Normal Cone Approximation and Offset Shape Isotopy

Abstract : This work adresses the problem of the approximation of the normals of the offsets of general compact sets in euclidean spaces. It is proven that for general sampling conditions, it is possible to approximate the gradient vector field of the distance to general compact sets. These conditions involve the $\mu$-reach of the compact set, a recently introduced notion of feature size. As a consequence, we provide a sampling condition that is sufficient to ensure the correctness up to isotopy of a reconstruction given by an offset of the sampling. We also provide a notion of normal cone to general compact sets which is stable under perturbation.
Type de document :
Rapport
[Research Report] RR-6100, INRIA. 2007, pp.21
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00124825
Contributeur : Frédéric Chazal <>
Soumis le : samedi 20 janvier 2007 - 10:18:04
Dernière modification le : vendredi 23 février 2018 - 14:20:08
Document(s) archivé(s) le : lundi 27 juin 2011 - 15:35:58

Fichiers

ApproxGradRRNum.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00124825, version 2

Collections

Citation

Frédéric Chazal, David Cohen-Steiner, André Lieutier. Normal Cone Approximation and Offset Shape Isotopy. [Research Report] RR-6100, INRIA. 2007, pp.21. 〈inria-00124825v2〉

Partager

Métriques

Consultations de la notice

292

Téléchargements de fichiers

150