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Abstract: This paper aims to provide insight into stability of collabtion choices in P2P networks. We study net-
works where exchanges between nodes are driven by the desieeive the best service available. This is the case
for most existing P2P networks. We explore an evolution rhddeaved fromstable roommatetheory that accounts for
heterogeneity between nodes. We show that most P2P ajpplisatan be modeled using stable matching theory. This
is the case whenever preference lists can be deduced froexth@nge policy. In many cases, the preferences lists are

characterized by an interestimgyclic property. We show that P2P networks with acyclic prefersmessess a unique
stable state with good convergence properties.
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Applications de la théorie des affectations a I'étude des seaux P2P

Résumeé :Cet article vise a décrire la possible stabilité d’un régesitra-pair en termes de collaborations. Nous étudions
les réseaux ou les échanges entre pairs sont basés surigévlobtenir le meilleur service possible (hypothesebiala
pour une grande partie des réseaux P2P existants). Nougé&amrs un modeéle d’évolution basé sur la théoriesiable
roommatesfin de prendre en compte I'hétérogénéité des pairs. Nousramecomment étudier la plupart des réseaux
P2P al'aide de ce modéle. Dans la plupart des cas rencoete§steéme de préférences sous-jacent posseéde une pEopriét
d'acyclicité. Pour de tels systemes, nous montrons I'erist d’'une unique solution stable avec de bonnes propdétés
convergence.

Mots-clés : pair-a-pair, mariages stables, propriétés de convergence
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1 Introduction

During the last few years, peer-to-peer (P2P) applicatitm®& emerged and now appear as a major component of the
Internet, from both traffic and content distribution poinfsview. Peer-to-peer network performances scale reagpnab
with the number of users. This definitely makes P2P a leadamgdgigm for tomorrow’s networking applications. One
of the most striking achievements is certainly BitTorrergtpcol [Coh03] for content distribution. It is based on & Ti
for-Tat mechanism, which is used to regularly compute taliation links between the peers. Despite the simplicity of
this approach, measurements and analysis are hard to pradwéldto the massively distributed nature of the application
Starting from this statement, we present a formal methodhédyae a large class of networks (including BitTorrentelik
applications) with regard to the stability of collaborai$o

More precisely, our main contribution is a model that fits pagr-to-peer protocol where peers are allowed to choose
partners they are collaborating with. We just suppose thett eeer ranks other peers according to some preference func
tion. For example, in a P2P file-sharing network, each paeraak other peers according to the similarity of their iattr
In a cooperative download application such as BitTorremh@3], the upload bandwidth appears as a major parameter
as the incentive mechanism consists in selecting collabgrdased on how much they upload. Additional parameters
like download bandwidth, latency, storage capacity or amamual choices can also be used to define the preferences.
Even though exact mechanisms of P2P solutions can be monglicatad, our modeling gives a first approximation. In
particular, it explains the evolution of a system wherealadirators are selected according to such a parameter.

This work aims to deduce properties of the connection gragided by the preference system chosen by a P2P
application. The paper is structured as follows. In the egtion, we present existing formal theories, namely thielst
marriage probleni]GS62] and the stable roommate proble@4CHAN Sectior B we apply these theories to develop a
model that includes many P2P applications. Segfion 4 iflemthree main preference classes that appear in existidg P2
applications. All of them appear to be cycle free and can ke ss particular cases of what we call acyclic preferences.
In Sectiorb we focus on acyclic preference systems andmrasesrresponding stability result. The convergence speed
is discussed in Sectidi 6.

2 Background: matching theory

Stable marriage problems were introduced by Gale and ShaplE962 [GS6P]. An instance of the Stable Marriage
problem involves two sets of participants, convenientljecbthe set of men\/ and the set of womeW’. A common
assumption is that every member of each gender has strigrpnees over the members of the opposite geéndEne
purpose of the theory is to find and describe the stable mmagst{or configurations) betwedd and!/. A matchingM

is said to be unstable if there is a pait,(v) where each one prefers being matched with the other rdtharteing in its
current situation inM. This pair is said tdlockthe matching\M, and is called a blocking pair fo¥1. A stable matching

is a matching with no blocking pair. Using a conceppafposals Gale and Shapley have shown that all instances of the
marriage problem possess at least one stable state tha¢ caadhed ifO (4 f) proposals, wherg is the number of men
and f the number of women.

