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Abstract:  Collateral evolutions are a pervasive problem in Linux device driver development, due to the
frequent evolution of Linux driver support libraries and APIs. Such evolutions are needed when an evolution
in a driver support library affects the library’s interface, entailing modifications in all dependent device-specific
code. Currently, collateral evolutions in Linux are done “nearly” manually. The large number of Linux drivers,
however, implies that this approach is time-consuming and unreliable, leading to subtle errors when modifications
are not done consistently.

In this paper, we describe the development of a language-based infrastructure, Coccinelle, with the goal
of documenting and automating the kinds of collateral evolutions that occur in device driver code. Because
Linux programmers are accustomed to manipulating program modifications in terms of patch files, we base our
language on the patch syntax, extending patches to semantic patches.

We report our initial usage of Coccinelle on a range of the collateral evolutions identified in an earlier study. For
many of the collateral evolutions we have considered, Coccinelle can update 70% to 100% of the relevant Linux
drivers fully automatically, with the remaining drivers requiring some manual adjustments due to variations in
coding style that are not yet taken into account by our tool. We have additionally identified a number of drivers
where the maintainer made some mistake in performing the collateral evolution, but Coccinelle transforms the
code correctly. Our approach both eases and improves the robustness of the evolution process, and can address
a variety of the problems that driver maintainers face in understanding and applying collateral evolutions in
practice.

Key-words: operating system, device driver, program transformation, software reengineering, software
maintenance.
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Vers la documentation et I’automatisation des évolutions collatérales
dans les pilotes de périphériques sous Linux

Résumé : Les évolutions collatérales sont un probléme important dans le dévelopement des pilotes de
périphériques sous Linux due & I’évolution fréquente des APIs et des bibliothéques de support aux pilotes
sous Linux. Ces évolutions collatérales sont requises lorsqu’une évolution dans une bibliothéque de support
aux pilotes affecte l'interface de cette bibliothéque, entrainant des modifications dans le code des pilotes qui
dépendent de cette bibliothéque. Actuellement, ces évolutions collatérales sont faites presque manuellement.
Cependant, le grand nombre de pilotes rend cette approche trés cotiteuse en temps et peu fiable, entrainant des
erreurs subtiles lorsque les modifications ne sont pas faites de maniére cohérente.

Dans ce papier, nous décrivons le dévelopement d’une infrastructure, Coccinelle, basé sur un langage avec
pour but de documenter et d’automatiser le genre d’évolutions collatérales se produisant dans le code des pilotes
de périphériques. Comme les programmeurs Linux sont habitués & manipuler des modifications de programmes
en terme de fichiers patch, nous avons basé notre langage sur la syntaxe des patches, étendant les patches en
des patches sémantiques.

Nous faisons le rapport de notre premiére utilisation de Coccinelle sur un ensemble d’évolutions collatérales
identifiées lors d’une étude précédente. Pour beaucoup des évolutions collatérales que nous avons considérées,
Coccinelle peut mettre & jour entre 70% & 100% des pilotes de périphériques pertinents de maniére complétement
automatique, et requiert des ajustements manuels pour le reste des pilotes due & des variations dans le style
du code qui ne sont pas encore gérées par notre outil. De plus, nous avons identifié un certain nombre de
pilotes ou le mainteneur avait commis des erreurs lorsqu’il avait fait 1’évolution collatérale manuellement, mais
ou Coccinelle transforme le code correctement. Notre approche a la fois facilite et améliore la robustesse du
processus d’évolution du code, et peux adresser une grande variété des problémes auxquels est confronté un
programmeur lorsqu’il veut comprendre ou appliquer des évolutions collatérales.

Mots-clés : systéme d’exploitation, pilote de périphérique, transformation de programme, génie logiciel,
maintenance de programme.
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“The Linuz USB code has been rewritten at least
three times. We’ve done this over time in order
to handle things that we didn’t originally need to
handle, like high speed devices, and just because
we learned the problems of our first design, and to
fiz bugs and security issues. Each time we made
changes in our api, we updated all of the kernel
drivers that used the apis, so nothing would break.
And we deleted the old functions as they were no
longer needed, and did things wrong.”

Greg Kroah-Hartman, Linux Symposium July
2006.

1 Introduction

One of the most challenging aspects of OS develop-
ment is to keep up with the requirements of new de-
vices. While commercial OSes have tended to favor
maintaining backwards compatibility, the developers of
Linux have chosen a more flexible development model,
in which internal libraries and APIs frequently evolve
to improve performance, enhance security, and meet
new hardware requirements. This continual state of
flux, however, induces a massive maintenance effort,
to bring dependent device-specific code up to date with
the evolutions in libraries and APIs. Simple examples
include extending argument lists when a library func-
tion gets a new parameter or adjusting the context of
calls to a library function when this function returns
a new type of value. More complex examples involve
changes that are scattered throughout a file, where the
actual code transformation is highly dependent on the
specific context in which it occurs.

In previous work, we have given these code modi-
fications the name collateral evolutions [22]. Collat-
eral evolutions are a concern to all of the actors in-
volved in driver development and maintenance: subsys-
tem maintainers who are responsible for maintaining
the driver support libraries and the dependent device-
specific code in the Linux kernel source tree, device
experts who develop and maintain device-specific files
outside the kernel source tree, and motivated users
who find that their hardware is not adequately sup-
ported. The potential for mistakes, misunderstandings,
and conflicts in this highly distributed effort has con-
tributed to the continuing unreliability of driver code
2].

We have additionally previously quantified the col-
lateral evolution problem, using ad hoc data mining
tools that we have developed [22]. Driver support li-
brary evolution is increasing with time, as we have de-
tected 300 probable evolutions in all of Linux 2.2 and
over 1200 in Linux 2.6 up to Linux 2.6.13. Associ-
ated with these evolutions, we have detected collateral
evolutions that require modifications in up to almost
400 files, at over 1000 code sites. We have further-
more manually studied 90 library evolutions, affecting

over 1600 device-specific files. Our results have shown
that the sheer number of device drivers and the greatly
varying expertise of device driver developers and main-
tainers has made collateral evolutions difficult, time-
consuming, and error-prone in practice.

These issues clearly call for a formal means of de-
scribing collateral evolutions and automated assistance
in applying them. Conventional wisdom has it that au-
tomatic program transformation tools cannot be suc-
cessful in the context of device drivers, because they
are written in C, which is difficult to analyze and ad-
mits a wide variety of coding styles. The driver code
affected by collateral evolutions, however, has some
properties that alleviate these difficulties. First, re-
lated interface elements are often used within a sin-
gle function or at a very shallow function-call depth,
restricting the amount of code that needs to be ana-
lyzed and thus making precise analyses possible. Sec-
ond, the structure of code using interface functions is
largely dictated by the constraints imposed by the li-
brary, and thus is mostly impervious to coding style.
Finally, many drivers are written by copy-paste, where
new device-specific code is created by updating exist-
ing device-specific code according to the specific prop-
erties of the new device [15]; since code that interacts
with the driver support libraries is typically not device-
specific, the code affected by collateral evolutions may
be syntactically identical across many drivers. These
properties hold out hope that an automated transfor-
mation system that is tuned to the properties of device
driver collateral evolutions can help address the collat-
eral evolution problem.

