site5 [113].
OR decouples data access from network access.

In OR, each site makes progress independently, even wihiggoare slow or unavailable. Sites
exchange updates lazily and asynchronously. OR insulatss from network disruption, and may
improve network utilisation by batching. OR supports melsibmputers with slow, expensive or
intermittent network connections, and wide-area netwavritls high and variable latencies. OR is
especially useful for loosely-coupled co-operative wavkere each user works on a separate copy,
and synchronises only occasionally with co-workers.

We model an OR system as a network of disjoint sites. A cliebtsts actions for execution
to the local site; the site occasionally exchanges actidtisather sites and replays remote actions
locally. A conflict occurs when a remote client submits atsithat would violate application seman-
tics when replayed against the local state. When this hapmer or the other site (or both) must
roll back its state to an earlier one, and execute actionsrdicg to a different schedule. However,
the system should ensuggentual consistengije., schedules should eventually stabilise, and stable
schedules at all sites should agree. Agreeing on a stabdelslehis what we catommitment

In order to resolve conflicts, and more generally to adapppieation requirements, the system
should be aware of application semantics. To this effect,paameterise system behaviour by
constraints A constraint reifies an invariant that is directly relatedtie scheduling of actions,
for example dependence (one action may execute only if anb#s), atomic grouping (all actions
or none in the group execute), non-commutativity (all staddhedules should execute them in the
same order), or antagonism (if one action executes, sonegsothay not). The set of constraint
types is small, and cannot be claimed to support all posséigantics, but it is formalised1i15], and
experience shows that it is sufficient for a large class ofiegions [12].

The design trade-offs for commitment algorithms are défferin OR systems and in classical
ones. Generally speaking, previous commitment algoritlrasnefficient when semantics are con-
sidered. For instance many compute a total order, even thonlg non-commuting pairs of actions
need to be serialised. In the presence of conflicts, theyatmrt more actions than necessary.
Classical systems commit one action at a time.

In contrast, a semantic OR commitment algorithm may baglétisions, which allows it to
look ahead at conflicts and dependencies, in order to migiat®rts[[T2} Because commitment
only impacts the stable state, it can occur in the backgromedsages can be batched, and minimis-
ing latency is less important.

1For instance, suppose commitment has to choose betweeingtamtionsa andp. If no actions depend om but a large
number depend of, it is better to abortr.

RR n° 0123456789

4 Sutra & Shapiro & Barreto

Unfortunately, previous semantic OR systems [12, 17] gdhyedelegate commitment to a sin-
gle primary site. We propose instead to decentralise comemit, in order to avoid performance and
fault-tolerance bottlenecks.

We show that commitment should not consider a single acticantane, but instead should
examine semantically-significant units. For instancewi ections conflict, how one is scheduled
impacts the other and vice-versa; therefore, the unit ofrndment must encompass both actions.

The main contribution of this paper is a decentralised agd@sonous commitment protocol
for semantic OR systems. It builds upon existing, primaagddl semantic algorithms. Several
instances of such algorithms exchange proposals and vataanother’s proposal. Each proposal
decomposes into semantically-significant granules, daldandidates. A candidate wins its election
when it receives more votes than any opponent, leaving rammdtes not yet received. It may
win either by majority or by a simple plurality. Sites comnizate by asynchronous messages. As
soon as a site has received a sufficient number of proposaieaes, it is capable of determining
locally which candidate wins its election. This protocokares that tentative schedules at each
site eventually stabilise. We prove that the protocol i€ seé., local stable schedules are mutually
equivalent, even in the presence of non-byzantine fauhg. protocol is live as long as a sufficient
number of votes are received.

The outline of the paper is the following. Sectldn 2 introdsiour system model and our vocab-
ulary. SectiollB links between classical approaches aral &\e give our commitment protocol in
Sectior#. Sectioll 5 provides a proof outline and discussssage cost. We compare with related
work in SectiorlB. In conclusion, Sectibh 7 discusses owdtgand future work.

2 System model and Terminology

We consider an asynchronous distributed system sites ij,... € 7. Sites are reliable. They
communicate through fair-lossy channels. We assume algitdizk t € 7 that ticks at every step
of any process, but processes do not have access to it.

A site executes an application thread calleddlent, aproposerprocess that makes proposals,
and anacceptorthread where agreement takes place. Sites communicategthasynchronous
messages. Together, the set of proposers and acceptdrsitgsaéxecute the commitment protocol
described herein. We formally define some sis the tupléM;(t),S(t), ci, pi,a) wherec; (resp.pi,

&) is the client (resp. the proposer, the acceptor) of the ThieM; (t) andS (t) elements respectively
denote the site-multilog and site-schedule describeddate

2.1 The Action-Constraint Framework

We use the Action-Constraint Framework (ACF) to model owsteam [14/15]. The rest of this
section describes our model along with a terse introdu¢tigxCF.

2When there is no ambiguity, we drop the word client, propaset acceptor, and just say site.

INRIA

An asynchronous, decentralised commitment protocol foaseic optimistic replication 5

Shared data is replicated across all sites. We do not regrdata directly; instead we identify
its state at some site with scheduleof actions S(or simply a schedule), defined as a sequence
of actions ordered bys, where any action appears at most once, executed at thairsite the
common initial statenIT.