If there is only one set of participants (callpder3, where anybody can be matched with anybody, then we get a
different problem, called the Roommate problem. This cledmas two important consequences. Firstly, the existence of
a stable configuration is no longer guaranteed, and secanglpposals algorithm like the Gale-Shapley algorithm may
not converge, even if a stable configuration exists.

The first issue has been addressed by Irvind_in [lrv85]. Thindr algorithm finds a stable configuration to the
roommates problem, if there is one, or it indicates that rotem exists. However, to the best of our knowledge, an
adaptation of the Gale-Shapley algorithm to the roommataisiem is still to be developed. One of the contributions of
this work is a natural extension of Gale-Shapley to the stedddmmates theory for the special case of acyclic prefeenc
(see Sectiofl5).

Finally, the roommates problem can be further generalizedllowing any peemp to establish a numbér(p) of
simultaneous partnerships (instead of a single one as ioldilssical roommate matching problem). This generalinatio
is often called many-to-many matching in the bipartite aade matching in the general case[FI€D3, KW03]. Cechlarova
and Fleiner[[CE05] show how lxmatching problem can be transformed into an equivalentiching problem. We
propose to usb-matching to model the connections in a P2P network, aslddtiai the following section.

1The Stable Marriage with Ties problem (SMT) raises issuaswlil not be addressed in this paper. For existing studieSMT, see[[[MMMY9,
Man02].
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3 Networks as matching instances

P2P networks are formed by establishing an overlay netwetkden peers. Any peer acts both as a server and a client.
Each peep uses a bounded number of connections. As the network eygeess continuously seek after new (or better)
partners. Each protocol implements its own algorithm fdg #earching phase. But in most of the cases, its output can
be seen as a preference list over the contacts. Thus, a P@eqdralgorithm for connecting peers can be modeled as an
instance of &-matching problem.

As for the stable roommates problem, we consider @setn peers. All possible connections between the peers are
defined byan acceptance graphEach peep has aquotab(p) on the number of mates (connections). In addition, all
neighbors ofp from the acceptance graph are sorted according to a givéderpnee system and form a preference list
denoted byL(p). L(p,q) denotes the position (rank) of pegin p’s list. In other terms.L(p) is a permutation of all
neighbors ofp. If L(p,q) < L(p,r) then we say thap prefersq to r. The best rank correspondsto The degreeof
a peer is the length of its preference list. If we denotd kg vector of preference lists corresponding to all peers) the
(P, L) (if there is no ambiguityP is omitted) definesn instanceof the Roommates Problem.

For simplicity we consider onlyndirected acceptance graphs € L(q) iff ¢ € L(p). There is no loss of generality
since pairs are formed only between peers that mutuallyphe=ch other. Letn denote the number of edges of the
acceptance graph.

When a partnership is established between two peanslg, we say that each one israateof the other, or equivalently
that thepair {p, ¢} is formed. AconfigurationC is defined as a set of formexhirs {p, ¢} such that each pajr has at
mostb(p) mates. Some peers may be single (i.e. not paired). The sdtafrdigurations is called. It contains the
trivial configurationCy, where no peer is paired.

In a configuratiorC', we say thap is under-matedf it has less thab(p) mates inC. A blocking pairfor a configu-
rationC' is a pair{p, ¢} ¢ C such that each member of the blocking pair is either undeednar prefers the other to its
worst mate inC.

We propose to model the evolution of the system thrangtatives a natural extension of the Gale-Shapley initiative
algorithm [GS6P]. An initiative is the process by which a peey change its mates. Given a configuratidrwe say
that peep takes the initiativavhen it proposes to other peers to be its new mate. Basigaitygy propose partnership to
any acceptable peer. However, a new partnership is onlyeistiag when a blocking pair exists. If a peeis part of a
blocking pair(p, ¢) and elopes witly, the initiative is then calledctivebecause it modifies the configuration (both peers
will change their set of mates).

