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Approximation des cônes normaux et isotopie des offsets de
formes

Résumé : Ce travail aborde le problème de l’approximation des offsets des sous-ensembles compacts
des espaces euclidiens. On prouve que sous des conditions d’échantillonnage générales, il est
possible d’approximer le gradient de la fonction distance à un ensemble compact. Ces conditions la
notion récemment introduite de µ-reach. Ce résultat permet de fournir une condition d’échantillonnage
de formes suffisante pour assurer que la reconstruction obtenue en considérant un offset de l’échantillon
est isotope à la forme considérée. On introduit également une notion de cone normal stable par
perturbation des compacts.

Mots-clés : Fonction distance, Axe médian, Approximation géométrique, cône normal
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1 Introduction

Motivation. Let K ′ be a finite set of points measured, with some accuracy, on a physical object
K. Given K ′ as input, is it possible to infer some reliable information on first order properties
such as tangent planes or sharp edges, of the boundary of K? We consider here the case when the
approximation K ′ of K has an error bounded for the Hausdorff distance. In other words we only
assume that dH(K, K ′) < ε which means that any point of K ′ lies within a distance ε of some point
of K and symmetrically, any point of K lies within a distance ε of a point of K ′. The question is of
primary interest in surface reconstruction applications. More generally, in the context of geometric
processing, we would like to be able to extrapolate to a large class of non smooth compact sets,
including finite points samples and meshes, the usual notions of tangent plane or normal cones.

Previous work on smooth manifolds. When K ′ is sampled exactly: K ′ ⊂ K, on a smooth
boundary , it has been proved [2, 3], that the normals to K can be estimated from the poles : for
each point sample q ∈ K ′, its pole is the Voronoi vertex farthest from q on the boundary of the
Voronoi cell of q. In [14] this Voronoi based approach has been extended to the approximation of
normals and feature lines from noisy sampling of a smooth manifold by considering only the poles
corresponding to sufficiently large Delaunay balls.

Reconstruction of “sufficiently regular” non-smooth objects from sampling. In [7, 5], the
authors have considered the problem of recovering the topology of a compact set K given a sampling
K ′ without any smoothness assumption on K.
In the same manner as the resolution power of a microscope constraints the minimal size of observ-
able details, any topological feature (such as a connected component or a tunnel for example) of a
compact set K which would be small with respect to ε can certainly not be “reliability detected”
from the knowledge of a sample K ′ with Hausdorff distance bounded by ε. A realistic measure of
the topology should consider only the “topological information observable at the scale ε”: in the
context of [7, 5], this has lead to consider topological features which are stable under sufficiently
large offsets. Note that topological persistence [9] is an algebraic counterpart of this notion of stable
topology.
The problem of the reconstruction, from a set of measure points, of a geometric numerical model
carrying the same topology as the sampled object has been addressed previously for smooth man-
ifolds ([1, 22]), for which the sampling condition is related to the distance to the medial axis of
K. The main contribution of [5] is to give a sampling condition for non-smooth objects, through
the notion of critical function which encodes the regularity of the compact set boundary at different
“scales”.
When it is reasonable to assume some regularity conditions on the object’s boundary, which can
be formally expressed through lower bounds on the critical function, it is possible to recover the
object’s topology from a sufficiently dense and accurate sampling. In contrast, if we make no as-
sumption about the regularity of the measured object K, it is still possible to decide some guaranteed
topological information, not about the object K itself of course, but on offsets of K.
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4 Chazal & Cohen-Steiner & Lieutier

Contributions. The aim of the present work is to apply the previous approach, which has been
successful for the retrieval of topological information, to the determination, beyond the topology, of
generalized tangency informations, which include tangents planes or sharp edges detection. Note
that classical “exact” definitions of first order geometric informations such as tangent planes on sur-
faces, are not preserved in general by Hausdorff approximations. In other words, they are in general
broken by arbitrary small perturbations (small for Hausdorff distance) of the object boundary. For
example, a finite set sampled “near” the boundary of a smooth shape “contains” some information
about the shape boundary tangency, but has no tangent plane in the usual sense. Still if one consider
a d−offset of the point sample, that is a union of spheres of radius d centered on the points, the
tangent planes to the offset boundary may bring some meaningful tangency informations about the
initial shape. Following this simple idea and using properties of the distance function to compact
sets developed in [5] we propose to introduce “stable” quantities that extend usual exact first order
differential quantities. These informations are preserved by small Hausdorff distance perturbation
of the object: from this perspective, they can be “really observed” and carry more reality than their
classical “exact and ideal” counterpart. These stable informations are generalization of first order
differential properties of surfaces. They apply to a large class of compact sets, which suggest appli-
cations for meshes and point clouds modeling. For smooth manifolds, our quantities coincide, in the
limit, with usual definitions of first order tangent affine manifold.