An actionis a request to execute some logical operation. We assunoasitd be unique and
distinguishable from one another. @ddnstraintrepresents a scheduling invariant between actions.
For instance, consider that user Alice has a meeting plamittcdBob and needs to buy a ticket to
attend it. This may involve actions “debit my bank accountlB@E” and “buy ticket to Paris next
Monday at 10:00.” It is useful to add the semantic informatibat the goal of the debit (action
a) is to pay for the ticket (bought by actids). In other wordsf3 depends causally om, noted
a—pBAa<B .2 Given this constraint, the following executions are soired,(legal): just, or o; B.
However the executiof, with a absent, is unsound.

We consider two kinds of conflictsIf executing two actionst and in different orders gives
different results, we call thison-commutativitynoteda}tp . If no execution order could satisfy the
invariants of two (or more) actions, we call trdatagonismnoteda —f3 A B—a.

To resolve an antagonism conflict, it is necessary to remoeecs the other action (or both)
from legal schedules; removed actions are shéddor killed. Killing an action also resolves a
non-commutativity conflict, but a better approach is¢oialisethe actions, i.e., to ensure that stable
schedules execute the two actions in the same order.

Note that in the database literature, the word conflict ugludgsignates what we call non-
commutativity, whereas in the CSCW (Computer-Supportezp@aative Work) community, conflict
usually means antagonism.

2.1.1 Multilogs and constraints

Our central data structure is thaultilog. Let A be the set of alactions noteda, 3,... . A multilog
is a quadruplM = (K, —, <1, }f), whereK C A, and—, <1 and}f are sets otonstraints(relations
overA x A), respectively called NotAfter, Enables and NonCommutiriRelation) is symmetric.
Relations— and<i do not have any particular properties.

30ur notations will be explained shortly.
4Some authors suggest to remove conflicts by transformingdtiens [T5[IB]. We assume that, if such transformations
are possible, they have already been applied.

SMultilog union, inclusion, difference, etc., are defineccasponent-wise union, inclusion difference, etc., retipely.
For instance iM = (K, —, <,)f) M’ = (K',—/, <1’)f) their union isM UM’ = (KUK/, — U —/, <qU <’} U}).

RR n° 0123456789

6 Sutra & Shapiro & Barreto

2.1.2 Soundness and equivalence
A scheduleSis soundwith respect to multilogM if:

INIT €S

0 € SAQ Z INIT = INIT <sd
SesM) Eva,BeA { aes=ack

0—pB=-(B<s0)

0<f=(BeS=0¢c9

whereX(M) is the set of schedules that are sound with respelet.t@(M) grows aK grows, and
shrinks as— or < grow. Multilog M is saidsoundif (M) # @. Any subset of a sound multilog is
sound; conversely, any superset of an unsound multilogssumd.

Relations— and < restrict which schedules are legal. In contrgstlefines an equivalence
relation between schedules, wh&and S are equivalentiff they contain the same actions, and
non-commuting actions are ordered in the same direction.

If M contains a NotAfter cycle such as—B A B—a, then no sound schedule may contain koth
andf. Therefore, NotAfter cycles represent antagonism. Thexegate cycle—a causest to be
dead. The conjunctioa—f3 A <13 means thap cannot execute unlesshas executed previously;
[3 causally depends up@n An Enables cycle such asaf3 A B<ia encodestomicity. in any sound
schedule, either botthn andp are present, or neither is. (In this paper, to encode thatisolproperty
of transactions, the whole transaction is represented iag ke siction.)

2.1.3 Site-multilogs and site-schedules

Each site has a distinguishesite-multilog M(t) =(Ki(t), —i (t), < (t),4; (t)). It contains’s local

knowledge of the distributed state at time Initially, M;(0) = ({INIT},2,@,2). It grows over
time, as we explain shortly. Associated with the site-nadti each site has site-schedule &) €

Z(M;(t)). We identify the current state of sitevith (the equivalence class of) site-schedslig).

By design, the choice of site-schedule witifM;(t)) is non-deterministic, in order to account
for a wide range of implementations. In particular, unlé&sdonstraints i dictate otherwise, the
site-schedule at time+ 1 does not necessarily extend that at tig#his represents a roll-back.

2.2 Client Behaviour and client interaction

An application performs tentative operations by subnittictions and constraints to its local site-
multilog, which the site-schedule will (hopefully) inclad

We abstract the details of applications, by postulating ttiants have access to a multilog
M = (D, =4, <ar4a), Such thatv' = ar U (A, @,2,2) is sound. o contains all applica-
tion constraints. We postulate that as the client submit®@eL to the site-multilog, function

INRIA

An asynchronous, decentralised commitment protocol fimaseic optimistic replication 7

Algorithm 1 ClientActionsConstrain{t)

Require: LC A
1. Ki:=K;uUL
2: for all a—,, B such thath € Ki A € K; do
3: —ii=—i U{(a,B)}
4: for all a<,, B such thatt € Ki AP € K do
5: < =<giU{(a,B)}
6: for all ajt,, B such thatt € Ki A € K; do
T tii=t U{(a,B)}

ClientActionsConstraintAlgorithm[ll) adds constraints with respect to actions thatsite already
knows?®

To illustrate, consider the previous example of Alice’s timegwith Bob. Assume that Alice and
Bob run some distributed application for shared projecttémé management, which is supported
by an OR system. Alice and Bob access site 1 and site 2 regplgcBoth may read and update their
local replicas. Accordingly, clienty andc; add new actions (access to shared data) along with their
constraints tdvi; andM> (according to Algorithnfll), respectively. Alice’s actioaea, a request
to debit money from her account, afidbuying a ticket to meet Bob. Semanticafbyglepends ox;
hences containso—,, BA o<, B. Alice callsClientActionsConstraintga }) to add actioro to
M1, and, some time later, similarly f@: At this point, Algorithn{l adds the constraints-13 and
a <13 taken fromar .

