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Abstract

Tree growth is simulated using a stochastic model of organogenesis that is faithful to
botanical knowledge. This model is based on the concept of bud “physiological age”,
on the statistical description of the transition from one physiological age to another as
well as of bud death, bud growth and branching processes. In order to enhance
simulation efficiency, a recurrent algorithm based on stochastic substructure
instancing is proposed. The tree is hierarchically decomposed into substructures that
are classified according to their physiological age, and a library of random
substructure instances is constructed: the recurrent simulation starts with the simplest
peripheral substructures, which are also the physiologically oldest; these substructures
are then progressively assembled into more complex substructures, until the tree is
completely simulated. When the size of the library of substructure instances is small,
the time needed to build a single stochastic tree is much shorter than for a usual tree
simulation that operates on a bud-by-bud basis. in computing a group of trees, the
speed gain is even much greater, because the library of substructure instances is built
for the first tree, and then is reused for computing subsequent trees. A preliminary
sensitivity analysis is carried out according to the size of the library: when the library
is large, the simulated distribution of the number of organs fits well with the
theoretical mean and variance; the algorithm can thus be tuned in order to obtain
accurate predictions. On the other hand, a small library (e.g., with only 2 or 3
instances for each substructure class) is sufficient for generating visually realistic trees.
A few examples illustrate the high performance of this algorithm which paves the way
for the fast simulation of large forest scenes.

Keywords: stochastic model, simulation, instancing, substructure, tree architecture,
3D virtual plant, fast algorithm
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1 Introduction

In recent decades, a lot of algorithms have been developed for simulating natural
phenomena. As for plants and landscapes, various methods have been elaborated for
generating realistic images and animations; these methods have been applied, for example,
in the field of human entertainment (e.g. computer games and films)[1], as well as in
agronomy[2]. Since trees are diverse and irregular, stochastic geometrical parameters were
used to generate “realistic” images. For example: Reeves[3] used structured particle systems
for the serial computation of stochastic trees in a forest scene, in which the random
geometrical parameters of each tree were drawn from a uniform distribution; in order to
construct fractal plants, Oppenheimer[4] drew statistically self-similar trees by setting the
mean and standard deviation of the geometrical parameters. Viennot[5] used “ramification
matrix” based on hydraulic concepts to generate stochastic tree image capable of direct
control on final form, but it aimed much more on visual effects than on botanical concepts.

Another type of stochastic plant models was initiated by de Reffye et al.[6]: their models
are based on botanical concepts that account for plant structure and development, especially
on the probabilistic analysis of bud activity[7]. These concepts were first used to design
“AMAPsim”, a generic plant simulation software[8, 9]; they further formed the basis of a
new model of plant morphogenesis, dual-scale automaton[13], on which a new
functional-structural model “GreenLab” is founded. One of the computational issue with
such models lies in the generation of large landscapes, which contain a high number of
plants: such simulations are usually fairly slow and require a huge amount of memory, so
that there is a strong need for enhancing the performance of scene creation, i.e. for
improving the trade-off between the realism of the outputs, the memory requirement, and
the speed of the algorithm.

Instancing has already been used for representing complex and large plant scenes. The
basic idea of instancing is (i) to identify classes of similar objects, (ii) to build a library of
instances for each class of objects, and (iii) to use this library for assembling new instances
in order to generate the scene. Such algorithms can result both in a decrease in memory
requirement for data storage, and in a reduction of natural tree diversity whose visual impact
is usually negligible. For vegetal landscapes, instancing can be used at different levels
thanks to the hierarchical structure of plants. Indeed, instancing was used by various authors,
who used L-systems [11], fractal models [12] and particle systems [3] for simulating plants.
Recently, Yan et al. [12] adapted a deterministic version of de Reffye’s models [6] and
proposed a fast algorithm to compute tree topology.