We have begun developing a language-based infras-
tructure, Coccinelle, with the goal of documenting and
automating the kinds of collateral evolutions that are
required in device driver code. Building on the re-
quirements that we have observed in our study of
Linux drivers, this infrastructure provides several novel
features. First, unlike many transformation systems,
which describe how to create code in terms of actions
to perform, we take a more WYSIWYG approach,
describing collateral evolutions as semantic patches,
which like traditional patches describe the original code
and the updated code in terms of fragments of ordinary
C code. The specifications are thus easy to correlate to
driver code, while providing concise but formal specifi-
cations of the collateral evolution. Second, our seman-
tic patches are applied by considering not only the af-
fected code’s text, as in the case of traditional patches,
but also its syntax and semantics. This approach ab-
stracts away from device-specific computations and in-
dividual coding style, implying that a single semantic
patch can be applied unchanged to many files. It is our
aim that Coccinelle should address the needs of driver
maintainers at all levels, from subsystem maintainers
to device experts and motivated users, by providing a
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readable but widely and automatically applicable spec-
ification of device driver collateral evolutions.

In this paper, we present initial experiments show-
ing how Coccinelle can be used to reduce the burden
of device driver collateral evolution. The main contri-
butions are:

e An assessment of the practical problems facing
driver maintainers in performing collateral evolu-
tions.

e The design of SmPLE a language for specifying
collateral evolutions relevant to device drivers; a
SmPL specification (i.e, a semantic patch) serves
both as detailed documentation of the collateral
evolution and a concrete description of the needed
code transformations.

e The design of the Coccinelle transformation en-
gine for applying semantic patches to device driver
code.

e A preliminary analysis of the effectiveness of the
proposed language and transformation engine in
addressing the problems faced by driver maintain-
ers. We find that we can already express and
carry out a wide variety of the collateral evolu-
tions identified in our previous study, even though
the current early stage prototype implementation
of Coccinelle is not sufficient to express all possible
transformations.

e A demonstration of the conciseness of semantic
patches which for our examples are up to 343 times
smaller than the total size of equivalent driver
patches. This result shows that collateral evolu-
tions can be documented in short and comprehen-
sive specifications.

The rest of this paper is organized as follows. In Sec-
tion Bl we present an overview of the issues that arise in
practice in manually applying collateral evolutions to
Linux drivers. We then present our approach to docu-
menting and automating collateral evolutions: in Sec-
tion Bl we present SmPL, and in Section Hl we describe
the transformation engine. In Section [, we describe
some experiments in writing semantic patches for the
examples illustrating the issues identified in Section
and applying these semantic patches to driver code. Fi-
nally, we describe some related work in Section [Bl and
conclude in Section [

2 Issues in manually performing
collateral evolutions

The application of collateral evolutions in Linux has
been plagued by problems of mistakes, misunderstand-

1SmPL is the acronym for “Semantic Patch Language” and is
pronounced “sample” in Danish, and “simple” in French.
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ings, and conflicts. In this section, we describe some
of the impacts that these problems can have in prac-
tice. Some of the examples used were described in more
detail in our previous work [22).

2.1 Mistakes

In the drivers in the Linux source tree, mistakes seem
to be the most common problem in performing collat-
eral evolutions. Indeed, of the 90 library evolutions
that we have studied in detail, 16% involved at least
one typographical or inattention error in at least one
device-specific file. Mistakes that we have observed in-
clude neglecting to delete a local variable that then
shadows an added parameter, adding code that uses
variables that are defined at other collateral evolution
sites but not the current one, neglecting to adjust some
uses of a variable that changes type, deleting too much
code, skipping some collateral evolution sites, and in-
troducing syntax errors. Indeed, several such mistakes
were made in applying the “proc_info” collateral evo-
lutions that we detail in Section Bl Many mistakes
cause either compile-time or link-time errors, but they
are not detected by the driver maintainer performing
the collateral evolution because the many compilation
options of Linux make it hard to compile all code. Oth-
ers cause memory errors, but these are only detected
if the affected code is tested by the driver maintainer.
Finally, others may cause no immediate error, as when
common code blocks are abstracted into a new function
but the factorization is not applied everywhere. The
code at the collateral evolution site remains functional
until the new function is changed in some critical way.

2.2 Misunderstandings

Misunderstandings are an issue when the person who
performs the evolution in the driver support library
is not the same as the person who performs the as-
sociated collateral evolutions. This typically occurs
in three cases: (1) when the person performing the
evolution defines a wrapper function, providing back-
ward compatibility, rather than performing the collat-
eral evolutions, and collateral evolutions are required
when the wrapper function is subsequently removed
and (2) when the collateral evolutions must be applied
to code outside the Linux source tree. We provide some
examples of each case.

Wrapper functions At the beginning of Linux
2.4.2, the driver initialization process changed such
that use of the function check_region could cause a
race condition, and should be replaced by the func-
tion request_region. Although check_region was
now unsafe, it was redefined as a wrapper function for
request_region and almost no drivers were initially
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updated. Instead, over the next few years, the col-
lateral evolution was performed by all kinds of driver
maintainers, who had to work without the expertise of
the developer who performed the original evolution.
Discussions in Linux mailing lists show that driver
maintainers and motivated users were not always sure
what to do to bring their drivers up to date, as the
protocol for using request_region is slightly different
from that for using check_region.

Drivers outside the Linux source tree We can
indirectly see evidence of the problems faced by the
maintainers of drivers outside the Linux source tree
from the case of drivers that have recently entered the
Linux source tree.

The file sound/oss/aul000.c, entered Linux 2.4 af-
ter the start of Linux 2.5, and thus did not participate
in the Linux 2.5 evolution processE It later appeared
in Linux 2.6.0. Many of the Linux 2.5 collateral evolu-
tions were carried out in creating the Linux 2.6.0 ver-
sion, but not all. One such omitted collateral evolu-
tion implied that the driver used library functions that
were no longer defined. Even though this error made
it impossible to build a kernel using this driver, the
error was not corrected until Linux 2.6.11. A similar
issue occurs in the file sound/oss/ite8172.c, which
did evolve through Linux 2.5, but appears to be re-
placed by an external version at the start of Linux 2.6.
In this external version, the aforementioned collateral
evolution was also not done. The error was again fixed
in Linux 2.6.11.

2.3 Conflicts

Conflicts may arise when a collateral evolution is per-
formed on a version of Linux which is not the latest
one, in which case the collateral evolution must be re-
targeted and merged into the latest available version.
Problems during merge include (1) the introduction of
new collateral evolution sites, either in drivers that al-
ready existed in the older version of Linux, or in new
drivers integrated in more recent versions, that must
also be evolved accordingly; (2) other perturbations
to the source code that break the merge process. Such
perturbations range from changing whitespace in or ad-
jacent to the collateral evolution site to localized code
changes, such as changing an argument of a function
affected by a collateral evolution that itself changes the
function’s name.