2.3 Multilog Propagation

Every site occasionally sends a copy of its site-multilogtteer sites, which the receiver merges into
its own site-multilog. By this so-called epidemic commuation [2,[4[17], every site eventually
receives all actions and constraints submitted at any ¥iteen sitei receives a remote multilog
M, it executes functioReceiveAndCompatélgorithm[d), which first merges what it received into
the local site-multilog. Then it adds any client conflict lrRoommutativity or antagonism) relations
that may exist between previously-known actions and theived actions. Note that no Enables

relations may appear here.

To simplify exposition, we will assume here that commuriarats all-or-nothing: if communi-
cation succeeds, the receiver receives the full state ofehder's multilog. The protocol remains
correct under weaker, FIFO-like assumptions.

Recall the example of Alice and Bob. Suppose that, conctlyrernth Alice’s activity, Bob
added action, meaning “cancel the meeting,” My. Actionyis antagonistic with actiofd (whereby
Alice buys the ticket to attend the meeting); herfse;,,, YAy— 4, B. Sometimes later, site 2 sends its
site-multilog to site 1; when site 1 receives it, it runs Afigom[Z. Clientc; notices the antagonism

8n the algorithms, we leave the current timienplicit. Statements in curly bracke{dike this} are comments.

RR n° 0123456789

8 Sutra & Shapiro & Barreto

Algorithm 2 ReceiveAndCompa(id)
Require: M = (K, —,<,}) is a site-multilog received from a remote site
Mi =MjuM
for all a—,, 3 such thatr € K; AP € K; do
—ii=—i U{(a, B)}
for all ayt,, B such thatt € Ki AB € K; do
tii=hi U{(a,B)}

and adds constraifit—1y A y—1p to M;. Thereafter, site-schedules at site 1 may include efloer
Yy, but not both.

2.4 Commitment and Consistency

Epidemic communication ensures that all site-multilogsrgually receive all information, but site-
schedules might still differ between sites. For instantepr previous example, site 1 might execute
S(t) = INIT;a; B, whereas site 2 may ru8 (t) = INIT;y. To ensure consistency, we need global
agreement on the set and order actions; this process isl cadlamitment We will now define
precisely what we mean by consistency and commitment ingefrmultilogs.

The following subsets of actions are of particular interest

» Guaranteedactions appear in every schedulexiM). Formally, Guar(M) is the smallest
subset oK containing{INIT} U{a € A|3p € Guar(M) : a<i }

» Deadactions never appearin a schedul&@¥). Dead M) is the smallest subset Afcontain-
ing{a € AlIm>0,By,...,Bm € GuarM):a —B1 —... = Bm—a }U{a € A|3B € Dead M) :
B<a }

* Serialisedactions are those that are ordered with respect to all namyaging actions that
are not deadSerialisedM) d:e'({cx eAVBeA aff= a—BVPB—aVpcDeadM)}

+ Decidedactions are either dead, or both guaranteed and serialissitied M) d:e'(Deac{M) U

(Guar(M) N SerialisedM))

« Stable(i.e., durablg actions are decided, and all actions that precede them b4ftéo are
def

themselves stabl&tabléM) = Dead M) U{a € Guar(M)|Vp € A, fB—a = P € StabléM)}.
Recall that multilogM is said sound ifi(M) # @. Equivalently,M is sound iffDeadM) N
Guar(M) = @. If all actions in a multilog are decided, they are also ftabBlecidedM) = K =
StablgM) = K.
An action that is both stable and guaranteed is called comdih the standard database ter-
minology, whereas a dead action is called aborted. We do s®tthis vocabulary because we
distinguish between guaranteed, decided and stable.

INRIA

An asynchronous, decentralised commitment protocol foaseic optimistic replication 9

It is the role of proposers and acceptors to decide actignsydans of &aommitment protocol
Acceptora; makes some actiopnguaranteed (resp. dead, resp. ordered before non-congdutiy
adding constrailg<INIT (resp.y—yY, respy—09) into M;.

The commitment protocol must ensure that the decisionsitakeach site are consistent across
the whole system. The standard OR concepd\@ntual consistendg captured by the following
formal definition [14].

Definition 1 (Eventual Consistency).An OR system is eventually consistentin a run r iff it sassfie
the following correctness conditions:

* Local soundness (safety): Every site-schedule is sovingd.S (t) € Z(M;(t))
» Mergeability (safety): The union of all the site-multitoglong the run is soun&(|J M;(t)) #

it
%)

» Eventual decision (liveness): Any action known at soneisieventually decided at every
site. Vt,i, j, Ya € Ki(t), 3t’, a € DecidedM;(t’))
Local soundness means that every execution satisfies thenkzanstraints. Eventual decision

ensures that every action eventually becomes stable (@)@icorrect sites. Mergeability ensures
that local decisions do not eventually make the distribsiexiem unsound.

