Skip to Main content Skip to Navigation
New interface
Conference papers

Finding total unimodularity in optimization problems solved by linear programs

Abstract : A popular approach in combinatorial optimization is to model problems as integer linear programs. Ideally, the relaxed linear program would have only integer solutions, which happens for instance when the constraint matrix is totally unimodular. Still, sometimes it is possible to build an integer solution with same cost from the fractional solution. Examples are two scheduling problems and the single disk prefetching/caching problem. We show that problems such as the three previously mentioned can be separated into two subproblems: (1) finding an optimal feasible set of slots, and (2) assigning the jobs or pages to the slots. It is straigthforward to show that the latter can be solved greedily. We are able to solve the former with a totally unimodular linear program, from which we obtain simple combinatorial algorithms with improved worst case running time.
Document type :
Conference papers
Complete list of metadata
Contributor : Christoph Dürr Connect in order to contact the contributor
Submitted on : Wednesday, January 10, 2007 - 4:10:35 PM
Last modification on : Thursday, March 5, 2020 - 6:21:23 PM


  • HAL Id : inria-00123679, version 1



Christoph Dürr, Mathilde Hurand. Finding total unimodularity in optimization problems solved by linear programs. Proc. of the 14th Annual European Symposium on Algorithms (ESA)},, Sep 2006, Zürich, pp.315-326. ⟨inria-00123679⟩



Record views