The aim of this paper is to extend Yan's deterministic approach [12] to stochastic
substructures, using the type of dual-scale automaton that was originally defined by Zhao
[13]. This automaton is based on the hierarchical decomposition of the plant into nested
substructures, which are made up of branched and/or unbranched axis, each axis being
defined as the succession of growth units (or shoots), which are themselves composed of a
succession of internodes. Growth units are considered as the “macro level”, whereas
internodes are considered as the “micro level”; the hierarchy between the substructures is
ensured by physiological age. In this context, a new way of using instancing is proposed: a
library of random substructure instances, which exhibit similar characters and bud
functioning probabilities, is created; when simulating a tree, these instances are sampled
from the library randomly and assembled at plant level. The number of organs in each
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substructure instance can be calculated and compared to its theoretical mean and variance,
which can be derived from bud functioning probabilities. We show that this method can
dramatically speed up the generation of plant topology, as compared to serial bud-by-bud
simulation of each tree, without altering the visual realism of the simulated plants.

2 Stochastic Substructures

2.1 Bud functioning probabilities

2.1.1 Definitions

Each step of growth, also named “growth cycle”, corresponds to a given “chronological age”.
The time step corresponds to the generation of a new shoot; for real plants, it can be one year
or less. The “physiological age” is another important concept, which is used to distinguish the
state of the organs (buds, internodes, shoots, substructures, etc.) within the plant. For example,
the physiological age of the branches can vary according to their order: high-order branches
are usually older than low-order branches; similarly, within a shoot, the lateral short branches
are often physiologically older than the long ones. However, branches of same physiological
age can appear at different branching order. The highest order branches are supposed to have
the maximum physiological age, which is 5 or 6 for a complex tree.

A shoot is composed of a series of metamers, a metamer being defined as an internode
and the lateral organs which it bears (leaves, fruits, lateral buds). Within a growth unit, the
internodes are supposed to appear one after another: a bud can either set in place a new bud,
or rest, or die; as a consequence some potential metamers may not appear. Lateral buds can
either develop into a branch or rest. These processes can be described with probabilities:
plant growth is thus viewed as a stochastic process (Fig.1). The survival probability of a bud
from one growth cycle to the next is noted p.: at each cycle, a bud can indeed die because of
an accident; if it dies, the growth of the axis stops. If the bud survives it can either generate a
new shoot with a probability noted p;, or rest until next growth cycle. If the bud rests, the
shoot does not appear, but the bud is still living and can further grow during the next cycle
(Fig.1a & Fig.1b). Within a growth unit metamers can successively appear with a
probability p,: since some potential metamers don’t appear, the length of the growth units
may vary (i.e., they exhibit a different number of metamers; see Fig.1c). Each metamer can
also bear a certain number of lateral buds, but only some of them may develop into branches
(Fig.1d): the probability for a lateral bud to develop is noted p,. The GreenLab model is
therefore defined by the structure of the dual-scale automaton (see Fig.4a for an example)
and by the probabilities p., ps, p, and p,, which usually vary according to physiological age.

2.1.2 Effect of bud functioning probabilities on plant growth

In order to simply illustrate how these probabilities can influence tree topology, we
suppose in this section that they are constant for any physiological age. Fig.2e shows the
structure of a tree when all probabilities are equal to 1 (i.e., in a deterministic situation). In
that case, the result is the same as in Yan et al. [12]. Then, we check the effect of each
probability on tree structure by setting other probabilities to ones. In Fig.2a, the growth
probability of each bud, p;, is 0.8: the number of growth units in each axis thus follows a
binomial distribution. In Fig.2b, the survival probability of each bud, p., is set to 0.9: in that
case, the number of actual growth units in an axis follows a geometrical distribution; this
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example illustrates that even with a high value of this probability, the topology of the tree
can vary strongly.
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Fig.l Plant growth: probabilities of bud functioning. (a) Virtual axis: growth of an axis over 5
growth cycles. The axis is made of a succession of annual shoots. Cross: bud death (the axis cannot
grow further) with a probability 1-p, at each growth cycle. Arrow: the bud is alive and the axis can
continue to grow. Green segments: growth units (or shoots) that really developed, with a probability p,.
White segments: virtual growth units which did not grow because of bud dormancy, with a probability
1-p;. (b) Real axis, as it can be observed as the result of the growth process described in
(a).(c) Detailed structure of an axis that grew over 5 growth cycles: each shoot is made of metamers.
Green segments: metamers that really developed, with a probability p,. Blank segments among green
ones: virtual metamers which did not develop, with a probability 1—p,. (d) Branching inside a growth
unit. Green arrow: the lateral bud survived, with a probability p,, and created a substructure, Cross: the
lateral bud died and did not grow, with a probability 1-p,