We return to our example of Alice and Bob. Assuming users adahaore actions, eventually all
site-multilogs becomé{iniT,a,B}, {a—p,a—y,y—a},{a<p},). In this state, actions remain
tentative; at time, site 1 might executeniT;a, site 2INIT;a; 3, and justiNIT att + 1. A commit-
ment protocol ensures thatandf3 eventually stabilise, and that both Alice and Bob learn traes
outcome. It might, for instance, guarantee batandf3, hence aborting actiop Acceptora; would
addpB<iINIT to M1, which eventually propagateshd,. This makest andf3 guaranteed, decided and
stable, ang/ dead, in all site-multilogs. Inevitably, all site-scheesilvill eventually beniT;a; 3.

3 Classical OR commitment algorithms

We can abstract a number of previous commitment algoritlm®R systems as an algorithm, noted
4 (M), that offers decisions based on multilb 4 is assumed to run at a single site (although it
may be possible to run several instances at different sités)ing the resulM’ = 2 (M), 2 must
satisfy these requirements:

» 2 adds constraints; they represent decisions:
o—'B = a—BVvajpVvp=a
a<d'B = a<fV(B=INIT)
¥o=k

» The algorithm does not add actioné= K’'.

RR n° 0123456789

10 Sutra & Shapiro & Barreto

« If M is sound, them’ is sound.

« If invoked sufficiently often,z eventually decides: For any non-decreasing series of sound
multilogsM® C MY C ... C MK C ... Vi,a €K', 3j:a € Decideda (M})) .

4 could be any algorithm satisfying the requirements. Heoaéspossibility, noted conservativé <
). Assume some arbitrary total order of actions A schedule executing in this order can be
made sound, with respect to some multilelg by the following procedure. I& < 3 and alfB,
then 4conservaiivé<) decidesa—. It decidesa dead (addx—a to M) if either: a < B but —a
(because otherwise they would execute in the wrong orden}, <0 but f<ia (because it is not
known whethef can be guaranteed). Otherwise, it decidegiaranteed (add<iINIT to the multi-
log). It should be clear that in general, this approach, evkdfe, will tend to kill more actions than
necessary, unless the total orders computed with knowledge of the constraints.

In the Bayou systeni 17k is the order in which actions are received at a single prirsiey
An action aborts if it fails an application-specific precdimh, which we reify as a— constraint. In
the Last-Writer-Wins approachl[5], an action (completelgmvriting some datum) is stamped with
the time it is submitted. Two actions that modify the sameudaare related by in timestamp
order. Sites execute actions in arbitrary order and agplsenvaivé<). Consequently, a datum has
the state of the most recent write (in timestamp order).

Previously, in the IceCube proje¢t]12] we proposed a diffieiapproach 4 cecupeiS an opti-
mization algorithm that minimizes the number of dead action cecund M). It does so by heuris-
tically comparing all possible sound schedules that caremeted from the current site-multilog.

Except for LWW, which is deterministic, the above algorithoentralise commitment at a pri-
mary site.

4 A decentralised commitment protocol

To decentralise decision, one approach might be to deterangiobal total ordex, using a consen-
sus algorithm such as Pax$ [9], and appiénsenvativé<). However, this tends to kill more actions
than necessary; we would rather base our solution on a batetmd optimising algorithm such as
IceCube.

A key observation is that eventual consistency is equitaierthe following property[[15]:
The site-multilogs of all sites share a common prefix of stattions, which grows to include
every action eventually. Commitment serves to agree on temsion of this prefix. Since clients
continue to make progress beyond this prefix, the commitieribcol can run asynchronously in
the background.

In our protocol, different sites run instancesofto make proposals. It achieves agreement
between proposals via decentralised election. This works & 4 is non-deterministic, or if sites
use differentz algorithms.

INRIA

An asynchronous, decentralised commitment protocol foaseic optimistic replication

11

Algorithm 3 Algorithm at sitei

Require: M;: local site-multilog
Require: proposalgn|: array of proposals, indexed by site; a proposal is a magltilo

=

e el s e e e
© 0N AE®WDNRO

NN NNN
Qg hR Wk

© N DT R®ODN

N
> Q@

M= {INnT} 2,9,9)

proposals:= [(({INIT},2,2,9),0),...,({INIT},9,2,2),0)]
loop {Client submit$
Choosd. C A {Submit action$
ClientActionsConstrain{s) { Compute local constraings
|
loop {Compute current local stagte
Choose§ € 2(Mj)
ExecuteS

: loop {Propose}

UpdateProposa{ Suppress redundant pgrts
proposalgi] := 4 (M; U proposalgi]) {New proposal, keeping previops
Incrementproposalgi].ts

: loop {Acceptor

Elect

loop {Epidemic transmission
Choosej # i;
Send copy oM;, proposalsto |

: loop {Epidemic receptioh

Receive multilogV, proposald from some sitg # i
ReceiveAndCompa(ié)
MergeProposaldP)

4.1 Variables and notation

In what follows,i represents the current site, ap# range over \ {i}.

Each proposer has a fixaeeight such thaty ., weighi = 1. In practice, we expect only a
small number of sites to have non-zero weights (in the limi¢ gite might have weight 1, this is
a primary site as in Sectidi 3), but the safety of our protooas not depend on how weights are
allocated.

Each site stores the most recent proposal received frompragoser in arrayproposalg, of
sizen (the number of sites). To keep track of proposals, each gmtrposalslk] carries a logical
timestamp, notegroposalglk].ts.