Introduction of new collateral evolution sites
On October 5, 2004 code was submitted to the Linux
source tree implementing a collateral evolution that

2Traditionally, even numbered version of Linux have been sta-
ble versions, in which most changes are bug fixes, while odd
numbered versions have been unstable version, in which there
are many evolutions and collateral evolutions.

changed the types of the functions pci_save_state
and pci_restore_state such that each lost their last
argument. Just 15 days previously, however, code was
added to the file ne2k-pci.c that contained calls to
pci_save_state and pci_restore_state. Because
the collateral evolution was based on an earlier version,
these calls were not taken into account. In principle,
such problems could be avoided if maintainers would
always use the latest version of the Linux source tree.
In practice, however, the large number of developers
and threads of development makes this all but impos-
sible.

Other changes In September 2003 the devfs library
was officially declared obsolete and to be replaced by
the udev library in the kernel. In June 2005, after an
extended period of time for developers to adapt their
drivers to the new library, the devfs library was re-
moved and collateral evolutions removing all uses of the
devfs library were performed in the numerous drivers
that were still using it. However, only a small part of
the overall change, a part that did not require change
to existing code nor cause any compilation errors, was
accepted into the Linux source tree. Consequently
the code modifications were maintained in parallel and
kept synchronised with the latest Linux version for an
entire year by manually resolving any conflicts arising
from changed and newly added code. Finally, in June
2006, the remainder of the modifications were accepted.

Assessment

All of these problems point to the need to document
and automate collateral evolutions. Currently, patch
files are the only standard support for documenting
and automating changes in Linux code [I7]. Patch
code describes a specific change in a specific version
of a single file. To create a patch, a developer must
modify each source code file by hand, and then apply
the automatic diff tool to create a record of the differ-
ence between the old and new versions. The developer
then distributes the patch to users, who apply it using
the automatic patch tool to replicate the changes in
their copies of the old files. Although automatic at the
user level, this approach does not solve the collateral
evolution problem. There is still someone who must
manually and visit and update all of the files, which re-
mains time-consuming and error prone. Using patches
as documentation to understand collateral evolutions
is often done, but is not easy or reliable, because the
evidence in the patch files is determined by the spe-
cific code in the patched files and not the concepts of
the collateral evolutions. To address these issues, an
approach is needed that describes collateral evolutions
simply, so that they can easily be understood by all
the actors involved, and generically, so that they can

INRIA
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static int usb_storage_proc_info (
char *buffer, char **start, off_t offset,
int length, int hostno, int inout)

~

struct us_data *us;
struct Scsi_ Host *hostptr;

hostptr = scsi_host_hn_ get(hostno);
if ('hostptr) { return -ESRCH; }

WOo~NO B WN -

11 us = (struct us_data*)hostptr->hostdatal[0];
12 if (lus) {

13 scsi__host put(hostptr);
14 return -ESRCH;

15 X

16

17  SPRINTF(" Vendor: %s\n", us->vendor);
18  scsi host put(hostptr);
19 return length;

(a) Simplified Linux 2.5.70 code

static int usb_storage_proc_info (struct Scsif Host *hostptr,
char *buffer, char **start, off_t offset,
int length, int hostno, int inout)

1
2
3
4
5 struct us_data *us;
6
7
8
9

11 us = (struct us_datax)hostptr->hostdatal0];
12 if (lus) {

14 return -ESRCH;
15}
17 SPRINTF (" Vendor: %s\n", us->vendor);

19 return length;

(b) Transformed code

Figure 1: An example of collateral evolution, based on code in drivers/usb/storage/scsiglue.c

be applied automatically to many files, both inside the
Linux source tree and out.

3 SmPL in a Nutshell

To address the issues described above in performing
collateral evolutions, we propose a language based ap-
proach for formally specifying collateral evolutions. In
this section, we first describe a moderately complex
collateral evolution that was considered in our previ-
ous study [22] and then introduce the language SmPL
(Semantic Patch Language) in terms of this example.

The example The functions scsi_host_hn_get
and scsi_host_put of the SCSI interface access and
release, respectively, a structure of type Scsi_Host,
and additionally manage a reference count. In Linux
2.5.71, it was decided that driver code could not be
trusted to use these functions correctly. As this could
result in corruption of the reference count, these func-
tions were removed from the SCSI interface [16]. This
evolution had collateral effects on the “proc_info” call-
back functions defined by SCSI drivers, which make ac-
cessible at the user level various information about the
device. To compensate for the removal of scsi_host_-
hn_get and scsi_host_put, the SCSI library began
in Linux 2.5.71 to pass to these callback functions a
Scsi_Host-typed structure as an argument. Collateral
evolutions were then needed in the proc_info functions
to remove the calls to scsi_host_hn_get and scsi_-
host_put, and to add the new argument. Note that
this collateral evolution involves both functions that
are defined by the library and evolve in some way, and
functions that are defined by the device-specific code
and must respect a prototype that is itself defined by
the library and evolves in some way.

RR n° 6090

Figure [ shows a simplified version of the proc__info
function of drivers/usb/storage/scsiglue.c based
on that of the version just prior to the evolution, Linux
2.5.70, and the result of performing the above collateral
evolutions in this function. Similar collateral evolu-
tions were performed in Linux 2.5.71 in 19 SCSI driver
files inside the kernel source tree. The affected code,
shown in italics, is as follows:

e The declaration of the variable hostptr: This dec-
laration is moved from the function body (line 6)
to the parameter list (line 1), to receive the new
Scsi_Host-typed argument.

e The call to scsi_host_hn_get: This call is re-
moved (line 8), entailing the removal of the assign-
ment of its return value to hostptr. The subse-
quent null test on hostptr is dropped, as the SCSI
library is assumed to call the proc_info function
with a non-null value.

e The calls to scsi_host_put: These calls are re-
moved as well. Because the proc_info func-
tion should call scsi_host_put whenever scsi_-
host_hn_get has been called successfully (i.e., re-
turns a non-null value), there may be many such
calls, one per possible control-flow path through
the rest of the function. In this example, there are
two such calls: one on line 13 just before an error
return and one on line 18 in the normal exit path.

The proc__info collateral evolution using SmPL
Figure @ shows the SmPL semantic patch describing
these collateral evolutions. Overall, the semantic patch
has the form of a traditional patch, consisting of a se-
quence of rules each of which begins with some context
information delimited by a pair of @@s and then speci-
fies a transformation to be applied in this context. In
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1 @@

2 local function proc_info_func;

3 identifier buffer, start, offset, length, inout, hostno;
4 identifier hostptr;

5 @@

6 proc_info_func (

7 + struct Scsi_Host *hostptr,

8 char *buffer, char **start, off_t offset,
9 int length, int hostno, int inout) {

10 e

11 -  struct Scsi_Host *hostptr;

12 e

13 - hostptr = scsi_host_hn_get (hostno);

14 -

16 - if ('hostptr) { ... return ...; }

16 .

17 - scsi_host_put (hostptr);

18

19 }

Figure 2: A semantic patch for updating SCSI proc_ -
info functions

the case of a semantic patch, the context information
declares a set of metavariables, not a set of line num-
bers as does a patch. A metavariable can match any
term of the kind specified in its declaration (identifier,
expression, integer expression, etc.), such that all ref-
erences to a given metavariable match the same term.
The transformation rule is specified as in a traditional
patch file, as a term having the form of the code to
be transformed. This term is annotated with the mod-
ifters - and + to indicate code that is to be removed
and added, respectively.