Outline. Section 2 gives the necessary background notions on the distance function and its gener-
alized gradient.
Section 3 and in particular theorem 3.2 gives a first stability property of the generalized gradient with
respect to perturbations of the compact sets bounded in Hausdorff distance. This property bounds
the maximal angular deviation between the gradient of the distance functions to two compact sets K
and K ′. An important consequence of this theorem is theorem 4.2 which asserts the isotopy between
the offsets of the compact set and its sampling with almost the same sampling conditions as in the
main theorem in [5].
Section 5 introduces a stability theorem on the Clarke Gradient of the distance function. The stable
quantity is a kind of “interval Clarke’s Gradient”: to be more precise, it is the convex hull of the
union of the values taken by the Clarke gradient in a ball. From this stability theorem, one introduces
(section 6), a normal cone at a given scale, which is a stable generalization of first order differential
properties, defined at any point on or near a compact set.

2 Definitions and background on Distance Functions

We are using the following notations in the sequel of the paper. Given X ⊂ R
n, one denotes by

Xc the complement of X , by X its closure and by ∂X the boundary of X . Given A ⊂ R
n, co(A)

denotes the convex hull of A.

The distance function RK of a compact subset K of R
n associates to each point x ∈ R

n its distance
to K:

x 7→ RK(x) = min
y∈K

d(x, y)

INRIA



Normal Cone Approximation and Offset Shape Isotopy 5

where d(x, y) denotes the euclidean distance between x and y. Conversely, this function character-
izes completely the compact set K since K = {x ∈ R

n |RK(x) = 0}. Note that RK is 1-Lipschitz.
The Hausdorff distance dH(K, K ′) between two compact sets K and K ′ in R

n is the minimum
number r such that K ⊂ K ′

r and K ′ ⊂ Kr. It is not difficult to check that the Hausdorff distance
between two compact sets is the maximum difference between the distance functions associated with
the compact sets:

dH(K, K ′) = sup
x∈Rn

|RK(x) − RK′(x)|

Given K and K ′ be two homeomorphic compact subset of R
n, let

F = {f : K → K ′ : f is an homeomorphism}

be the set of all homeomorphisms between K and K ′. Given such a homeomorphism f ,
supx∈K d(x, f(x)) is the maximum displacement of the points of K by f . The Fréchet distance
between K and K ′ is the infimum of this maximum displacement among all the homeomorphisms.
It is defined by

dF (K, K ′) = inf
f∈F

sup
x∈K

d(x, f(x)).

It is a classical exercise to check that the Fréchet distance satisfies the properties defining a distance
and that one always has dH (S, S′) ≤ dF (S, S′).
Given a compact subset K of R

n, the medial axis M(K) of K is the set of points in R
n\K that have

at least two closest points on K. The minimal distance between K and M(K) is called, according
to Federer, the reach of K and is denoted reach(K).

2.1 The gradient and its flow.

The distance function RK is not differentiable on M(K). However, it is possible [21] to define a
generalized gradient vector field ∇K : R

n → R
n that coincides with the usual gradient of RK at

points where RK is differentiable. For any point x ∈ R
n \K, we denote by ΓK(x) the set of points

in K closest to x (figure 1):

ΓK(x) = {y ∈ K | d(x, y) = d(x, K)}

Note that ΓK(x) is a non empty compact set. The function x 7→ ΓK(x) is upper semi-continuous
(see [21] Lemma 4.6, also [11] 2.1.4 for the same definition of semi-continuity p.29):

∀x, ∀r > 0, ∃α > 0, ‖y − x‖ ≤ α ⇒ ΓK(y) ⊂ {z : d(z, ΓK(x)) ≤ r} (1)

There is a unique smallest closed ball σK(x) enclosing ΓK(x) (cf. figure 1). We denote by θK(x)
the center of σK(x) and by FK(x) its radius. θK(x) can equivalently be defined as the point on the
convex hull of ΓK(x) nearest to x. For x ∈ R

n \ K, the generalized gradient ∇K(x) is defined as
follows:

∇K(x) =
x − θK(x)

RK(x)

RR n° 6100
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x

K

ΓK(x)

σK(x)

θK(x)

FK(x)
RK(x)

∇K(x)

1

Figure 1: A 2-dimensional example with 2 closest points.

It is natural to set ∇K(x) = 0 for x ∈ K. For x ∈ R
n \ K, one has the following relation [21]:

‖∇K(x)‖2 = 1 − FK(x)2

RK(x)2

Equivalently, ||∇K(x)|| is the cosine of the (half) angle of the smallest cone with apex x that contains
ΓK(x). As an immediate consequence, one has the following lemma.

Lemma 2.1 Let K ⊂ R
n be a compact set. For any x ∈ R

n,

‖∇K(x)‖ ≥ sup
y,y′∈ΓK(x)

cos
( ~xy, ~xy′)

2

The map x 7→ ‖∇K(x)‖ is lower semicontinuous [21]. Although ∇K is not continuous, it is
shown in [21] that Euler schemes using ∇K converges uniformly, when the integration step de-
creases, toward a continuous flow C : R

+ × R
n → R

n. The integral line of this flow starting at
a point x ∈ R

n can be parameterized by arc length s 7→ C(t(s), x). It is possible to express the
value of RK at the point C(t(l), x) by integration along the integral line with length l downstream
the point x:

RK (C(t(l), x)) = RK(x) +

∫ l

0

‖∇K(C(t(s), x)‖ds (2)

INRIA
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It is proved in [21] that the functions FK and RK are increasing along the trajectories of the flow.
In the particular case where K is a finite set, various notions of flows related to this one have been
independently introduced by H. Edelsbrunner [15], J. Giesen and al. [18] and R. Chaine [4] using
Voronoï diagrams.