RR n° 0123456789

12 Sutra & Shapiro & Barreto

Algorithm 4 UpdateProposal
1: LetP = (Kp,—p, <p,H{fp) = proposalgi

2: Kp :=Kp\ DecidedM;)

3 —p:={(a,B) e—plaeKpVPecKp}
4 dpi= {(G,B) (S p|G eKpVBe Kp}
5: HPZZQ

Each site performs Algorithiidl 3. First it initialises theesihultilog and proposals data struc-
tures, then it consists of a number of parallel iterativeds, detailed in the next sections. Within a
thread, an iteration is atomic. Iterations are separateattoyrary amounts of time.

4.2 Client, local state, proposer

The first thread (lineBE1815) constitutes one half of the tlieAn application submits tentative
operations to its local site-multilog, which the site-sthke will (hopefully) execute in the sec-
ond thread. Constraints relating new actions to previoesare included at this stage by func-
tion ClientActionsConstraint¢defined in Algorithndl). The other half of the client is fuinct
ReceiveAndCompatéalgorithm[d) invoked in the last thread (liflel25).

The second thread (lin€$[@-9) computes the current teatstate by executing some sound
site-schedule. It is possible that the current scheduls dotlinearly extend the previous one; this
can be implemented as a roll-back followed by forward exeout

The third threadI1=14) computes proposals by invoking proposal extends the current site-
multilog with proposed decisions. A proposer may not reteagroposal that was already received
by some other site. According to the definition{SectiorB), argumem; Uproposalg|i] ensures
that these two conditions are satisfied. However, once adatechas either won or lost an election,
it becomes redundaritipdateProposatemoves it from the proposal (Algorithioh 4).

4.3 Election

The fourth thread{A6=17) conducts elections. Severatietecmay be taking place at any pointin
time. An acceptor is capable of determining locally the ouote of elections. A proposal can be
decomposed into a set of eligible candidates.

4.3.1 Eligible candidates

A candidate cannot be just any subset of a proposal. Corfsidestance a propos&l= ({INIT,a,y}, {a—y,y—a,a—a}, {)
and a candidat¥ constructed upoR. If X could containy and nota, then we might guarantee

without killing o, which would be incorrect. Capturing this intuitiok,must be avell-formed prefix

of P:

INRIA

An asynchronous, decentralised commitment protocol fimaseic optimistic replication 13

Definition 2 (Well-formed prefix). Let M = (K/,—/, <1’ }f) and M= (K, —, <, }) be two multi-
f

logs. M is awell-formed prefixof M, noted Mvé M, if (i) it is a subset of M, (ii) it is stable, (iii) it

is left-closed for its actions, and (iv) it is closed for i@nstraints.

M CM
K’ = Stabl¢M’)
g et a—B=a—'B
Va,BeA BeK =< a<f=a<'p
aff = olf B
va,Be A, (a—'Bva<BvalfB)=a,pecK’

Well-formedness ensures that if-a or <1 cycle is present itM, thenM’ either includes the whole
cycle or none of its actions. Unfortunately, because of aammncy and asynchronous communica-
tion, it is possible that some sites know of-acycle and not others. Therefore we also require the
following property:

Definition 3 (Eligible). An action iseligible in set L if all its predecessors by client NotAfter and

NonCommuting relations are in L. A multilog M is eligible if actions in K are eligible in K:
def

eligibleM) =va,pe A BeKA(a—, BVak,B)=aecK

To compute eligibility precisely would require local acsde the distributed state, which is
impossible. Therefore acceptors must compute a safe aippatan (i.e., false negatives are al-
lowed) of eligibility. Here is an example possible approation algorithm evaluated at siie
Consider some actiona, submitted at sitg, and known inK;. If all actions submitted before or
concurrently with o have been received at sitethen all those actions have gone through either
ClientActionsConstraintsr ReceiveAndComparkencen is eligible.

Itis possible to compute better approximations under sanditions; for instance if it is known
that— and} relations are acyclic ins , then all candidates are eligible.

4.3.2 Computation of votes

We define a vote as a paiweight siteld). The comparison operator for votes breaks ties by com-

paring site identifiers:(w,i) > (w,i’) Cw>wv (w=w Ai>1i). Therefore, votes add up as
follows: (w,i) + (w,i") gef (w+w ,maxi,i’)). Candidates areompatibleif their union is sound:
compatibléM,M’) dZEfZ(M UM’) # &. The votes of compatible candidates add tafly(X) com-

7In the sense of the happens-before relatidn [8].

RR n° 0123456789

14 Sutra & Shapiro & Barreto

Algorithm 5 Elect
1: Let X be a multilog such that:

wf
Jk € 7 : X C proposalgk]

AN XZM;
A eligible(X)
A tally(X) > max (tally(B))+ cotally(X)
Beopponent&X)
2: if such anX existsthen
3: Choose such aK
4: Mi =MjuX

putes the total vote for some candidxte

alyX)% s (weight.k)
k:xvgproposals[k]

An election pits some candidate agaiosmparablecandidates from all other sites. Two mul-

tilogs are comparable if they contain the same set of acticos parabléM,M’) K —K’. The

direct opponents of candidakein some election are comparable candidates that are notatdyigp

with X: opponentéX) d:e'({BBk: Bmﬁf proposalgk] A (comparablé¢B, X) A -compatibléX,B))}.
However, we must also count missing votes, i.e., the weightites whose proposals do not yet
include all actions in X. Functioootally(X) adds these up:
def .
cotally(X) = h (weight, k)
kKxZ Kproposal$[k]

Algorithm[3 depicts the election algorithm. A candidate iwell-formed prefix of some pro-
posal. We ignore already-elected candidates and we onkideneligible ones. A candidate wins
its election if its tally is greater than the tally of any dit@pponent, plus its cotally. Note that as
proposals make progress, cotally tends towards 0, thersfime candidate is eventually elected.
We merge the winner into the site-multilog.

