Probabilistic Observers for a Class of Uncertain Biological Processes

Benoit Chachuat 1, 2 Olivier Bernard 3
3 COMORE - Modeling and control of renewable resources
LOV - Laboratoire d'océanographie de Villefranche, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : In this paper, probabilistic observers are considered for a class of continuous biological processes described by mass-balance-based models. It is assumed that the probability density functions (PDFs) of the uncertain parameters and inputs of the model, as well as the PDFs of the missing initial conditions are known. Then, the PDFs of the unmeasured state variables are obtained, at any time, by considering the image of these initial PDFs by the flow of the dynamic model (differential system). In comparison to classical open-loop asymptotic and interval observers, the method provides information on the confidence level of the estimates rather than simple upper and lower bounds. Moreover, unlike Kalman filters, probabilistic observers are not restricted to Gaussian distributions for the uncertain parameters. The design and application of a probabilistic observer to an industrial wastewater treatment plant is presented. Finally, a number of practical considerations is discussed in connection to both implementation and utilization issues.
Liste complète des métadonnées

https://hal.inria.fr/inria-00122551
Contributeur : Olivier Bernard <>
Soumis le : mercredi 3 janvier 2007 - 14:35:33
Dernière modification le : jeudi 11 janvier 2018 - 15:50:39
Document(s) archivé(s) le : mercredi 7 avril 2010 - 01:33:03

Fichier

ChachuatBernard_IJNRC.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00122551, version 1

Collections

Citation

Benoit Chachuat, Olivier Bernard. Probabilistic Observers for a Class of Uncertain Biological Processes. International Journal of Robust and Nonlinear Control, Wiley, 2005, 16, pp.157-171. 〈inria-00122551〉

Partager

Métriques

Consultations de la notice

617

Téléchargements de fichiers

109