2.2 Critical point theory for distance functions.

The critical points of RK are defined as the points x for which ∇K(x) = 0. Equivalently, a point x is
a critical point if and only if it lies in the convex hull of ΓK(x). When K is finite, this last definition
means that critical points are precisely the intersections of Delaunay k-dimensional simplices with
their dual (n− k)-dimensional Voronoï facets [18]. Note that this notion of critical point is the same
as the one considered in the setting of non smooth analysis [11] and Riemannian geometry [10, 19].
The topology of the offsets R−1

K (a), a > 0 of a compact set K are closely related to the critical
values of RK . The next proposition shows that it can change only at critical values.

Theorem 2.2 (isotopy lemma) [19] If 0 < a < b are such that R−1
K ([a, b]) does not contain any

critical point of RK , then all the level sets R−1
K (d), d ∈ [a, b], are isotopic topological manifolds

and R−1
K ([a, b]) is homeomorphic to R−1

K (a) × [a, b].

Recall that an isotopy between two manifolds S and S ′ is a continuous map F : S× [0, 1] → R
n

such that F (., 0) is the identity of S, F (S, 1) = S ′, and for each t ∈ [0, 1], F (., t) is a homeomor-
phism onto its image. An ambient isotopy between S and S ′ is a continuous map F : R

n × [0, 1] →
R

n such that F (., 0) is the identity of R
n, F (S, 1) = S′, and for each t ∈ [0, 1], F (., t) is a home-

omorphism of R
n. Restricting an ambient isotopy between S and S ′ to S × [0, 1] thus yields an

isotopy between them. It is actually true that if there exists an isotopy between S and S ′, then there
is an ambient isotopy between them [Hi].

The weak feature size of K, or wfs(K), is defined as the infimum of the positive critical values
of RK . Equivalently it is the minimum distance between K and the set of critical points of RK .
Notice that wfs(K) may be equal to 0. Nevertheless, wfs(K) is non zero for a large class of compact
sets including polyhedrons and piecewise analytic sets (see [6, 7]). As an immediate consequence
of previous proposition, one deduces that the distance level sets R−1

K (d) are all isotopic for 0 < d <
wfs(K).

2.3 The critical function and the µ-reach

The results of this paper rely strongly on the notions of µ-critical point, critical function and µ-reach,
introduced in [5].

Definition 2.3 (µ-critical point) A µ-critical point x of the compact set K is a point at which the
norm of the gradient ∇K does not exceed µ: ‖∇K(x)‖ ≤ µ.

The most important property of µ-critical points is their stability with respect to Hausdorff per-
turbations of K proved in [5].

RR n° 6100



8 Chazal & Cohen-Steiner & Lieutier

Theorem 2.4 (critical point stability theorem) Let K and K ′ be two compact subsets of R
n and

dH(K, K ′) ≤ ε. For any µ-critical point x of K, there is a (2
√

ε/RK(x) + µ)-critical point of K ′

at distance at most 2
√

εRK(x) from x.

Definition 2.5 (critical function) Given a compact set K ⊂ R
n, its critical function χK : (0, +∞) →

R+ is the real function defined by:

χK(d) = inf
R−1

K
(d)

||∇K ||

Figure 2 shows the respective critical functions of a square in 3-space and of a sampling of it. We
note that the infimum can be replaced by a minimum since ||∇K || is lower semi-continuous and
R−1

K (d) is compact. It also results from the compactness of R−1
K (d) that d 7→ χK(d) is lower

semi-continuous. The critical function is in some sense “stable” with respect to small (measured by
Hausdorff distance) perturbations of a compact set, precisely [5]:

Theorem 2.6 (critical function stability theorem) Let K and K ′ be two compact subsets of R
n

and dH(K, K ′) ≤ ε. For all d ≥ 0 , we have:

inf{χK′(u) |u ∈ I(d, ε)} ≤ χK(d) + 2

√

ε

d

where I(d, ε) = [d − ε, d + 2χK(d)
√

εd + 3ε]

Theorem 2.6 claim can be read as χK(d) ≥ inf{χK′(u) |u ∈ I(d, ε)} − 2
√

ε
d and says that the

knowledge of a lower bound on the critical function of a compact set K ′ gives a lower bound on
the critical function of “nearby” (for Hausdorff distance) compact sets K. In particular, if a set K ′

of measured points is known to lie within some Hausdorff distance of a physical object represented
by the unknown compact set K, the critical function of K ′ gives, by theorem 2.6, a lower bound on
the critical function of the partially known physical object K. Note that as explained in [5], starting
from the Voronoi complex of the sample, the computation of the critical function of a finite sample
is straightforward. This stability of the critical function with respect to small perturbations of the
object in Hausdorff distance makes it realistic with respect to physical interactions − it does not rely
on unmeasurable quantities − but also robust with respect to numerical computations because, by
backward error analysis, the impact of rounding errors on the evaluation of the critical function can
be controlled.
The µ-reach of a compact set K is the maximal offset value d for which χK(d′) ≥ µ for d′ < d.
More precisely, it is defined by:

rµ(K) = inf{d | χK(d) < µ}

Closely related to the µ-reach and the critical point stability theorem is the following result [5]
that will be used in section 4.