In Fig.2¢c, the metamers appear (within a growth unit) with a probability p, equal to 0.8:
this induces a variability in the length of the growth units. In Fig.2d, each branch lateral
appears with a probability p, equal to 0.5: as a result, the crown of the tree is less dense.
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Fig.2 Influence of bud functioning probabilities on plant pattern

Real plants result from the combination of all these probabilities and from their variation
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according to bud physiological age as well as to the environmental conditions which may
vary according to chronological age.

2.2 Simulation with stochastic substructures

Plant substructure is a recurrent concept: each substructure is composed of a main axis and
branches (born by the main axis), which are themselves substructures. Let us consider a
plant where the maximum physiological age is noted P,, and whose structure is simulated at
chronological age N. This plant is made up of numerous substructures which are noted
S, [(n), where p is the physiological age (1= p < P,,), r is an index that design the rank of the
substructure repetition in the library, and » is the chronological age of the substructure (1< n
<min(N, L,), where L, is the maximum life span of the substructures of physiological age p).

The simulation is based on two complementary principles. (i) The plant is recurrently
built as an assemblage of substructures: the simulation starts with the simplest peripheral
substructures, which are also the physiologically oldest (p=P,,); these substructures are then
progressively assembled into more complex substructures, until the complete tree is
simulated (p=1). (ii) In order to enhance the speed of the procedure, a ‘library’ of
substructure instances is built. This library is a subset of all potential substructures, it covers
all possible physiological and chronological ages. The library is noted {S, (n): | <p <Py, |
<r<T, 1 <n<min(N, Ly}, where T, is the size of the subset of the substructures of
physiological age p: T, is defined by the modeler according to his performance requirements
and it can vary according to p (see below). The substructures that belong to this subset are
named ‘instances’: they are built iteratively using the already built, and physiologically
older, instances which are randomly sampled from the library and then assembled (see
(i) above).

As illustrated in Fig.3a, the simulation thus consists of three nested loops. If the growth is
supposed to be fully deterministic, the number of different substructures for a given
physiological age is equal to 1 (7,=1 for any p) and the algorithm generates only one
instance for a given chronological age and physiological age. On the contrary, when growth
is stochastic, there are potentially many different substructures for a given chronological age
and physiological age, so that the instancing approach can efficiently be applied: (i) a subset
of the physiologically oldest axis is generated according to probabilities p, , p.and p,; this
subset is stored into the library of instances; (ii) physiologically younger substructures (e.g.
branches) are recursively simulated by assembling physiologically older substructures
drawn from the library, according to probabilities p, and to other automaton parameters;
these new substructures are also stored into the library of instances; (iii) the process goes on
until the stem of the tree is built (Fig.3b).

3 Results

3.1 Topological production

In fact, plant growth is a compound stochastic process. An interesting result is that the
production of organs (e.g. internodes of various physiological ages) can be described by its
mean and variance, which can be exactly computed according to the design and parameters
of the stochastic automaton. The long computation that gives theoretical results is not to be
explained here, but these statistics provide a basis for assessing the performance of our
simulation, especially for analyzing the influence of the library size on the predicted outputs.
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To ensure that stochastic substructures simulation yields accurate results, we compared
the simulated outputs with the theoretical mean and variance of that compound distribution.
We choose the same example as in Fig.2 and Fig.3 but set plant age N=24.