4.3.3 Epidemic communication

The last two threads (lin€s@326) exchange multilogs aoplgeals between sites. FunctiRaceiveAndCompare

(defined in AlgorithnTR2, Sectiofi 4.3) compares actions newbeived to already-known ones, in
order to compute non-commutativity and antagonism coimsraln Algorithm[® a receiver updates
its own set of proposals with any more recent ones.

INRIA

An asynchronous, decentralised commitment protocol fimaseic optimistic replication 15

Algorithm 6 MergeProposald)

1: for all kdo

2: if proposalgk].ts < P[K].tsthen

3: proposalgk] := P[K]

4: proposalgk].ts:= P[k].ts
4.4 Example

We return to our example. Recall that, once Alice and Bob Isanemitted their actions, and site 1

and site 2 have exchanged site-multilogs, both site-rogkiare equal to{INIT, o, B}, {a—B,a—y,y—a}, {a<B},).
Now Alice (site 1) proposes to guaranteendf3, and to killy: proposalg[l] = MU {B<INIT}.

Meanwhile, Bob at site 2 proposes to guarantend a, and to kill B: proposalg[2] = My U
{y<INIT,0<IINIT }. These proposals are incompatible; therefore that the ¢memt protocol will

eventually agree on at most one of them.

Consider now a third site, site 3; assume that the threelsites equal weigh%. Imagine that
site 3 receives site 2’s site-multilog and proposal, andiséts own proposal that is identical to
site 1's. Sometime later, site 3 sends its proposal to sifé this point, site 1 has received all sites’
proposals. Now site 1 might run an election, consideringalickateX equal toproposalg[1]. X is
indeed a well-formed prefix gbroposalg[1]; X is eligible;tally(X) = % is greater than that of’s
only opponenttally(proposalg[2]) = %); andcotally(X) = 0. Therefore, site 1 eleck¥sand merges
X into M. Any other site will either elecX (or some compatible candidate) or become aware of its
election by epidemic transmission Idf; .

5 Discussion

5.1 Safety proof outline

Sectiorl states our safety property, the conjunction ofeility and local soundness. Clearly
Algorithm[3 satisfies local soundness; see liddd 7-9. We ndline a proof of mergeability.

We will say that candidat¥ is elected in a run if at a timet and for some acceptari executes

att Algorithm[3 electing a candidaté such thatX mlff Y. Moreover for a rumr of Algorithm[3, we
will note Electedr,t) the set of candidates electedrip tot (included), ancElectedr) the set of
candidates elected durimg Observe that, sincer’ is sound, AlgorithniB satisfies mergeability in
arunr if and only if the acceptors elect a sound set of candidataaglt (Ux cgjectedr) X is sound).
Now suppose by contradiction that during a rythis set is unsound.

In every run of AlgorithniB, candidates are well-formed ahgilele, thereforeElectedr) forms
an unsound set of candidates, i.e., there are two electatidzaesX andX’ such that (i) andX’
are non-compatible, and (i§ andX’ are minimal. Minimality is defined as follows:

RR n° 0123456789

16 Sutra & Shapiro & Barreto

wf
Definition 4 (minimality). A multilog M is said minimal iffyM’ C M, M'C M = M’ = M.

Let us define some notation(resp.j) is the acceptor who eleck (resp.X’) inr. t is the time
wherei electsX in r (resp.t’ for X’ on j). For a proposek, tx (resp.t’y) is the time at which it
sentproposalglk](t) toi (resp.proposals(k](t’) to j). Q (resp.Q’) is the set of proposers that vote

wi wi
for X att oni (resp. forX” att’ on j); formally Q = {k|X C proposalgk](t)} andQ = {k/X' C
proposals[k|(t')}. Hereafter, and without loss of generality, we suppose(th&t> t, (i) X is the
first candidate non-compatible widl elected irr, and (iii) Electedr,t’ — 1) is sound.

Sincej electsX’ att’, at that time on sitg’:

tally(X') > max (tally(B)) +cotally(X) 1)
BeopponentsX’)

Equation[l yields an upper bound fally(X) oni att, as follows. Consider somec Q. If

wf
tx < t'x then from Algorithm[#, and the fact th&lectedr,t’ — 1) is sound, we know thaX C
proposalg[k](t'). If now tx > t', then either (ik has not yet voted oKy, att’ on j and its weight
is counted ircotally(X"), or (i) its vote att’ on j already includeX.

The other cases are impossiblek ¥otes forX’ or for an opponent oKX’ — that is notX — att’,
sinceX andX’ are not compatibleX’ andX are minimal, ancElectedr,t — 1) is soundk cannot
vote forX att.

Thus from Equatiohl1 we obtain:

tallyj(X')(t") > tally;(X)(t) 2)

wheretallyy(Z)(t) means the value délly(Z) computed at time on sitek.
Now consider somé& € Q. If tx > t’y thenX being the first candidate non-compatible with

wf wf
X’ elected inr, from Algorithm[4, we haveX’ C proposalgk](t). If tx <t'k, now either ()X’ C
proposalgk](t) or (ii) k has not yet voted oK.K oni att.

The reasoning here is similar: namely we use the minimafity andX’, the fact that they are
non-compatible, and this time, thidtis the first candidate non-compatible with elected irr.