Lines 1-5 of the semantic patch of Figure Bl declare
a collection of metavariables. Most of these metavari-
ables are used in the function header in lines 6-9 to
specify the name of the function to transform and
the names of its parameters. Specifying the function
header in terms of metavariables effectively identifies
the function to transform in terms of its prototype,
which is defined by the SCSI library and thus is com-
mon to all proc__info functiond] Note that when a func-
tion definition is transformed, the corresponding pro-
totype is also transformed automatically in the same
way; it is therefore not necessary to explicitly spec-
ify the transformation of a prototype in the semantic
patch.

The remainder of Figure [ specifies the removal of
the various code fragments outlined above from the
function body. As the code to remove is not necessar-
ily contiguous, these fragments are separated by the
SmPL operator “...”, which matches any sequence of
instructions. The semantic patch also specifies that a
line should be added: the declaration specified in line
11 to be removed from the function body is specified to
be added to the parameter list in line 7 by a repeated
reference to the hostptr metavariable.

31t is also possible, via a slightly more complex semantic
patch, to identify the function to transform in terms of how it is
communicated to the SCSI library, which eliminates ambiguity
in case of multiple functions with the same prototype |21].

Overall, the rule applies independent of spacing, line
breaks, and the presence of comments. Moreover, the
transformation engine is parameterized by a collection
of isomorphisms specifying sets of equivalences that are
taken into account when applying the transformation
rule. Isomorphisms can be specified in an auxiliary
file by the SmPL programmer, using a variant of the
SmPL syntax. Among the default set of isomorphisms
is the property that for any x that has pointer type,
'z, x == NULL, and NULL == zx are equivalent. This
isomorphism is specified as follows:

Q@ expression *X; Q@
X == NULL <=> !X <=> NULL == X

Given this specification, the pattern on line 15 of Fig-
ure Bl matches a conditional that tests the value of
hostptr using any of the listed variants. Currently, the
default set of isomorphisms contains 33 equivalences
commonly found in driver code.

The semantics of sequences We have noted that
the SmPL construct “...” matches any sequence of
instructions. In general, one may consider a sequence
as a list of the instructions that are explicitly contigu-
ous in the source code (syntax), or as a list of the in-
structions that are executed contiguously at runtime
(semantics). In the case of SmPL, we use an approxi-
mation of the latter: the construct “...” matches any
sequence of instructions in the program’s control-flow
graph. Note, however, that Coccinelle does not take
into account runtime values in computing such paths,
so the set of paths considered is an over-approximation
of runtime behavior.

The strategy of matching the construct
against sequences in the control-flow graph rather than
sequences in the source program syntax is essential
for specifying device driver collateral evolutions in a
generic way that is applicable to many drivers. A de-
vice driver implements an automaton, testing various
conditions depending on the input received from the
kernel and the current state of the device, in order to
determine an appropriate action. Thus, driver func-
tions are typically structured as a tree, with many exit
points. An example is the code in Figure [k, whose
control-flow graph is shown in Figure Bl As the struc-
ture of this tree depends on device-specific properties,
it cannot be explicitly represented in a semantic patch.
Instead, a semantic patch must express the pattern of
operations required by the library, which can be de-
scribed generically because it is always the same. This
is achieved by using control-flow paths.

We may concretely see the utility of this approach
when evolving the scsiglue proc__info function of Figure
[M which contains two calls to scsi_host_put, while
the semantic patch of Figure Bl contains only one. The
control-flow graph of Figure Bl shows that there are two
paths that remain within the function after the test

[14 ”
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of hostptr, one represented by a solid line and one
represented by a dotted line. Each path consists of the
function header, the declaration of hostptr, the call
to scsi_host_hn_get, the null test, and its own call
to scsi_host_put and close brace, as specified by the
semantic patch.

Other features SmPL contains a number of other
features for matching other kinds of code patterns.
Among these include the ability to match and trans-
form a term wherever and however often it occurs anal-
ogous to the /g modifier of sed, the ability to describe
a disjunction of possible patterns to be tried in order,
the ability to specify code that should be absent, and
the ability to declare some parts of a pattern to be op-
tional, to account for code that should be transformed
if present but that may be absent either due to vari-
ations in the allowed uses of the interface elements or
due to programmer sloppiness.

4 The Coccinelle Transformation
Engine

SmPL is a language for specifying semantic patches.
To apply them, we need a transformation engine that
takes as input a semantic patch and a collection of
drivers, identifies those drivers that are affected by the
collateral evolution, and transforms them according to
the semantic patch. In this section, we describe our
main design decisions for this transformation engine,
some of the highlights of its implementation, and our
vision of how the SmPL language and the transforma-
tion engine will be used together in practice.

Design decisions The main decision that we have
taken in the design of the Coccinelle transformation
engine is to base the engine on model checking tech-
nology. To this end, the C source code is translated
into a control-flow graph, which is used as the model,
the SmPL semantic patch is translated into a formula
of temporal logic (CTL [3], with some additional fea-
tures). The matching of the formula against the model
is then implemented using a variant of a standard
model checking algorithm [I3]. This approach, which
was inspired by the work of Lacey and de Moor on a
related but simpler transformation problem [I4], has
been crucial in rapidly developing a prototype imple-
mentation. The use of an expressive temporal logic as
an intermediate language has made it possible to in-
crementally work out the semantics of SmPL, without
affecting the underlying pattern-matching engine. Fur-
thermore, because CTL is easy to implement, we have
been able to extend the logic with some features that
we have found useful to express the SmPL semantics
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parse a SmPL rule ﬂ

l

expand isomorphisms

|

translate to CTL

K} parse C file

translate to CFG

match the CTL against the CFG
using a model-checking algorithm

J

modify matched code

; unpl;rse /

more rules more rules
\Ldone

Figure 4: The Coccinelle engine

and some optimizations specific to the treatment of C
code.

Figure @ shows the main steps performed by the
Coccinelle transformation engine, including the use of
model checking. In the rest of this section, we highlight
some of these steps.

Parsing the C source file The main challenge in
parsing the C source file is to collect enough informa-
tion to be able to generate code that is readable and in
the style of the original source code. As collateral evo-
lutions are just one step in the ongoing maintenance
of a Linux device driver, these features are essential to
allow further maintenance and evolution.

An important part of the style of the source code,
which is not taken into account by most other C-code
processing tools, is the whitespace, comments, and pre-
processing directives. The Coccinelle C-code parser
collects information about the whitespace and com-
ments adjacent to each token. When a token in the
input file is part of the generated code, the associated
whitespace and comments are generated with it. As
has been found by others [I0)], parsing C code while
handling and maintaining preprocessing directives such
as #ifdef and #define and macro uses poses a signifi-
cant challenge. The Coccinelle C-code parser does not
expand any preprocessing directives, and instead treats
them as comments. Because unexpanded macros may
result in code that does not follow the C grammar,
we have extended the grammar accepted by the parser
to address some cases that commonly occur in driver
code. For example, the parser recognizes the macro
list_for_each, which expands into a loop header, as
the start of a loop.