[ For physiological age p from P, to 1 ] {5}
ﬁ s
r}“or chronological age n from [ to V ]
A\
[ For stochastic structure v from | to set size 7, }

5.49)

[ Build axis 5, fn) J

Choose random substructures at each position J
A

[ Nextr ]
)
[ Nextn J
N
[ Nextp J
(a) Flowchart of the simulation (b) Visualization of the simulation procedure

Fig.3 Description of the simulation algorithm with stochastic substructures. Fig.3(b) illustrates some
stages in the simulation procedure based on stochastic substructures. The size of the library of
substructure instances is the same for all types of substructures (7,=7=5). and the maximum
physiological 7, is 4. The simulation begins at physiological age 4, with small peripheral unbranched
substructures. S, ,(n) denotes the /" instance of substructures of physiological age p when their
chronological age equals n. For example, the construction of the subset of substructures {83 ,(3)} is
obtained by assembling instances of physiologically older substructures that are drawn from the
subsets of already simulated substructures (e.g., the bottom growth unit of §; (3) bears a branch that is
an instance of substructure S, ,(2): this instance is randomly sampled from the 5 instances belonging to
subset {5, ,(2)}

The probabilities are: p,=0.8, p.=0.9, p,=0.8 and p,=0.5, uniform for each physiological
age. If the library of instances is large (i.c., 7,=7=500), the fitting between theory and
simulation is good and there is little bias. Practically speaking, even a small library is
sufficient to get a good quantitative approximation. For example, we simulated a sample of
100 trees with a small library size: T,= 5 for physiological ages greater than | (Table 1).
Despite the small size of the library of instances, the bias remains fairly small, which
indicates that it might even be possible to apply instancing more intensively (i.e., to further
reduce T,). Of course, the larger the substructure instance library, the closer between the
simulated and real plant productions. On the other hand, we show below that a large library
is not necessary if the sole aim is to generate plants that are visually realistic.

It should be noticed that, although the average total production (e.g. measured as the
number of metamers) is equal to the sum of each average production for the various
substructures, this decomposition does not necessarily hold for the variance. because the
covariance between the instances are not null (i.e., as a result of the recurrent construction of
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the instances).

Table 1 Simulation vs. theoretical calculation

 dge Ph MS | V.S M _Th | V Th
I 33.08 527.50 33.77 5820
2 S 1167.68 47.17 1051.83
3 71.30 2082.3 67.41 1861.61
4 $8.03 w0352 8227 2577.81
 Total 241.73 2331308 | 23062 20108.26

Age_Ph is the physiological age of organs in tree, M_S and V_§ are the mean and variance of simulated number
of organs (i.e. metamers), while M_Th and V_Th are the corresponding theoretical value.

3.2 Simulation performance

Here we begin to use an example that has more organ production at each age. Fig.4a shows
the topological parameters of the stochastic automaton. The following results are based on
this automaton with plant age changing from 1 to 30. Our software runs under Matlab, on a
PC with an Intel Pentium 4 processor at 1.7GHz, and with a system memory of 256MB.

Fig.4 Topological parameters and plant architecture. In Fig.4a, each cylinder is an internode that can
bear lateral buds. The numbers indicate the number of repetitions of each state. The arrows indicate the
transition probabilities. Fig.4b shows the corresponding structure at chronological age 4 if all the
probabilities are set to 1. Fig.4c is a general Rauh model as defined and drawn by botanists: this model
can be simulated with such automaton as in Fig.4a
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3.2.1 Performance of the simulation for five instances per level

In order to make sure that each bud will be visited, we set all the probabilities to 1. The
growth is thus deterministic: this simple case is helpful for checking the performance of the
algorithm. The size of the library for each substructure type is 5. Since the growth is
deterministic, the instances are all identical for a given physiological and chronological age.

Fig.5 shows the CPU time spent for simulating five trees using the recursive algorithm
based on substructures. It took less than 7 seconds at age 30. The total production of organs
(i.e., metamers) is listed in Table 2.