From the above, it follows:
tally; (X')(t") < tally;(X")(t) + cotally (X)(t) (3)
Now combining equatiorid 2 afifl 3, we obtainiait,

tally(X) < max (tally(B)) + cotally(X) 4)
Beopponent&X)

X cannot be elected dratt. Contradiction.

INRIA

An asynchronous, decentralised commitment protocol fimaseic optimistic replication 17

5.2 Liveness proof outline

Consider by contradiction that there exists an executsuch that irr eventual decision is violated.
Hence there is an actiam that is never decided. Since sites are reliable, and linkgaar-lossy,
Algorithm[3 ensures that eventually every proposer decites

Reasoning from the fact that a minimal candidate cannotireoradecided (because plurality
always happens), we prove that such a run is impossible.

5.3 Message cost

Interestingly, the message cost of our protocol varies wjithlication semantics, along two dimen-
sions. Optimism degreés the size of a batch, the number of actions that a site maguéxe@pti-
mistically before requiring commitmenemantic complexity degreghich relates the complexity
of the client constraint grapi with the number of votes required.

To illustrate how the cost varies with semantics, consideajplication where there are no
client constraints whatsoever. All actions commute witle another and no action never needs to
be made dead. In such a case, every candidate is triviafipldiand trivially compatible with all
other candidates. Assume the optimism degrek then the amortised message cost to commit an
acgon i_sg X %, since a chain of messages constructs a majority and (i) candidates caaioa
tod actions.

Conversely, an application where all action pairs are mamyouting and there are no antago-
nisms (hence no actions to be made dead) requires a total beshee it will have to pay at least the
cost of consensus.

A related issue is fault tolerance, which is also relatedetmantics. An application with no
constraints whatsoever is trivially fault tolerant, simeehis case eventual delivery of site-multilogs
is sufficient. In general a small number of faults can be &t as long as cotally remains small
enough to elect. Obviously, a site whose weight is zero cashcwithout impacting liveness of the
system.

A precise evaluation of message cost and fault resilienliedtitor future work.

6 Related work

In previous OR systems, commitment was often either cesthlat a primary site [1Z, 17] or
oblivious of semanticg %, 13].

Our election algorithm is inspired by Keleher's Deno sys{Bina pessimistic system, which
performs a discrete sequence of elections. Keleher prgpdseality voting to ensure progress when
none of multiple competing proposals gains a majority. TN&WX/ protocol of Barreto and Ferreira
generalizes Deno’s voting procedure, enabling continwotiag [1].

RR n° 0123456789

18 Sutra & Shapiro & Barreto

The only semantics supported by Deno or VVWYV is to enforce partis happens-before re-
lation [€]; all actions are assumed be mutually non-comngutHappens-before captures potential
causality; however an event may happen-before anotherittlegy are not truly dependent. This
paper further generalizes VVWV by considering semanticst@aints.

ESDS [3] is a decentralised replication protocol that suggEpme semantics. It allows users to
create an arbitrary causal dependence graph betweensacBE&DS eventually computes a global
total order among actions, but also includes an optimisdtio the case where some action pairs
commute. ESDS does not consider atomicity or antagonisati@ak, nor does it consider dead
actions.

Bayou [17] supports arbitrary application semantics. Wsgplied code controls whether an
action is committed or aborted. However the system impogearhitrary total execution order.
Bayou centralises decision at a single primary replica.

IceCubel[7] introduced the idea of reifying semantics wibhstraints. The IceCube algorithm
computes optimal proposals, minimizing the number of degidas. Like Bayou, commitment in
IceCube is centralised at a primary. Compared to this articeCube supports a richer constraint
vocabulary, which is useful for applications, but hardergason about formally.

The Paxos distributed protocall [9] computes a total ordarchStotal order may be used to
implementstate-machine replicatiof8], whereby all sites execute exactly the same scheduleh Su
atotal order over all actions is necessary only if all actiare mutually non-commuting. In Sect[dn 3
we showed how to add semantic constraints to a total ordethisukind of approach is clearly sub-
optimal.

Generalized Paxo5[IL0] and Generic Broaddast [11] take agativity relations into account
and compute a partial order. They do not consider any othmastc relations. Both Generalized
Paxos|[1D] and our algorithm make progress when a majoritpiseached, although through dif-
ferent means. Generalized Paxos starts a new electiomagstashereas our algorithm waits for a
plurality decision.

7 Conclusion and future work

The focus of our study is applications with rich semantiegvidus approaches to replication did not
support a sufficiently rich repertoire of semantics, oraglon a centralized point of commitment.
They often impose a total order, which is stronger than rezogs

In contrast, we propose a decentralized commitment prétocsemantically-rich systems. Our
approach is to reify semantic relations as constraintschvtestrict the scheduling behavior of the
system. According to our formal definition of consistentyg system has an obligation to resolve
conflicts, and to eventually execute equivalent stabledudles at all sites.

Our protocol is safe in the absence of Byzantine faults.dsusting to avoid any centralization
bottleneck. It uses plurality voting to make progress eveaman election does not reach a majority.

INRIA

An asynchronous, decentralised commitment protocol fimaseic optimistic replication 19

It proceeds with elections continuously and incrementalithout any obvious rounds. However, as
currently specified, it is not live in the presence of faults.