While not perfect, we expect these heuristics to cover
the majority of the requirements of driver code. For
macros, we plan to extend the tool to take into account
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int usb_storage_proc_info(...)

v

{

v

struct us_data *us;

v

struct Scsi_ Host *hostptr;

v

hostptr = scsi_host_hn_ get(hostno);

v

L

v

return -ESRCH;

v

Y

Y

¥
}
v
}

if (!hostptr)

scsi_host_ put(hostptr);

return -ESRCH;

.
us = hostptr—...;

SPRINTF(...);

\

scsi_host_ put(hostptr);

v

return length;

Figure 3: Control-flow graph for Figure [ (a)

both the unexpanded and expanded code, to detect
collateral evolution sites in both.

Parsing the semantic patch The main challenge
in parsing a semantic patch is to parse the transfor-
mation rule. This consists of C-like code that is either
annotated with - if it is to be removed, + if it is to be
added, or not annotated if it is context code that is to
be preserved by the transformation. The arbitrary in-
termingling of - and + code, however, implies that the
semantic patch does not satisfy the C grammar. For
example, the transformation rule may have the form of
a function definition that has two function headers, one
to be removed and another to be added. The SmPL
parser thus parses the code in two steps, first parsing
the minus slice, consisting of the - and context code,
which represents the code to match, and then the plus
slice, consisting of the + and context code, which repre-
sent the code to generate. Once parsed, the two slices
are merged such that the + tokens of the plus slice are
attached to the context and - tokens adjacent to which
they should be inserted. The minus and plus slices of
the semantic patch of Figure P are shown in Figures Ba
and Bb, and the merged code in Figure Bc. Note that
the - and + modifiers, which were originally associated
with complete lines, are now attached to individual to-
kens and that contiguous “...”s in the plus slice are
elided.

Once the semantic patch has been parsed, the iso-
morphisms are applied to the resulting merged AST,
such that a pattern that matches any one of the set of
terms designated as isomorphic is replaced by a dis-
junction of patterns matching the possible variants.
Any + code associated with the subterms of such a
term is propagated into all of the patterns, so that the
generated code retains the coding style of the source
program.

The final step is to translate the merged AST into
our variant of CTL. Figure Bl shows a slightly simpli-
fied CTL representation of our proc_info example of
Section B (the null test on line 13 of Figure @ and some
other details are omitted for conciseness). While the
CTL code is complicated, it serves only as an assembly
language, which driver maintainers do not have to read
or understand. In our example, the semantic patch
consists essentially of a sequence of fragments of the
form f ... g¢. Such a fragment is essentially trans-
lated into:

fAAXA[(f vV g)Ug]

meaning that first f is found in the CFG, then from
all subsequent nodes in the CFG (AX), g is eventually
found U, and on each path from f to g there is no oc-
currence of either f or g (=(f V g)). An existentially
quantified variable v marks terms for which we want to
record the matching nodes in the CFG, for subsequent
transformation. The use of the predicate Paren ensures
that the matched braces are corresponding open and

INRIA



Towards Automating Collateral Evolutions

Jhostno, hostptr .
(Iproc_info_ func, buffer, start, offset, length, inout, v .

proc_info_ func(char *buffer, char **start, off_t offset, int length, int hostno, int inout),)

A
AX(3p .
({ A Paren(p) A
AX A[—(struct Scsi_Host *hostptr; V ({ A Paren(p))) U
(3v . struct Scsi_Host *hostptr;, A

AX A[—~(hostptr = scsi_host_hn_get(hostno); V struct Scsi_Host xhostptr;) U

(Jv . hostptr = scsi_host_hn_get(hostno);, A

AX A[—(scsi_host_put (hostptr) ; V hostptr = scsi_host_hn_get (hostno);) U

(Fv . scsi_host_put(hostptr);, A

AXA[=((> A Paren(p)) V scsi_host_put(hostptr) ;) U (} A Paren(p))]))]))]))])))

Figure 6: CTL counterpart of the semantic patch of Figure

proc_info_func (
char *buffer, char **start, off_t offset,
int length, int hostno, int inout) {
struct” Scsi_Host™ #* hostptr ;~
hostptr™ =~ scsi_host_hn_get” (Thostno™ ) ;~

if™ (" !"hostptr™)” {° ...” return  ...” ;7 }

scsi_host_put” (Thostptr™)”;”

(a) Minus slice
proc_info_func (
st;ruct+ S(:s:i_Host+ *+hostptr+,+

char *buffer, char **start, off_t offset,
int length, int hostno, int inout) {

(b) Plus slice

proc_info_func (
struct® Scsi_Host’ *"hostptr®

int length, int hostno, int inout) {
struct” Scsi_Host™ #* hostptr ;
hostptr™ =" scsi_host_hn_get™ (Thostno ) ;~

if”™ ("!"hostptr™)” {7 ... return” ...” ;7 }~

scsi_host_put” (Thostptr ) ;~

(c) Merged slices

Figure 5: The result of parsing the semantic patch of
Figure
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close braces in the source program. For this seman-
tic patch, the CTL translation only uses the operators
conjunction, negation, AX, and AU. The translation of
other SmPL operators also uses disjunction and EX. We
anticipate that existential quantification over paths of
arbitrary length, i.e. the operator EU, will be useful
to express some of the collateral evolutions we have
identified.

Updating the C source file The matching of the
CTL formula against the control-flow graph identifies
the nodes at which a transformation is required, the
semantic patch code matching these nodes, and the
corresponding metavariable bindings. The engine then
propagates the - and + modifiers in the semantic patch
code to the corresponding tokens in the matched nodes
of the control-flow graph.

Based on this annotated control-flow graph, the en-
gine then generates the transformed C code. In this
process, a token annotated with - is dropped, an unan-
notated token is generated as is, and a token annotated
with + is preceded or followed as appropriate by the
corresponding + code from the semantic patch. The
+ code may contain metavariables which have been

' char xbuffer, char xstart, off_t offsethound to source code terms in the CTL formula against

the control-flow graph. In the generated code, these
metavariables are replaced by these values.

In describing the parsing of the C code, we noted the
need to maintain comments and spacing. The treat-
ment of comments is especially subtle, because com-
ments are often not contiguous to the relevant code.
This makes it difficult e.g., to know when all of the
relevant code has been deleted, and thus the comment
should be deleted as well. Currently, we keep all com-
ments, but plan to add some heuristics to detect when
comments should be removed.

Using Coccinelle in practice We envision that
Coccinelle will be used as follows. Initially, a driver
subsystem maintainer who modifies a library writes a
semantic patch that describes the entailed collateral
evolutions, based on his experience with the device-
specific code in the kernel source tree. To test his
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intuitions and bring the affected drivers up to date,
he applies the semantic patch across the kernel source
tree. This is an iterative process, as he identifies cases
that are not taken into account by the semantic patch,
refines the semantic patch accordingly, and applies it
across the kernel source tree again. When he is con-
fident that the semantic patch addresses the common
cases, he publishes it to be used by the maintainers of
device-specific code that is outside the kernel source
tree. The semantic patch can then be read and ap-
plied by maintainers and motivated users, alike. At
present, Coccinelle is not sophisticated enough to han-
dle all possible coding styles, and thus both during
the semantic patch development process and when ap-
plying the completed semantic patch to code outside
the kernel source tree, it may fail to transform some
cases. However, the Coccinelle engine detects contexts
in which the semantic patch only partially matches the
given code, and reports to the maintainer that some
modification, along the lines of what is specified in the
semantic patch, may be needed in these cases.