Teelepical Computation time with subctructure

— Furstplart | /!
4} - Splarts | F

CPO time [Secs)

5 0 15 3 ® a0
Chromological apge of tres
Fig.5 Time spent for topological computation. — time for the computation of the first tree; - - -
accumulated time for the computation of the 5 trees

The dashed curve shows the total calculation time for the five trees, and the other shows
the time spent for the first tree. It is interesting to see that the simulation required much
more time for the first tree, than for subsequent trees: this is natural, because the simulation
of first tree includes the construction of the library of instances. For the subsequent trees, the
time is spent only for selecting the substructures from the library, and then assembling them
at tree level: the process is therefore much faster. It is also worth noting that the gain in
simulation time, between the first tree and the subsequent trees, increases when tree age
increases, because there are more branches when the trees get older (Fig.5).

3.2.2 Comparison with prefixed order simulation

In this section we compare the performance of the algorithm based on substructure
instancing and of a classical “bud-by-bud growth algorithm™ that uses the prefixed order
simulation. The library size is still 5 for all substructure types, and we simulate 100 trees.

Table 2 lists the results for the first simulated tree and the others: obviously, the prefixed
order simulation takes much longer time than the substructure simulation. With prefixed
order, trees are simulated independently one by one so that each tree requires the same
amount of time. As anticipated, substructure simulation requires much less time than
prefixed order simulation, and those for the sebsequent tree is less than those for the first
tree. We see that the performance ratio of second tree simulated with substructure to
prefixed order simulation is more than 400 at age 30. For 100 trees at age 30, the CPU time
spent by the substructure algorithm is about one minute, while the CPU time needed by the
prefixed order algorithm is 27, 747 seconds (nearly 8 hours), which would be unbearable for
most operational applications.
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Fig.6 presents the relationship between simulation time and the total number of tree
organs. Fig.6 shows how simulation time increases when the number of simulated plant
organs increases: it is worth observing that, with substructure algorithm, this relationship is
neither exponential nor linear. We have not yet analyzed this relationship theoretically, but it
is sure that it is related with the complexity (i.e., the number of different types of
substructures) and total size of the tree. With prefixed order algorithm, the relationship
between the number of organs and the computation time is linear: this is normal because
each internode is simulated. These results also indicate that the relative efficiency of the
substructure algorithm increases when the number of tree organs also increases (see the
changes in ratio in Table 2 from age 5 to 30). The dotted line is Fig.6 shows the simulation
time for a subsequent tree making use of existing instance library.

Cornputation tirme far first plant and each new plant

= First plant
==ss Other plant

PU time (Secs)
ta

2

0 0.5 ! hE 2 25 3 s 4
MNurnber of internodes in pkant <100

Fig.6 CPU time spent for the computation of 100 trees: the abcissa is the number of organs in the
plant, — time for the computation of the first tree; --- computation time for any additional tree

Table 2 CPU time for the computation: comparison of substructure algorithm and
prefixed order simulation

N Nb_O - Prefix Sub, Ratio, Sub, Ratio,

5 2,440 0.20 0.156 1.28 0.014 14.28 .
10 4,480 3.14 0.500 6.28 0.056 ] 56.06

15 V 238,120 17.69 0.953 18.56 | 0.152 116.38

20 775,360 58.37 1.750 N 3335 0.261 223.64 |
25 71,928,200 | 132._I 4_ _ 2.766 47.77 0.426 3 IW
30 4,048,640 277.47 -3.969 69.91 N 0.603 460.11;_

N is the number of growth cycles. Nb_O is the number of organs (i.e. plant production), which is identical for both
simulations. Prefix is the CPU time (in second) for prefixed order simulation; Sub, and Sub, refer respectively to
simulation time for first and subsequent trees with substructure method. The ratio Pre:Sub, is noted Ratio, and

measures the relative performance of the substructure algorithm.
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3.2.3 Influence of the size of the instance library

It is also interesting to analyze how the size of the library of substructure instances
influences the simulation time. Here, we simulate 100 trees which have a chronological age
of 30, using a library size that increases from 7,=1 to 7,=200. The solid line in Fig.7 shows
the cumulated simulation time for the set of 100 trees, while the dotted one only concerns
the first tree: it appears that CPU time increases linearly with set size. The two curves are
approximately parallel, the difference being due to the computation time for the subsequent
99 trees: each of which required about 0.6 second (see Table 2), which is the time for
sampling the substructures from the library and assembling them,; the total difference is thus
around 60 seconds.