To find such a new mate, searches its preference list avoiding peers that do notowepits situation. We identify
several strategies depending on hogearches its preference list:

» best matep seeks the best peer with which it forms a blocking pair.

» decremental matep circularly scand.(p) starting from the position of the previous initiative.

» random matep chooses at random among the blocking pairs it belongs to.

Best mate seems to be the best strategy from a peer’s poirgvaf Mowever, when making proposals takes a valuable
time, it may not be realistic. For this reason, we consideittyo other types of initiative which are more suited to model
simultaneous asynchronous initiatives. For instancesidenan application where peers are not aware of their beigh
value. To try to find a better mate, a peer will select a randeighbor, probe it and keep collaborating with it if it is
more interesting than some previous mate. This is the ranmdata strategy.

Let us now consider how preferences usually appear in P2#ori.

4  Acyclic networks

In this section, we show that most current P2P networks teodnclude partnerships based on preferences which appear
to be acyclic. Apreference cyclbetweerk > 3 peergp;...px occurs ifp; prefersp; 1 to p;—1 (modulok). A preference
instance iscyclicif it contains no preference cycle.

First consider networks where mates are selected accotdisgme inherent capacity like available bandwidth
computing capacity, or storage capacity. In such a systgmeesp possesses an intrinsic mark(p) acknowledged by
all the peers it knows. Peers with higher marks are prefeifbd preference lists resulting from such a policy are dalle
global preferencesConsider a preference chain...p, where peep; prefersp;1 to p;_1. As marks increase along the
chain, it cannot form a preference cycle, and global prefeze are always acyclic.

As an example, consider the “Tit-for-Tat” strategy of Bitfient [Coh03]. Each peer prefers to exchange with peers
with the best upload capacity: as such peers provide dataither rate, they appear as best uploaders as soon as a

2Network available bandwidth often mainly depends on the typthe peer Internet connection and how much is consumedhgy ooncurrent
applications.

INRIA
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steady sequence of chunk exchangesis initiated. BitTosréit-for-Tat policy is thus close to a global preferengstem
according to upload capacity. In addition to best uploadeash peer also serves a random contact. This “generous”
connection can be seen as a probing mechanism for findingwittebetter upload capacity.

However, it should be noted that peer selection also religh® complementarity of file chunks. This can be further
modeled by a second type of preference system that weaalplementary preferencel such a system, all peers try
to get the same set of resources (such as file chunks in cdivpdile download). Each peer then prefers to exchange
resources with peers possessing the largest number ofsgngiresources. It can be shown that such complementary
preferences are also acyclic. Notice that this kind of pefee changes as blocks are downloaded. However, the peers
with the largest complementary set of blocks are those engatile longest block exchange sessions. In its most general
form, the selection of peers for cooperative file downloadlma seen as a mix of two acyclic preference systems.

Finally, we identify a third class of acyclic preferenceteyss where each pepgives a markn(p, ¢) to each peeg
it knows in such a manner that marks are symmetri¢p, ¢) = m(q, p) for all p, . Each peer prefers to pair with peers
with the best marks. Such a preference system is saidggrmetric Again the marks increase along a preference chain,
preventing the existence of a preference cycle. The simplesnple of such a preference system comes from latency
optimization. Consider an overlay scheme such as Pastr@IRbat is optimized by selecting contacts with the smalles
round trip time (RTT) in the physical network. As the RTT isyarsnetrical measure (on average), it results in symmetric
marks.

In fact, any selection mechanism induced by proximity adtay to some distance function results in such sym-
metric preferences. For example, massively multiplaydinergames (MMOG) require to connect players with nearby
coordinates in a virtual space. This can be modeled by syno@eferences based on distance in the virtual space.
Similarly, some authors propose to connect participantsfdé sharing system according to the similarity of theiemt
est [FHKMO04 [ SMZ0B]. Any such preference system based orimity is symmetric and thus acyclic.

We have seen that many P2P networks are formed through peeti@e algorithms that can be modeled by preference
instances that are acyclic. We now consider the stabilivperties of such preference systems.