Theorem 2.7 (critical values separation theorem) Let K and K ′ be two compact subsets of R
n,

ε be the Hausdorff distance between K and K ′, and µ be a non-negative number. The distance
function RK′ has no critical values in the interval ]4ε/µ2 , rµ(K) − 3ε[.

INRIA
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Figure 2: Critical function of a square embedded in R
3 with side length 50 (left), and of a sampling of that

square (right).

These previous notions allow to define a sampling condition for compact sets that lead to a
reconstruction theorem [5]. Given two non-negative real numbers κ and µ, we say that a compact
K ⊂ R

n is a (κ, µ)-approximation of a compact K ′ ⊂ R
n if the Hausdorff distance between K and

K ′ does not exceed κ times the µ-reach of K ′.

Theorem 2.8 (Reconstruction theorem) Let K ′ ⊂ R
n be a (κ, µ)-approximation of a compact set

K. If

κ <
µ2

5µ2 + 12

then the complement of R′−1
K ([0, α]) is homotopy equivalent to the complement of K, and R′−1

K ([0, α])
is homotopy equivalent to R−1

K ([0, η]) for sufficiently small η, provided that

4dH(K, K ′)

µ2
≤ α < rµ(K) − 3dH(K, K ′)

In the following of the paper, we prove that under similar condition, one can improve this result
by comparing the topology of the level sets of RK and RK′ up to isotopy.

3 A first stability property of the gradient

In this section one deduces results on the stability of the gradient of distance functions from the
stability theorem for µ-critical points. In the following, given two compact sets K and K ′, for any
x ∈ R

n, one denotes by Γ̃K′(x) the projection of ΓK′(x) on the sphere S(x, RK(x)): ỹ ∈ Γ̃K′(x)
if and only if there exists y ∈ ΓK′(x) such that ỹ is the intersection of the half-line [xy) with the
sphere S(x, RK(x)).

Theorem 3.1 Let K, K ′ ⊂ R
n be two compact sets and let ε > 0 be such that dH(K, K ′) < ε. If

x ∈ R
n is a µ-critical point of K ′′

x = K ∪ Γ̃K′(x) then there exists a (µ + 2
√

2ε
RK(x))-critical point

of K at distance at most 2
√

2εRK(x) from x.

RR n° 6100



10 Chazal & Cohen-Steiner & Lieutier

PROOF. Let x ∈ R
n and let K ′′ := K ′′

x . Since dH(K, K ′) < ε, one has dH (K, K ′′) < 2ε. One
obtains immediately from the critical point stability theorem applied to K, K ′′ and x that there exists

a (µ + 2
√

2ε
RK′′ (x))-critical point of K at distance at most 2

√

2εRK′′(x) from x. It suffices to note

that RK(x) = RK′′(x) to conclude the proof.

As a consequence of theorem 3.1, one obtains a bound on the angle between the vector fields
∇K and ∇K′ of two near compact sets.

Theorem 3.2 Let K, K ′ ⊂ R
n be two compact sets and let ε > 0 be such that dH(K, K ′) < ε.

Given µ > 0, if x ∈ R
n is such that ‖∇K(y)‖ > µ for any y ∈ B(x, 2

√

2εRK(x)), then for any
y ∈ ΓK(x) and any y′ ∈ ΓK′(x),

cos
( ~xy, ~xy′)

2
≥ µ − 2

√

2ε

RK(x)
(3)

Moreover, if K ′′
x = K ∪ Γ̃K′(x), then

‖∇K′′

x
(x)‖ ≥ µ − 2

√

2ε

RK(x)
(4)

PROOF. Let θ be the angle between ~xy and ~xy′ and let ỹ′ ∈ Γ̃K′(x) be the projection of y′ on the
sphere S(x, RK(x)). Since the convex hull of y and ỹ′ is contained in the convex hull of ΓK(x) ∪
Γ̃K′(x), x is a cos θ

2 -critical point of K ′′
x = K ∪ Γ̃K′(x) (see figure 3). The first inequality of

the theorem follows immediately from critical point stability theorem. Now, remark that this proof
remains valid if y and y′ are any two points in the convex hull of ΓK(x) ∪ Γ̃K′(x). The second
inequality thus follows from lemma 2.1.

Recall that the direction of the vector ∇K(x) (resp. ∇K′(x)) is contained in the convex hull
of the directions defined by the segments joining x to the points of ΓK(x) (resp. ΓK′(x)). So, the
previous theorem immediately leads to the following result.

corollary 3.3 Let K, K ′ ⊂ R
n be two compact sets and let ε > 0 be such that dH(K, K ′) < ε.