Simulation time of trees(chromological age 30)

2vo T T

ain|L== Fistiee
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5
& 150r
o
E
ol bl ] 5
]
By onf

&0 -
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o so 100 130 200
Size of librarr of substructure instances
Fig.7 CPU time as a function of the size of the library of substructure instances. --- tme lor the

computation of the first tree; — accumulated computation time for 100 trees

3.3 Graphical results on stochastic substructures

As mentioned in [12], the substructure algorithm can be used not only for the topological
computation of the tree, but also for visualizing the 3D structure of plants. For each
combination of physiological and chronological age, the 3D substructure instances are
stored in the library and can be used by graphical transformation operations (translation and
rotations).

As an illustration, we set the library size to 3,4,5 for physiological age 2,3 and 4
respectively, and the probabilities to p,=[1 0.7 0.7 0.7], p,=[0.9 0.85 0.8 0.75], p,=[0.8 0.8
0.8 0.8] and p.=[0.95 0.93 0.91 0.9] respectively.

Fig.8 (a, b and c) shows 2 random substructures for p=4, 3 and 2 (physiological age), and
n=1, 2 and 3 (chronological age). Since the growth of substructure is stochastic, it may
happen that some instances are empty (e.g. see the second random substructure instance
with physiological age 4 at chronological age 2). Fig.8d shows a simulated tree from age 1
to 4.
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Fig.8 Stochastic plant 3D simulation

3.4 Graphical comparison of stochastic trees and stochastic substructures

It is interesting to compare classical stochastic trees, built using a pure Monte-Carlo method
with cruder stochastic trees generated by a limited set of substructure instances. The former
are randomly sampled from the theoretical statistical distribution derived from bud
functioning probabilities, while the latter are in fact drawn from a sub-sample of this
statistical distribution. Considering tree visual display, a small library size can bring nice
visual effect: it is even difficult to distinguish the results obtained with different library size,
or from the output of a prefixed order simulation.

The minimum library size to get a random tree is obtained with 7,=2 (i.e., 2 instances for
each type of substructure). AMAPsim software (written in C language) was adapted to
simulate such stochastic trees (i.e., the substructure simulation algorithm was included into
AMAPsim). Fig.9 shows two young Plumeria trees simulated with this version of
AMAPsim: Fig.9a is the output of the classical bud-by-bud simulation, while Fig.9b
represents a tree generated with the substructure technique; the 2 trees look as if they were
extracted from the same distribution; no visual impact of the impoverishment is visible in
the 3D plant architecture.

Moreover we can compute different trees from different random seed numbers. Using
AMAPsim software, the classical Monte-Carlo method generates a single 20-year old tree in
2 minutes, while the substructure method needs only less than one second. So the time gain
for this tree is about 200. As a consequence, 600 trees can be produced in 5 minutes when
using substructures, while a pure random Monte-Carlo simulation would need more than 8
hours for the same result. This indicates a great advantage of substructures over the classical
way. This allows the simulation of planted forest stands in a reasonable amount of time.
Fig.10 shows a set of wild cherry trees simulated with Monte-Carlo method, while Fig.11
shows similar results but simulated with substructures.