There is an interesting trade-off in the proposal/votinggedure. The system might decide fre-
quently, in small increments, so that users quickly knowtibetheir tentative actions are accepted
or rejected. However this might be non-optimal as it may d¢tinteresting future behaviors. Or it
may decide less frequently, and base its decisions on abiatgh of tentative actions at a time. This
imposes more uncertainty on users, but decisions may berdimshe optimum. We plan to study
this trade-off in our future work.

References

[1] Joao Barreto and Paulo Ferreira. An efficient and fealtrant update commitment protocol for weakly
connected replicas. [Buro-Par, pages 10591068, Lisbon, Portugal, September 2005. .

[2] Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes li@std John Larson. Epidemic algorithms for
replicated database maintenanceSymp. on Principles of Dist. Comp. (POD@ages 1-12, Vancouver,
BC, Canada, August 1987. Also appears Op. Sys. Review 22{32:(1988).

[3] Alan Fekete, David Gupta, Victor Luchangco, Nancy Lyn@dmd Alex Shvartsman. Eventually-
serializable data services. Theoretical Computer Science220(Special issue on Distributed
Algorithms):113-156, 1999.

[4] Richard A. Golding.Weak-consistency group communication and memberBtip thesis, University of
California Santa Cruz, Santa Cruz, CA, USA, December 19@2hTReport no. UCSC-CRL-92-52, .

[5] Paul R. Johnson and Robert H. Thomas. The maintenancaptitdte databases. Internet Request for
Comments RFC 677, Information Sciences Institute, Janl@irg. .

[6] Peter J. Keleher. Decentralized replicated-objectqumls. In Symp. on Principles of Dist. Comp.
(PODC), Atlanta, GA, USA, May 1999. .

[7] Anne-Marie Kermarrec, Antony Rowstron, Marc Shapirad@eter Druschel. The IceCube approach
to the reconciliation of divergent replicas. 8ymp. on Principles of Dist. Comp. (PODQ®)ewport RI,
USA, August 2001. ACM SIGACT-SIGOPS. .

[8] Leslie Lamport. Time, clocks, and the ordering of evanta distributed systemCommunications of the
ACM, 21(7):558-565, July 1978.

[9] Leslie Lamport. The part-time parliame®CM Transactions on Computer Systed{(2):133-169, May
1998. .

[10] Leslie Lamport. Generalized consensus and Paxos. niedReport MSR-TR-2005-33, Microsoft Re-
search, March 2005. .

[11] Fernando Pedone and André Schiper. Handling messamargics with generic broadcast protocols.
Distributed Computing Journall5(2):97-107, 2002. .

[12] Nuno Preguica, Marc Shapiro, and Caroline Mathesa@mahtics-based reconciliation for collaborative
and mobile environments. Broc. Tenth Int. Conf. on Coop. Info. Sys. (Coopi®Jume 2888 of_ecture
Notes in Comp. Scpages 38-55, Catania, Sicily, Italy, November 2003. $ritVerlag. .

[13] Yasushi Saito and Marc Shapiro. Optimistic replicati@omputing Survey87(1):42-81, March 2005. .

RR n° 0123456789

20 Sutra & Shapiro & Barreto

[14] Marc Shapiro and Karthik Bhargavan. The Actions-Caaists approach to replication: Definitions and
proofs. Technical Report MSR-TR-2004-14, Microsoft ReskeaMarch 2004. .

[15] Marc Shapiro, Karthikeyan Bhargavan, and Nishith Kna. A constraint-based formalism for consis-
tency in replicated systems. Rroc. 8th Int. Conf. on Principles of Dist. Sys. (OPODI®)mber 3544 in
Springer-Verlag, pages 331-345, Grenoble, France, Dezedil4. .

[16] Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yand,Cavid Chen. Achieving convergence,
causality preservation, and intention preservation ir-tigge cooperative editing systemsTrans. on
Comp.-Human Interactiqrb(1):63—-108, March 1998. .

[17] Douglas B. Terry, Marvin M. Theimer, Karin PetersenaAlJ. Demers, Mike J. Spreitzer, and Carl H.
Hauser. Managing update conflicts in Bayou, a weakly comerplicated storage system. 16th
Symp. on Op. Sys. Principles (SOSBypper Mountain CO, USA, December 1995. ACM SIGOPS. .

[18] Nicolas Vidot, Michelle Cart, Jean Ferrié, and Maheteman. Copies convergence in a distributed real-
time collaborative environment. lBomputer Supported Cooperative Wopleges 171-180, Philadelphia,
PA, USA, December 2000.

Contents

[Introduction] 3

2__System model and Terminology 4

IZ.l_'Lh_e_AQtLQ_n_C_Qma.mJ_E[amﬂubrk 4

INRIA

An asynchronous, decentralised commitment protocol fimaseic optimistic replication 21

6_Related work 17
[7__Conclusion and future work 18

RR n° 0123456789

/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le CheSadegx (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Univers#&C des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopble de biaBrabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-les¢yaBedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitde Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I'Baro38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route desibles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 hesbay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

	Introduction
	System model and Terminology
	The Action-Constraint Framework
	Multilogs and constraints
	Soundness and equivalence
	Site-multilogs and site-schedules

	Client Behaviour and client interaction
	Multilog Propagation
	Commitment and Consistency

	Classical OR commitment algorithms
	A decentralised commitment protocol
	Variables and notation
	Client, local state, proposer
	Election
	Eligible candidates
	Computation of votes
	Epidemic communication

	Example

	Discussion
	Safety proof outline
	Liveness proof outline
	Message cost

	Related work
	Conclusion and future work