Given µ > 0, if x ∈ R
n is such that ‖∇K(y)‖ > µ for any y ∈ B(x, 2

√

2εRK(x)), then

cos
(∇K(x),∇K′ (x))

2
≥ µ − 2

√

2ε

RK(x)
(5)

The bound of the corollary is tight: there are some examples where the cosine of angle between
∇K(x) and ∇K′(x) is of order 1 − O(

√
ε). Let K be the circle of center O ∈ R

2 and radius 1
and let O′ be a point such that d(O, O′) = 2

√
ε. The circle of center O′ and radius (1 − 2

√
ε + ε)

meets K in two points A and B. Let K ′ be the boundary of the union of the disc of center O and

INRIA
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RK(x)

∇K′′(x)

ΓK(x)

Γ̃K′(x)
θ

1
X
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ỹ′

Figure 3: Proof of theorem 3.2

radius 1 with angular area of radius 1 + ε and delimited by the half-lines OA and OB (see figure 4).
The vector field ∇K is continuous in a neighborhood of O′ and ∇K(O′) is collinear to O′O. Along
the segment [O′A], ∇K′ is collinear to AO′ and makes an angle β with OO′. An easy computation
leads to cosβ = 1 − 1

2

√
ε + O(ε). As a consequence, if x ∈ [O′A] is chosen sufficiently near from

O′, then it satisfies the hypothesis of the previous theorem and

cos
(∇K(x),∇K′ (x))

2
= 1 − O(

√

ε

RK(x)
)

4 Isotopy between offsets

We are now able to use the stability properties of the gradient established in the previous section
to compare the topology of distance level sets of two near compact sets. Let K, K ′ ⊂ R

n be two
compact sets and let ε > 0 be such that dH(K, K ′) < ε.

Lemma 4.1 Let a > 0 be such that for any x ∈ R−1
K ([a − ε, a + ε]), ‖∇K′′

x
(x)‖ 6= 0 where

K ′′
x = K ∪ Γ̃K′(x). Then R−1

K (a) and R−1
K′ (a) are isotopic hypersurfaces. Moreover, if

ν = inf{‖∇K′′

x
(x)‖ : x ∈ R−1

K ([a − ε, a + ε])} > 0

then the Frechet distance between R−1
K (a) and R−1

K′ (a) is bounded by ε
ν .

Note that the condition of the lemma is equivalent to the fact that 0 is not contained in the convex
hull of the union of the Clarke gradients of RK′ and RK , or equivalently x 6∈ co(ΓK(x) ∪ Γ̃K′(x)).

RR n° 6100



12 Chazal & Cohen-Steiner & Lieutier

PSfrag replacements 1
1 − 2

√

ε + ε

2
√

ε

K
′

O O
′

A

B

εβ

Figure 4: An example showing the tightness of the bound of corollary 3.3

PROOF. The proof of the lemma is based upon a classical techniques in differential geometry: one
constructs a C∞ vector field which is “transverse” to the level sets of RK and RK′ in A := R−1

K ([[a−
ε, a + ε]) and that allows to realize an isotopy between R−1

K (a) and R−1
K′ (a).

Let x ∈ A and let v(x) = ∇K′′

x
(x) 6= 0. Since y → ΓK(y) and y → ΓK′(y) are upper

semi-continuous (see [11]2.1.4 for a definition), there exist δ0, δ1 > 0 such that

RK(y + t
v(x)

‖v(x)‖ ) ≥ RK(y) + t
‖v(x)‖

2

RK′(y + t
v(x)

‖v(x)‖ ) ≥ RK′(y) + t
‖v(x)‖

2

for any y ∈ B(x, δ0) and any t ∈ (−δ0, δ0). Since A is compact, it is covered by a finite set of balls
B(xi, δ0(xi)), i = 1 · · · p. Using a C∞ partition of unity associated to this covering and the constant
vector field v(xi) on each B(xi, δ0(xi)), one constructs a C∞ vector field X on A such that for any
trajectory φ(x, t) of X in A, one has

RK(φ(x, t)) ≥ RK(x) + tν (6)

RK′(φ(x, t)) ≥ RK′(x) + tν (7)

with ν = mini=1···p
‖v(xi)‖

2 . It follows immediately that any trajectory t → φ(x, t) issued from
R−1

K (a − ε) meets R−1
K (a + ε) and RK′ is strictly increasing along this trajectory. Moreover, since

‖v(xi)‖ < 1 for all i = 1, · · · , p, ‖X‖ < 1 and the length of the trajectory between x and φ(x, t) is
bounded by |t|. It follows from inequality (7) that the length of any trajectory between R−1

K (a) and
R−1

K (a − ε) or R−1
K (a + ε) is bounded by ε

ν .
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PSfrag replacements

R
−1

K
(a − ε)

R−1
K (a + ε)

R−1
K′ (a)

X

Figure 5: Proof of lemma 2

Now, since ‖RK−RK′‖ < ε, RK′ is smaller than a on R−1
K (a−ε) and bigger than a on R−1

K (a+
ε) (see figure 5). So, R−1

K′ (a) is contained in A and it separates the two boundary components
R−1

K (a−ε) and R−1
K (a+ε) of A. As a consequence for each x ∈ R−1

K (a), the trajectory t → φ(x, t)
intersects R−1

K′ (a) in exactly one point f(x) = φ(x, tx) (note that tx may be negative). The map
x → f(x) defines a continuous bijection between R−1

K (a) and R−1
K′ (a) and the flow of X allows to

define an isotopy between these two hypersurfaces. The distance between x and f(x) is bounded
by the length of the trajectory between x and f(x). So, d(x, f(x)) < ε

ν and the Frechet distance
between R−1

K (a) and R−1
K′ (a) is bounded by ε

ν .