5 Stability result

While it is difficult to find the stable solutions for generakferences in the roommates problem, the issue for acyclic
preferences is much simpler, as shown by Thedtdem 1.

Theorem 1 An acyclich-matching preference instance always has a unique stalmégrgation.

Proof: We first prove by contradiction that there can be at most atdessolution when preferences are acyclic. Suppose
A and B are two distinct stable configurations of the instance. &leists a peep; with different mates inA and B.

Let p, be the best mate among the matess matched with inA or B, but not in both configurations. Assume, without
loss of generality, that; is mated withps in A, but not inB. As B is stableps hasb(p2) mates inB it prefers top,
(otherwise{p1, p»} would be a blocking pair foB). At least one of them is not its mate ity let p; be the best ranked.
For a similar reasoms has a mate, in A and not inB it prefers top,. We iterate the process to construct a sequence
of peers(p;);>1. As the set of peers is finite, a peer is found that is already present in the sequence. Let us keke t
smallestk such thaty; = p;, for somei < k. The choice o, implies thatp; prefersp;; to p;_1. By construction,

the circular listp;, po, . . ., px—1 is a preference cycle. This contradicts the fact that thiunt® is acyclic.

To ensure the existence of a stable solution, we now provesthan preferences are acyclic, a sequence of active
initiatives (i.e., initiatives that change the configuoadi never goes twice through the same configuration. As tkeaxe
finite number of possible configurations, if we keep altetimg configuration through initiatives, we eventually reach
configuration that cannot be altered with any initiativetabte configuration.

The proof is simple. If a sequence of initiatives induces @epf at least two distinct configurations, then one can
extract a preference cycle: Igt be a peer whose mates change through the cycle.pcdtie best peep, is unstably
paired with during the cycle, ang; the best peep, is unstably paired with during the cyclg; is notps andps prefers
ps to p1, otherwise the paifp1, p»} would not break during the cycle. Iterating the process, uiglla sequence of peer
(px) such thapy, preferspy,1 to pr—1, until we find: < j such thap; = p;. The circular list(p;, pi+1,...,pj—1) is a
preference cycle. O

TheorentdL can be also proved using Tan’s decompositionyt&an91]. However, our proof has the advantage of
leading to Corollar1l.

Corollary 1 Any sufficiently long sequence of active initiatives leadhé unique stable configuration.

RR n° 6075
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Any initiative algorithm, starting from any configuratiooomputes the stable configuration if we assume it gives
enough initiatives to active peers. This statement alonesgio guarantee on the convergence speed (except a factoria
bound derived from the number of possible configuration)nimore insight is given next.

6 Convergence results

In order to understand acyclic dynamics, we shall introdtheeconcept of loving pair. A loving paifp, ¢} is a pair

of peers such that peeris ranked first by peeq andvice versa Loving pairs are the key to understanding acyclic
preferences and convergence to the stable state. Theywawedin properties: first, loving pairs are unbreakable.€©nc
peers of a loving pair are matched together, no sequencéieafiires can unmatch them. The second property is given by
TheorenfR. An instance is said to be trivial when all prefeedists are empty.

Theorem 2 Any non-trivial acyclic preference instance always hasast one loving pair.

Proof: Consider a non-trivial preference instance. There &qserspg, p; such thatl(po,p1) = 1. If L(p1,p0) = 1,
then{po, p1} is a loving pair. Otherwise, there exigis # po such thatl(p;,p2) = 1. If we continue this process, we
eventually find a loving paip;, p;+1 such thatl(p;, p;+1) = L(pi+1,p:) = 1. If this is not the case, we construct a
sequencey, . .., p;, ... such that(p;—1, p;) = L(pi, pi+1) = 1, withp;,_1 # p; 1. As the number of peers is finite, the
sequence loops, producing a preference cycle. O

Because of loving pairs, the stable solution can be corstiugair by pair through initiatives. This is stated in
TheoreniB.

Theorem 3 For any acyclic preferences instance, starting from antiahtonfigurationC, there exists a sequence of at
mostZ initiatives leading to the stable solution, whefe= > pep b(D).