5 Experiments

In this
cinelle

section, we consider the use of Coc-
in the context of the examples of Sec-

tion Except as noted, the driver source
files come from the Linux git repositories

http://git.kernel.org/git/?p=1linux/kernel/-
git/tglx/history.git;a=summary and http://git-
.kernel.org/git/7p=linux/kernel/git/torvalds/-
linux-2.6.git;a=summary. Those repositories make
publicly available the state of Linux before and after
each commit. In our case, we extract the state of
the affected drivers just before the patch performing
the collateral evolution was accepted into the Linux
source tree. In the remaining cases, we have used the
files from a given version available at the kernel.org
website. In all cases, the Coccinelle transformation
engine was run on a Pentium 4 at 3.2GHz with 512Mb
of RAM.

5.1 Collateral evolutions in which mis-
takes occurred

Mistakes were made in performing several of the collat-
eral evolutions considered in Section Bl The proc_info
collateral evolution is a typical example that we will
discuss in more detail here.

As compared to the simplified semantic patch of Fig-
ure B some extensions are required to complete the
implementation of the proc_info collateral evolution.
The protocol for using the scsi_host_hn_get and
scsi_host_put functions requires that the result of
calling scsi_host_hn_get be tested and scsi_host_
put be called to signal the end of use of the hostptr

resource. This protocol is not always followed in driver
code. Especially in older code, error checking is not al-
ways performed, and the evolution itself was motivated
by the problem of missing calls to scsi_host_put.
The complete semantic patch thus indicates that these
two operations are optional, although they must be re-
moved if present. We also extend the semantic patch
with some other minor transformations that were per-
formed as part of the same collateral evolution. The
resulting semantic patch is 44 lines of code. Three of
the default isomorphisms apply to this semantic patch.

Figure [ lists the files affected by the proc_info col-
lateral evolution, the number of lines of code in each
file, the number of lines of code in each proc _info func-
tion, and the time required to transform each file. Ap-
plication of the semantic patch is fully automated for
15 out of the 19 relevant driver files. For two of the re-
maining files, noted “iso”, some minor additions to the
semantic patch were required to simulate isomorphisms
that have not yet been implemented in the general case;
the number of lines manually added is shown in paren-
thesis. Finally, the two remaining files, noted “cpp”,
depend on the C preprocessor in ways that our pro-
totype does not yet handle. We are working on these
issues.

The transformation time is dominated by the time
to treat the proc_info functions, as other functions
are immediately rejected by the transformation rule.
Transformation of the proc_info functions completes
in a few seconds for the smallest functions and less
than 10 seconds for the largest functions.

5.2 Collateral evolutions in which mis-
understandings occurred

We illustrate how semantic patches can address the
problems of misunderstandings in performing collateral
evolutions with (1) the elimination of check_region
to illustrate the case of wrapper functions and (2)
the replacement of mem_map_reserve and mem_map_
unreserve to illustrate the case of files that evolve out-
side the Linux source tree.

check_region elimination Replacing check_-
region by request_region essentially entails moving
the call to request_region up to replace the call to
check_region and adding release_region before
any intermediate return indicating an error condition.
This transformation is expressed by the semantic patch
shown in Figure B As compared to the proc_info
semantic patch, this semantic patch contains a nest,
delimited by <... and ...> which matches any
number of occurrences of return between the calls to
check_region and request_region. This nest allows
the semantic patch to insert a call to release_region
before any premature return from the enclosing
function.
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file proc__info note seconds

lines fn. lines
block/cciss _scsi.c 1451 39 0.9
ieeel394/sbpc2.c 2985 66 3.3
scsi/53¢700.c 2028 34 6.2
scsi/arm/acornscsi.c 3126 113 | iso(+4) 2.8
scsi/arm/arxescsi.c 408 29 1.0
scsi/arm/cumana_2.c 574 32 0.5
scsi/arm/eesox.c 684 31 0.5
scsi/arm/powertec.c 486 32 0.8
scsi/cpqfcTSinit.c 2071 113 2.3
scsi/eata pio.c 985 62 1.6
scsi/fecal.c 323 70 1.5
scsi/g NCR5380.c 936 111 3.4
scsi/in2000.c 2332 153 cpp -
scsi/ner53c8xx.c 9481 37 [ iso(+6) 3.1
scsi/nsp32.c 3524 63 2.2
scsi/pcmcia/nsp _cs.c 1958 113 cpp -
scsi/symb3c8xx.c 14738 38 9.3
scsi/symb3c8xx  2/sym glue.c 2990 37 1.7
usb/storage/scsiglue.c 916 70 0.6

Figure 7: Experiments with the proc_info semantic patch

While this semantic patch represents the essence of
the collateral evolution, the driver code in practice ex-
hibits a large number of variations. Common variations
include the case where check_region is called itera-
tively in a loop in which case a call to release_region
must be inserted in each control-flow path that goes
around the loop, the case where the result of the call
to check_region is connected to the test by arbitrary
dataflow (e.g., storing the result in a variable that is
later tested, or control-flow paths that depend on vari-
able values), and the case where check_region and
request_region are used in different functions and
linked by interprocedural control flow. To match the
case of a loop, we simply write a second rule in the
spirit of that of Figure B that detects the loop con-
dition. In the current state of the prototype, Coc-
cinelle does not automatically handle either dataflow
or interprocedural control flow. For the former, most
instances can be handled by adding an extra pattern
that matches the case where the result of the call to
check_region is stored in a variable and that variable
is later tested. For the latter, it is possible to explicitly
encode a fixed depth of interprocedural control-flow in
the semantic patch, however, we have found in practice
that this quickly becomes unwieldy. We will work on
adding a more transparent consideration of dataflow
and interprocedural control flow in the near future.

The complete semantic patch is 94 lines of code,
including the loop and dataflow patterns. We have
applied this semantic patch to the drivers that use
check_region in the scsi and cdrom directories. In
the former, our semantic patch is sufficient to treat 4
of the relevant 31 files and in the latter case our se-
mantic patch is sufficient to treat 2 of the 11 relevant
files. We expect that treatment of interprocedural con-
trol flow will improve these results significantly. When
a semantic patch only partially matches a driver, Coc-
cinelle informs the driver maintainer. He can then use
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Qe
expression rrl, rr2, rr3;
@@

- if (check_region(rri, rr2) != 0)
+ if (!request_region(rrl, rr2, rr3))
{ ... return ...; }

<.
+ release_region(rrl, rr2);

return ...;

>

- request_region(rrl, rr2, rr3);

Figure 8: Semantic patch for updating calls to check_-
region

the semantic patch as a guide in manually applying the
collateral evolution to the given code.

Replacement of mem_map_reserve and mem_map_-
unreserve In Section ] we noted that when the files
sound/oss/aul000.c and sound/oss/ite8172.c ar-
rived in the Linux source tree in Linux version 2.6.0,
they contained uses of the API functions mem_map_-
reserve and mem_map_unreserve that were removed
in Linux 2.5.69. The collateral evolution in this case is
just a simple renaming of these functions from their old
to new versions, and the removal of an include decla-
ration. The corresponding semantic patch is shown in
Figure @ In the semantic patch the symbols (, |, and
) in the first column express a disjunction of patterns.
Matching of disjuncts is tried in the order the patterns
appear, until one of the patterns matches.