The following results provide a sufficient condition involving the critical function for two com-
pact sets to have isotopic offsets.

Theorem 4.2 (level sets isotopy theorem) Let K, K ′ ⊂ R
n be two compact sets such that dH(K, K ′) <

ε for some ε > 0. If a > 0 is such that χK > γ +2
√

2ε
a−ε on the interval [a−ε−2

√

2ε(a + ε), a+

ε + 2
√

2ε(a + ε)] for some constant γ > 0 then R−1
K (a) and R−1

K′ (a) are isotopic hypersurfaces.
Moreover the Frechet distance between these two hypersurfaces is bounded by ε

γ .

PROOF. From lemma 4.1, one just has to show that x 6∈ co(ΓK(x) ∪ Γ̃K′(x)) for any x ∈ A =
R−1

K ([a − ε, a + ε]). Suppose this is not the case for some x ∈ A. It follows from theorem 3.1

that there exists a (2
√

2ε
RK(x) )-critical point y of K at distance at most 2

√

2εRK(x) from x. Since

a− ε ≤ RK(x) ≤ a + ε, y is a (2
√

2ε
a−ε )-critical point of K at distance at most 2

√

2ε(a + ε) from

RR n° 6100



14 Chazal & Cohen-Steiner & Lieutier

x. Moreover

RK(y) ≤ RK(x) + 2
√

2ε(a + ε)

≤ a + ε + 2
√

2ε(a + ε)

and in the same way RK(y) ≥ a − ε − 2
√

2ε(a + ε). These two last inequalities contradict the
hypothesis of the theorem. The second part of the theorem follows from the second part of the
lemma 4.1 and the second part of the theorem 3.2.

The previous theorem can be restated in terms of (κ, µ)-approximations to give the following
result.

Theorem 4.3 (isotopic reconstruction theorem) Let K ⊂ R
n be a compact set such that rµ(K) >

0 for some µ > 0. Let K ′ be a (κ, µ)-approximation of K where

κ < min

(√
5

2
− 1,

µ2

16 + 2µ2

)

and let d, d′ be such that

0 < d < wfs(K) and
4κrµ

µ2
≤ d′ < rµ(K) − 3κrµ

Then the level set R−1
K′ (d′) is isotopic to the level set R−1

K (d).

PROOF. Let rµ = rµ(K), a = rµ/2 and ε = κrµ. It follows from isotopy lemma 2.2 that R−1
K (d) is

isotopic to R−1
K (a). It follows from the separation of the critical values theorem and from the isotopy

lemma 2.2 that R−1
K′ (d′) is isotopic to R−1

K′ (a). Using that χK > µ on (0, rµ) and κ < µ2

16+2µ2 one
easily checks that

χK > 2

√

2ε

a − ε

on the interval (0, rµ). Theorem 4.2 allow to conclude the proof provided that the interval with
center a and half-length ε + 2

√

2ε(a + ε) is included in the interval (0, rµ). This last condition is
equivalent to

κrµ + 2

√

2κrµ(
rµ

2
+ κrµ) <

rµ

2

or, after division by rµ,
2κ + 4

√

κ(1 + 2κ) < 1

This is satisfied as soon as κ <
√

5
2 − 1.
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5 A second stability property of the gradient

In this section we consider the Clarke’s generalized gradient ∂RK of the distance function [11] and
prove a stability theorem of ∂RK with respect to Hausdorff distance perturbation of the compact
K. Because ∂RK carry more information than the generalized gradient ∇K , we expect this stability
property to allow to “extract” more geometric informations about a compact set K from a Hausdorff
approximation of it.
For a set E and a number r ≥ 0, we denote by Er the set Er = {z : d(z, E) ≤ r}.

5.1 Clarke’s gradient of the distance function

Instead of the usual definition of Clarke gradient we use the following characterization. For f :
R

n → R we denote by Ωf the set of point where f fails to be differentiable and, for x /∈ Ωf , we
denote ∂f

∂X (x) the usual gradient of the function f at x.

Theorem 5.1 (F.H. Clarke, adapted from [11], section 2.5.1) Let f be Lipschitz near x, then:

∂f(x) = co

{

lim
xi→x

∂f

∂X
(xi) , xi /∈ Ωf

}

Rephrasing [11], the above characterization means the following. Consider any sequence xi con-
verging to x with f differentiable at each xi and such that the usual gradient ∂f

∂X (xi) converges; then
∂f(x) is the convex hull of such limit points.
([11], section 2.5.6) gives a characterization of ∂RK(x) for x ∈ K. However, because our stability
property is meaningful for x /∈ K only, we first prove the following characterization of ∂RK for
x ∈ Kc.

For x ∈ Kc and ρ > 0 we introduce the notations G̃K(x), GK(x) and GK(x, ρ):

G̃K(x) =

{

x − z

RK(x)
, z ∈ ΓK(x)

}

GK(x) = co
(

G̃K(x)
)

GK(x, ρ) = co





⋃

‖y−x‖≤ρ

GK(y)





Lemma 5.2 If x ∈ Kc, one has:
∂RK(x) = GK(x)

PROOF.
We first prove GK(x) ⊂ ∂RK(x). For that we use the Lemma 5.3 below.