Proof: Theorenfll guarantees that a stable configuration existsjoaeyclic preference instance. We show that this
stable state can be reached by matching loving pairs. Wehsayatpair isstablewhen no sequence of initiatives can
break it. All stable pairgp, q} can be taken out of consideration: we can virtually remowesrtlirom the acceptance
graph, erasing each peer from the preference list of the,@thd decrementing the quota®) andb(q). Similarly, a peer

p that appears ih(p) stable pairs will never change its mates, which is equivateconsidering a preference instance
wherep has been removed. In both cases, we obtain a smaller, lmiys&guivalent preference instance. Moreover, this
preference instance remains acyclic.

Starting from any configuration, we first remove all stablegpand peers with a full quota of stable pairs as described
above. The equivalent preference instance is acyclic. Ag ls it is non-trivial, Theoreild 2 implies the existence of
loving pairs. We give a best mate initiative to one peer ofvénlg pair. The loving pair is then formed and it is stable. We
can remove it from consideration. It results in an equivieaference instance whefeis decremented by 2. If one of
the peers has now(@quota, it can be removed from the preference instance. Bstiitg this process at mo§ times,
we end up in a configuration with a trivial equivalent prefere instance where all preference lists are empty. This final
configuration is thus the stable solution of the initial preihce instance. O

The above algorithm for computing an optimal initiative gence is hard to implement in a massively distributed
environment. However the key of TheorEim 3 is that the stadllgion is made of at modB /2 stable matchings, and that
at each moment, one of them is a loving pair for the currenfigoration. With the best mate strategy, a loving pair is
formed as soon as one of its peers has the initiative. We ¢emnate the convergence speed by estimating the time needed
to match loving pairs. For instance, consider two simpl&can algorithms: periodic and Poisson.

In the periodic algorithm, each peer takes a best matetin@giaveryt seconds. Due to network latencies, we consider
that the order of initiative may be different in each periBg. TheoreniR, wittbest matea loving pair is formed after at
mostt seconds. Thus, in an acyclic preference instance, witlo@ierinitiatives, the stable configuration is reached after
at most2 ¢ seconds.

In the Poisson algorithm, at any step a peer drawn uniformhaadom with probability% takes an initiative. A
classical balls and bins result states that, with high podita(w.h.p.), each peer will have taken the initiativdedst once
aftern log n drawings. Thus, in an acyclic preference instance, with tn@$e Poisson initiatives, the stable configuration
is reached irO(n B log n) initiatives w.h.p..

The mean convergence time is much smaller. Consideringrtresich unstable configuration there exists at |east
peers from a loving pair, the mean time between the creafitmaostable pairs in a best mate Poisson initiatives seqeienc
is at mostg. As a consequence, for any acyclic instance and any stantinfiguration, the mean time to reach the stable
state with best mate Poisson initiatives is at m’fg%t

INRIA
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7 Future Work and Conclusions

In the present work we have given upper bound estimates abifiergence time. These results are based on the existence
of at least one loving pair at every step. Preliminary siriafaresults lead us to believe that tﬁ§ bound on is tight

for global preferences, wheén= 1 and the acceptance graph is complete. In this case the onihglpair is composed

of the two best globally ranked peers, which do not yet hawegaogether. However, we suspect that several other P2P
networks preference systems, such as symmetric prefer;aneg contain a large number of loving pairs at a time. These
systems should converge much faster. We plan to identifyaaadl/ze such preference systems.

Note, that our convergence results assume that the pretelists are static. However, for most P2P networks, the set
of peers and their preference lists evolve in time. Furtherkwvill consider the impact of such dynamics on the stable
configuration of the system. A major interest is to comparezeocgence speed to the system evolution speed. As long as
it is fast enough, we can expect that the system will smodtilgw the evolving stable configuration target.

We have shown how collaboration selection algorithms cambédeled using the matching theory. In fact, most of
these algorithms lead to acyclic preference instances antlave proved that such preference systems always evolve
towards a stable configuration. Additional insight was giwa the convergence time which is required to reach this
stable configuration.

Acknowledgment: The authors wish to thank James Roberts for his helpful camsne
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