The collateral evolution affects 28 files in Linux
2.5.69, each containing on average around 2800 lines
of code. When the collateral evolution was performed
by hand, 27 of the files were updated correctly. In the
remaining file, the function cs4x_mem_map_unreserve,
which was a local wrapper for mem_map_unreserve,
was replaced by cs4x_ClearPageReserved, rather
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Qe
Qe
- #include <wrapper.h>

Qe
Qe
- #include "drivers/sound/cs4281/cs4281_wrapper.h"

Qe
expression E;
Qe

(

mem_map_reserve (E)
SetPageReserved (E)

cs4x_mem_map_reserve (E)
SetPageReserved (E)

+

|

+

|

- mem_map_unreserve (E)
+ ClearPageReserved(E)
|

+
)

cs4x_mem_map_unreserve (E)
ClearPageReserved (E)

Figure 9: Semantic patch for updating calls to mem_-
map_reserve, etc.

than ClearPageReserved, as required. We conjecture
that the transformation was carried out using an ed-
itor search-and-replace command that was insensitive
to identifier boundaries. Coccinelle is aware of iden-
tifier boundaries, and thus updates all files correctly,
in an average of 0.6 seconds each. Coccinelle addition-
ally correctly updates the versions of au1000.c and
ite8172.c that appear in Linux 2.6.0.

The collateral evolution is quite simple in this case,
but the semantic patch still provides a useful record of
what API functions have been deleted and what new
functions should take their place, and ensures that the
transformation is carried out correctly.

5.3 Collateral evolutions in which con-
flicts occurred

The use of semantic patches for alleviating or solving
problems arising from conflicts in collateral evolutions
is illustrated by (1) the removal of devfs and (2) the
elimination of the last argument of both the pci_-
save_state and pci_restore_state functions.

devfs removal Removing devfs client code involves
removing all calls to 6 specific functions, removing the
code that uses a specific field name, renaming a con-
stant, and finally removing an include declaration. An
excerpt of the corresponding semantic patch is shown
in Figure M The full semantic patch is 120 lines long.
Previously, we have seen the use of “...” to represent
an arbitrary sequence of statements. Here, they are
used to represent an arbitrary expression, e.g. in the
loop header.

The devfs library was used in many different Linux
subsystems with many files in drivers/ and some ad-

ditional files in arch/ and fs/. Running Coccinelle on
the whole kernel takes 10 minutes and correctly up-
dates 88 of the 134 relevant driver files.

As noted in Section Bl the full removal of the devfs
client code was not immediately accepted in the Linux
source tree. As a consequence, the maintainer regu-
larly had to manually resolve the conflicts arising from
changed and newly added code. For each version, an
updated patch file was then re-submitted to the Linux
source tree.

An example of such a conflict was the renaming of a
variable that was involved in the collateral evolution.
The local variable hvc_driver was renamed to drv
which led to the modification of numerous lines of code
including: hvc_driver->devfs_name = "hvc". Con-
sequently the patch file had to be updated to reflect
that the variable had been renamed, as it could not
have been applied to the updated version of the ker-
nel with the renamed variable. In contrast, semantic
patches abstract away from such details of the device-
specific code. For example, in the semantic patch of
Figure[ the assignment of the devfs_name field rep-
resents the affected structure using the metavariable E,
and thus the semantic patch can still be applied, in un-
modified form, to the kernel version with the renamed
variable.

Argument elimination Eliminating the argument
of the two target functions is a relatively simple trans-
formation described by two straightforward SmPL
rules, as shown in Figure[d], totalling 10 lines of SmPL
code. The semantic patch correctly updates 27 of the
37 relevant driver files with an average file size around
2600 lines and taking on average 4.50 seconds per file.
It is particularly interesting to note that the semantic
patch correctly updates the file ne2k-pci.c that was
not taken into account in the original patch intended
to update all calls to the functions pci_save_state
and pci_restore_state. This illustrates some of the
strength and robustness of semantic patches in situa-
tions where conflicts occur in collateral evolutions. The
remaining ten files contain features, such as compli-
cated macros or conditional compilation, that are not
yet supported by the prototype implementation.

5.4 Other experiments

All in all, we have implemented semantic patches
for 17 of the collateral evolutions derived from of
the 90 library evolutions considered in detail in our
previous study [22]. Figure summarizes the re-
sults. Note that some information is not available for
check_region, as there does not exist a single patch
with all of the manual collateral evolutions in this case.

Overall, these results show that semantic patches are
concise, particularly as compared to standard patch
files, and can be applied efficiently, with a typical cost
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Qe @@
- #include <linux/devfs_fs_kernel.h>

@@ @@
- TTY_DRIVER_NO_DEVFS
+ TTY_DRIVER_DYNAMIC_DEV

(¢[¢]

identifier ij;

Qe

- for (i=...; i< ...

(

3 i++)
{ devfs_mk_cdev(...); }

{ devfs_mk_bdev(...); }

{ devfs_mkdir(...); }

{ devfs_mk_dir(...); }

{ devfs_mk_symlink(...); }

{ devfs_remove(...); }

identifier x;

identifier fn;

Qe

- fn(x->devfs_name, ...);

Qe

expression E;
expression E2;
Qe

(

- E->devfs_name = E2;

|

- E->devfs_name[...] = E2;
)

Qe

expression X;

Qe

- X = devfs_register_tape(...);

Qe @@
- devfs_unregister_tape(X);

Figure 10: Semantic patch for removing devfs

Qe
expression E1, E2;
Qe

- pci_save_state(E1,E2)
+ pci_save_state(E1)

Qe
expression E1, E2;

ee

- pci_restore_state(E1,E2)
+ pci_restore_state(E1l)

Figure 11: Semantic patch for argument elimination
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per file of 2 seconds or less. For most of the examples,
over 80% of the affected drivers are updated correctly
and in many cases all are. In the most of the remain-
ing cases, some collateral evolutions sites are omitted,
because of limitations in our current transformation en-
gine, e.g. the lack of interprocedural analysis. Still, in
these cases, Coccinelle warns the maintainer of partial
matches. Finally, by comparing the manually updated
code with the code updated using the semantic patch
we have found a number of bugs in the manually up-
dated code.

6 Related Work

Influences The design of SmPL was influenced by a
number of sources. Foremost among these is our tar-
get domain, the world of Linux device drivers. Linux
programmers manipulate patches extensively, have de-
signed various tools around them [I8], and use its syn-
tax informally in e-mail to describe software evolutions.
This has encouraged us to consider the patch syntax as
a valid alternative to classical rewriting systems. Other
influences include the Structured Search and Replace
(SSR) facility of the IDEA development environment
from JetBrains [T9], which allows specifying patterns
using metavariables and provides some isomorphisms,
and the work of De Volder on JQuery [5], which uses
Prolog logic variables in a system for browsing source
code. Finally, we were inspired to base the semantics
of SmPL on control-flow graphs rather than abstract
syntax trees by the work of Lacey and de Moor on
formally specifying compiler optimizations. [14]

Other work Refactoring is a generic program trans-
formation that reorganizes the structure of a program
without changing its semantics [9]. Some of the collat-
eral evolutions in Linux drivers can be seen as refac-
torings. Refactorings, as originally designed, how-
ever, apply to the whole program, requiring access to
all usage sites of affected definitions. In the case of
Linux, however, the entire code base is not available,
as many drivers are developed outside the Linux source
tree. Henkel and Diwan have also observed that refac-
toring does not address the needs of evolution of li-
braries when the client code is not available to the li-
brary maintainer [I2]. Their tool, CatchUp, can record
some kinds of refactorings and replay them on client
files. Nevertheless, CatchUp is only implemented in
the Eclipse IDE and only handles a few of the fixed
set of refactorings provided by Eclipse. We have found
that many collateral evolutions are specific to the OS
API, and thus cannot be described as part of a generic
refactoring.