Lemma 5.3 If x ∈ Kc and v ∈ G̃K(x) then for any z on the open line segment (x, x − RK(x)v),
RK is differentiable at z and:

∂RK

∂X
(z) = v

RR n° 6100



16 Chazal & Cohen-Steiner & Lieutier

PROOF. [proof of Lemma 5.3] From the definition of G̃K(x), one has v ∈ G̃K(x) ⇒ xv = x −
RK(x)v ∈ ΓK(x). Let us denote by B(x,r) and B◦

(x,r) respectively the closed and open balls
centered at x with radius r and let Rmax be such that K ⊂ B(x,Rmax). We consider the two compact
sets K+ = {xv} and K− = B(x,Rmax) \ B◦

(x,RK(x)) one has:

K+ ⊂ K ⊂ K−

which entails:
RK− ≤ RK ≤ RK+ (8)

On another hand, RK− and RK+ have simple radial expressions which gives us that:

RK−(z) = RK(z) = RK+(z) (9)

RK− and RK+ are differentiable in z and an easy computation shows that

∂RK−

∂X
(z) =

∂RK+

∂X
(z) = v

this together with equations (8) and (9) entails that RK is differentiable at z and:

∂RK

∂X
(z) = v

Now let v ∈ G̃K(x). Lemma 5.3 entails that, for any positive integer number n, there exists xn ∈
B(x, 1

n
) such that:

∂RK

∂X
(xn) = v

this together with the characterization of theorem 5.1 implies that v ∈ ∂RK(x). We have proved
that G̃K(x) ⊂ ∂RK(x) and, because ∂RK(x) is convex, it entails GK(x) ⊂ ∂RK(x).

We prove now ∂RK(x) ⊂ GK(x). As seen in section 2.1, equation (1), the function x 7→ ΓK(x)
is upper semi-continuous. When RK(x) > 0, GK(x) is the image of ΓK(x) by a simple continuous
transformation which allows easily to derive the following Lemma.

Lemma 5.4 GK is upper semi-continuous in Kc, in other words:

∀x ∈ Kc, ∀r > 0, ∃α > 0, ‖y − x‖ ≤ α ⇒ GK(y) ⊂ GK(x)r

Let us consider a vector v such that there exists a sequence of points xi which as in theorem 5.1, are
such that limn→∞ xi = x, RK is differentiable at each xi and

lim
n→∞

∂RK

∂X
(xi) = v (10)

INRIA
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Let us consider ε > 0. From Lemma 5.4, there is α > 0 such that:

‖y − x‖ ≤ α ⇒ GK(y) ⊂ GK(x)
ε
2 (11)

From (10), there is xk such that:

‖xk − x‖ ≤ α and

∥

∥

∥

∥

∂RK

∂X
(xk) − v

∥

∥

∥

∥

<
ε

2
(12)

From ([11] 2.5.4) RK differentiable at xk entails that ΓK(xk) is a single point and, if we denote
{yk} = ΓK(xk) and vk = xk−yk

RK(xk) one has vk = ∂RK

∂X (xk), which gives, with (12):

‖vk − v‖ <
ε

2

From another hand one has from (11):

{vk} = GK(xk) ⊂ GK(x)
ε
2

which entails:
{v} ⊂ GK(x)ε

Because this inclusion holds for any ε > 0 and GK(x) is closed, it entails

v ∈ GK(x)

Because GK(x) is convex and ∂RK(x) is defined in theorem 5.1 as the convex hull of all such v,
we get ∂RK(x) ⊂ GK(x).

5.2 Stability of ∂RK

We consider again two compact subsets of R
n, K and K ′ which are “close” to each other for the

Hausdorff distance: dH(K, K ′) ≤ ε.
Let x be a point in K ′c. For any w′ ∈ GK′(x), the point z′ = x − RK′(x) w′ is in ΓK′(x) and
therefore in K ′. One has then, for any y ∈ R

n:

RK′(y)2 ≤ (y − z′)2

= (x − z′)2 + 2 < x − z′ , y − x >

+(y − x)2

≤ RK′(x)2 + 2 < w′, y − x > RK′(x)

+(y − x)2

which gives, for any w′ ∈ GK′(x)

RK′(y) − RK′(x) ≤ RK′(x)

(
√

1 +
2

RK′(x)
< w′, y − x > +

(y − x)2

RK′(x)2
− 1

)

RR n° 6100



18 Chazal & Cohen-Steiner & Lieutier

And, from
√

1 + α ≤ 1 + α
2 :

RK′(y) − RK′(x) ≤ < w′, y − x > +
(x − y)2

2RK′(x)
(13)

Lemma 5.2 says that ∂RK(x) = GK(x) which allows to use the following mean value theorem
theorem which holds in general for Clarke gradients:

Theorem 5.5 (Lebourg [11] 2.3.7) Let x and y be points in X , and suppose that f is Lipschitz in
an open set containing the line segment [x, y]. Then there exists a point w ∈ (x, y) such that:

f(y) − f(x) ∈ < ∂f(w) , y − x >

Let ρ > 0 and x such that RK(x) ≥ ρ, applying theorem 5.5 to the function RK gives:
∀y ∈ B(x, ρ), ∃w ∈ GK(x, ρ) such that:

RK(y) − RK(x) = < w, y − x >

Using RK(y)−RK(x) ≤ RK′(y) −RK′(x) + 2ε and equation (13) we get: ∀y ∈ B(x, ρ) there is
w ∈ GK(x, ρ) such that for any w′ ∈ GK′(x):

< w, y − x > ≤ < w′, y − x > +
(x − y)2

2RK′(x)
+ 2ε

or:

< w′ − w, x − y > ≤ (x − y)2

2RK′(x)
+ 2ε

Assuming now ρ = ‖y − x‖, we consider the unit vector u = − y−x
ρ , which gives the following

property: ∀u, ‖u‖ = 1, ∀w′ ∈ GK′(x) there is w ∈ GK(x, ρ) such that:

< w′ − w, u > ≤ ρ

2RK′(x)
+

2ε

ρ
(14)

This property, which hold for any unit vector u gives in fact a relation between the support functions
of the compact sets GK′(x) and GK(x, ρ).
Let w′ ∈ GK′(x) such that w′ /∈ GK(x, ρ) and let w′′ ∈ GK(x, ρ) be its unique nearest point in the
convex set GK(x, ρ):

d(w′, w′′) = d(w′, GK(x, ρ))

let us consider the unit vector u? = 1
‖w′−w′′‖ (w′ − w′′). Because GK(x, ρ) is convex, ∀w ∈

GK(x, ρ), one has:
< w , u? >≤< w′′ , u? >

or equivalently:
< w − w′′ , u? >≤ 0

INRIA
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adding member to member with (14), for u = u?, gives:

< w′ − w′′, u? >≤ ρ

2RK′(x)
+

2ε

ρ

that is, for any w′ ∈ GK′(x) \ GK(x, ρ), there is w′′ ∈ GK(x, ρ) such that:

‖w′ − w′′‖ ≤ ρ

2RK′(x)
+

2ε

ρ

which proves the following.

Theorem 5.6 For any x such that RK(x) ≥ ρ, one has:

GK′(x) ⊂ GK(x, ρ)
ρ

2R
K′ (x)

+ 2ε
ρ

6 Application to normal approximation

Based on the results from the previous section, we now introduce a scale-dependent notion of normal
cone that allows to infer first order information from finite approximations of compact sets, even in
the non-smooth case.

Definition 6.1 The normal cone at scale (r, l) of a compact K at the point p ∈ R
n is defined as:

Nr,l
K (p) = co{

−→xq

||−→xq|| | d(x, p) ≤ r, d(x, q) ≥ l, d(x, q) = d(x, K)}

It is not difficult to check that limr→0 Nr,0
K (p) coincides with the normal cone NK(p) in the sense

of Clarke (see [11] p.51 and proposition 2.5.7 p. 68). Now, Theorem 5.6 gives, taking ρ = 2
√

εr as
in [5]:

Lemma 6.2 Let K and K ′ be two compacts with Hausdorff distance ε and let η = ε + 2
√

εr. We
have for all 0 ≤ l ≤ r:

Nr,l
K′(p) ⊂ Nr+η,l−η

K (p)2
√

ε/l

This lemma directly implies the following one:

Lemma 6.3 Let Kn be a sequence of compact sets converging to a compact K for the Hausdorff
distance. Let p ∈ R

n and 0 ≤ l ≤ r be such that N .,.
K (p) is continuous at (r, l). Then, N r,l

Kn
(p)

converges to N r,l
K (p). In other words, N r,l

. (p) is continuous at K.

Since our notion of normal cone is stable under Hausdorff approximation, it can be inferred from
finite approximations of compact sets. It now remains to pick suitable values for the parameters r
and l.
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20 Chazal & Cohen-Steiner & Lieutier

Let us first consider the case where K has positive reach. We then have that N r,r
K (p) coincides

with Clarke’s normal cone NK(p) whenever 0 < r < r1(K). The problem is that N .,.
K (p) is not

right continuous in the second variable at (r, r) since N r,l
K (p) is empty whenever l > r. However, it

is not difficult to prove that the function is continuous at any point (r, l) with l < r < r1(K). Hence,
by the lemma above, N r,λr

K′ (p) is a good estimate of N r,λr
K (p) for any λ < 1, provided that ε is small

enough. Moreover, when λ tends to 1, N r,λr
K (p) tends to N r,r

K (p) = NK(p). Hence N r,λr
K′ (p) is a

reliable way to obtain an estimate of NK(p) when λ → 1 and ε → 0. We note that unlike Dey’s
method for normal estimation in noisy smooth surfaces, this estimator provides a normal cone at
every point. Besides, it can also deal with non necessarily smooth convex sets.

Now, if K is a (non necessarily convex) polyhedron, let r(p) be the distance from p to the closest
(closed) face of K not containing p. Also, let µ = inf{||∇K(x)|| |x ∈ B(p, r(p)/2)}. We have that
for l ≤ r

√

1 − µ2 and r < r(p)/2, N r,l
K (p) = NK(p). Hence N r,l

K′(p) is a good estimate of NK(p)

for such a choice of r and l. More precisely, this estimator has precision O(
√

ε/l). Finally, we note
that the critical function of K ′ might prove useful to automate the choice of the parameters r and l.
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