Part IV. Simulation and Visualization — Simulation 165

4 Discussion

Since 1988, we know how to model and simulate stochastic trees, and more generally any
type of plants, according to the botanical knowledge of their structure and development[6].
The stochastic functioning of the buds can be analyzed using various methods, and the
parameters that control these processes can be estimated on real plants from data
measurements[14,15,16]. Secondly, plant architecture and development can be simulated
with Monte-Carlo methods[8, 7]: the predicted 3D output of these simulations is visually
faithful to real plants and it is a possible to quantitatively check that the predicted tree
architecture is similar to the observed one. This model was applied for computer graphics
issues, but also in other fields such as agronomy, ecology and forestry[17]: for example, it
was used in agronomy for analyzing and modeling light interception by a canopy[18].

(a) (b)

Fig.9 Visual comparison of a Monte-Carlo simulation and of a substructure simulation: simulation of
a young Plumeria. (a) Bud-by-bud simulation; (b) substructure simulation with 2 instances

Fig.10  Visual output of Monte-Carlo “bud-by-bud” simulation. Three random 20-year-old wild
cherry trees were simulated with the original version of AMAPsim software
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Fig.11 Visual output of simulations based on stochastic substructures and instancing. Three
20-year-old wild cherry trees were simulated with a new version of AMAPsim software that uses
substructures and instancing techniques

However, a bottleneck remained because of the high number of botanical items in a single
plant, which can easily exceed one million of items: as a consequence, the computational
time could be as large as several hours for big trees[8] or dense root systems[19]. The
breakthrough by Yan et al.[12] is based on the mathematical formalization of the concept of
plant substructures and on its algorithmic implementation using instancing techniques. This
concept is directly linked to the botanical notion of physiological age, which provides the
basis for identifying the parts of the plants that exhibit a similar pattern. To some extent,
substructure-based tree growth models exhibit similarities with fractal models[20] that are
built with LE.S. algorithms. However the main difference between the two approaches must
be underlined: fractals do not really grow and their self-similarity lays on static geometrical
patterns and scale factors; on the other hand, the substructure-based model presented in this
paper is based on an analysis of plant growth. As a consequence, the nature and size of the
substructures is not only a matter of scaling geometrical parameters, it is mainly the output
of both their topological position in tree structure, which is defined by their physiological
age, and of the underlying morphogenetic processes, which control their stage of
development. A major advantage of this new method is thus that the simulation algorithm
lays on a mathematical model that can be directly interpreted by botanists.

In this paper, we show that method of substructure can be extended to stochastic trees,
which paves the way for enhancing the simulation of large landscapes which contain a high
number of trees. As expected, the simulation time is proportional to the size of the library of
instances. It also depends on the size of the plant as measured by its total number of organs,
but this relationship is not linear (Fig.6), while it is linear for classical Monte-Carlo methods.
Another interesting feature of the substructure-based algorithm is that its relative efficiency
increases when the size of the simulated forest (i.e., the number of simulated trees) also
increases: the first tree is computed much faster than with a classical Monte-Carlo methods;
for subsequent trees, the substructure-based algorithm is even much faster than for the first
tree, because the computation of the latter also includes the construction of most, if not all,
the library of substructure instances. For plants which have a simple architecture, such as



Part IV. Simulation and Visualization — Simulation 167

maize or sunflower, substructure algorithm has no advantage for two reasons: (i) these
plants are simple enough to be efficiently simulated with classical algorithms; (ii) the
decomposition of these plants into substructures yields only a few, if not only 1, type of
substructure.

Thanks to its underlying mathematical formulation, this new model can also be used to
derive the theoretical mean and variance of the tree production (de Reffye, personal
communication). The comparison of simulated and theoretical plant production indicates
that a library size of 5 is sufficient for agronomical or forest purpose (Table 1), whereas a
library size of 2 seems to be sufficient to obtain a good 3D realism (Fig.9). There are other
applications of the decomposition of a plant into substructures and of their instancing. These
techniques can provide a rational method to build simplified clusters for radiosity[21], sets
of branches for tree biomechanics[22], or texels and billboards for computer graphics
images[23]. According to the type of application, especially in the field of ecology, it would
be necessary to adapt the algorithm that is presented here.
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