JunGL is a scripting language that allows program-
mers to implement new refactorings [25]. This lan-
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Affected Files | Avg File size | SP size | P size Max time | Avg time % Correct Bugs
LOC ‘ LOC ‘ SP size ‘ H H detected ‘
proc_info 19 2744 41 58 9.3s 2.7s 78.9% 3
check_region 42 3182 94 — 11.7s 2.28 14% —
mem_map_reserve 30 2705 16 87 1.3s 0.6s 96.6% 1
devfs 134 1711 120 111 11.9s 1.7s 65.2% -
pci_save_state 37 2660 10 127 2.8s 0.7s 73.0% 0
sched_b_events 16 1006 60 14 2.7s 1.4s 87.5% 0
sched_d_events 9 1167 54 14 2.9s 2.1s 100% 0
atomic_dec 4 1431 85 1.6 2.3s 1.5s 100% 4
tty_wakeup 62 2085 74 60 5.7s 1.6s 83.9% 16
acpi_hw_low_level_read 6 637 10 85 0.2s 0.1s 100% 0
tqueue 18 1014 64 10 6.3s 2.2s 100% 0
end_request 28 1618 5 343 0.7s 0.2s 50.0% 3
CLEAR_INTR 26 1475 6 112 0.4s 0.2s 65.4% 0
current_valid 4 1989 9 46 0.5s 0.3s 100% 0
usb_inc_dev_use 10 2214 10 60 0.5s 0.3s 50% 0
pnp_activate_dev 24 1490 5 68 2.3s 0.3s 91.7% 2
LockPage 61 942 25 107 0.9s 0.2s 73.8% 0

Figure 12: Other experiments. SP is the semantic patch and P is the corresponding patch file obtained from

the git repository

guage should be able to express collateral evolutions.
Nevertheless, a JunGL transformation rule does not
follow the structure of the source terms, and thus does
not make visually apparent the relationship between
the code fragments to be transformed. We have found
that this makes the provided examples difficult to read.
Furthermore, the language is in the spirit of ML, which
is not part of the standard toolbox of Linux developers.

A number of program transformation frameworks
have recently been proposed, targeting industrial-
strength languages such as C and Java. CIL [20] and
XTC [II] are essentially parsers that provide some
support for implementing abstract syntax tree traver-
sals. No program transformation abstractions, such
as pattern matching using repeated metavariables, are
currently provided. CIL also manages the C source
code in terms of a simpler intermediate representation.
Rewrite rules must be expressed in terms of this rep-
resentation rather than in terms of the code found in a
relevant driver. Stratego is a domain-specific language
for writing program transformations [26]. Convenient
pattern-matching and rule management strategies are
built in, implying that the programmer can specify
what transformations should occur without cluttering
the code with the implementation of transformation
mechanisms. Nevertheless, only a few program analy-
ses are provided. Any other analyses that are required,
such as control-flow analysis, have to be implemented
in the Stratego language. In our experience, this leads
to rules that are very complex for expressing even sim-
ple collateral evolutions.

Coady et al. have used Aspect-Oriented Program-
ming (AOP) to extend OS code with new features
[4, 8]. Nevertheless, AOP is targeted towards mod-
ularizing concerns rather than integrating them into a
monolithic source code. In the case of collateral evo-
lutions, our observations, e.g. of the limited use of
wrapper functions, suggest that Linux developers fa-

vor approaches that update the source code, resulting
in uniformity among driver implementations.

Fahndrich et al. have proposed “Compile-Time Re-
flection” as a means of matching over program struc-
tures and generating code from the matched infor-
mation [7]. The approach is targeted towards gener-
ating new module members rather than fine-grained
code transformation. Matching is restricted to match-
ing over declarations, such as class and field declara-
tions, rather than arbitrary code, as in our case. They
do provide facilitates for collecting sets of information
and generating code that explicitly manipulates these
sets, which can be awkward to implement in our purely
declarative framework. Nevertheless, we have not yet
seen the need for this functionality in device-driver col-
lateral evolutions.

A number of tools for bug-finding have recently been
targeted toward operating systems code, including the
work of Engler et al. [6] and Microsoft’s SDV [I]. These
tools generate reports of possible bugs that the driver
maintainer has to check and correct by hand. Never-
theless, there is no explicit direction on how to con-
struct the bug fix. To address this problem, Weimer
has proposed to infer automatically a possible bug fix
that both satisfies the verification rule that prompted
the bug report and is close to the code found in the orig-
inal source program [27]. While our semantic patches
are directed towards transformation, not bug finding,
they do show explicitly how to construct the new code.
Furthermore, when a collateral evolution has already
been done manually, it is possible to detect bugs by
applying the semantic patch to the old code and then
comparing the result to the updated code created by
hand.

Analysis tools in Linux. The Linux community
has recently begun using various tools to better analyze
C code. Sparse [23] is a library that, like a compiler
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front end, provides convenient access to the abstract
syntax tree and typing information of a C program.
This library has been used to implement some static
analyses targeting bug detection, building on annota-
tions added to variable declarations, in the spirit of
the familiar static and const. Smatch [24] is a sim-
ilar project and enables a programmer to write Perl
scripts to analyze C code. Both projects were inspired
by the work of Engler et al. [6] on automated bug find-
ing in operating systems code. These examples show
that the Linux community is open to the use of auto-
mated tools to improve code quality, particularly when
these tools build on the traditional areas of expertise
of Linux developers.

7 Conclusion

In this paper, we have proposed a language-based
framework, Coccinelle, for documenting and automat-
ing the collateral evolutions in device driver. To this
end, we have designed SmPL, a declarative language,
for expressing semantic patches and presented the de-
sign of a transformation engine for applying these se-
mantic patches to driver code. SmPL is based on the
patch syntax familiar to Linux developers, but enables
transformations to be expressed in a more general form.
The transformation engine is defined in terms of con-
trol flow rather than syntactic structure and is config-
urable by a collection of isomorphisms, so that a single
semantic patch can be applied to drivers exhibiting a
variety of coding styles.

Our first experiments with the Coccinelle prototype
have shown very promising results. We have been able
to implement concise semantic patches for 17 collat-
eral evolutions, illustrating problems of mistakes, mis-
understanding, and conflicts. Each of these collateral
evolutions affects, on average, more than 20 files. In
most cases, the running time of Coccinelle is less than
a second per file. With few exceptions the semantic
patches have been successfully applied to the vast ma-
jority of the relevant files. Coccinelle has even identi-
fied code sites that were not correctly updated in the
original patch(es). This merely emphasizes the need for
improved tool support and more comprehensive docu-
mentation of collateral evolutions.
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