B. Arouna, Adaptative Monte Carlo method, a variance reduction technique. Monte Carlo Methods Appl, pp.1-24, 2004.

B. Arouna, Algorithmes stochastiques et méthodes de Monte Carlo, 2004.

O. Bardou, Contrôle dynamique des erreurs de simulation et d'estimation de processus de diffusion, 2005.

J. V. Beck, K. D. Cole, A. Haji-sheikh, and B. Litkouhi, Heat conduction using Green's functions, Series in Computational and Physical Processes in Mechanics and Thermal Sciences, 1992.

M. Bossy, E. Gobet, and D. Talay, A symmetrized Euler scheme for an efficient approximation of reflected diffusions, J. Appl. Probab, vol.41, issue.3, pp.877-889, 2004.

F. Cérou, D. Moral, P. Legland, F. Lezaud, and P. , Genetic genealogical model in rare event analysis, ALEA, vol.1, pp.181-203, 2006.

F. Campillo and A. Lejay, A Monte Carlo method without grid for a fractured porous domain model, Monte Carlo Methods and Applications, vol.8, issue.2, pp.129-148, 2002.
DOI : 10.1515/mcma.2002.8.2.129

URL : https://hal.archives-ouvertes.fr/inria-00152412

M. Deaconu and A. Lejay, A Random Walk on Rectangles Algorithm, Methodology and Computing in Applied Probability, vol.24, issue.2, pp.135-151, 2006.
DOI : 10.1007/s11009-006-7292-3

URL : https://hal.archives-ouvertes.fr/inria-00092424

D. Moral and P. , Feynman-Kac formulae: Genealogical and interacting particle systems with applications. Probability and its Applications, 2004.

D. Moral, P. Garnier, and J. , Genealogical particle analysis of rare events, The Annals of Applied Probability, vol.15, issue.4, pp.2496-2534, 2005.
DOI : 10.1214/105051605000000566

URL : https://hal.archives-ouvertes.fr/hal-00113982

O. Faure, Simulation du mouvement brownien et des diffusions, 1992.
URL : https://hal.archives-ouvertes.fr/tel-00523258

G. S. Fishman, Monte Carlo. Concepts, algorithms, and applications, Series in Operations Research, 1996.

P. W. Glynn and D. L. Iglehart, Importance Sampling for Stochastic Simulations, Management Science, vol.35, issue.11, pp.1367-1392, 1989.
DOI : 10.1287/mnsc.35.11.1367

P. Glasserman, Monte Carlo methods in financial engineering, Applications of Mathematics, vol.53, 2004.
DOI : 10.1007/978-0-387-21617-1

E. Gobet, Weak approximation of killed diffusion using Euler schemes. Stochastic Process, Appl, vol.87, issue.2, pp.167-197, 2000.

E. Gobet, Efficient schemes for the weak approximation of reflected diffusions, Monte Carlo Methods and Applications, vol.7, issue.1-2, 2001.
DOI : 10.1515/mcma.2001.7.1-2.193

M. C. and M. Appl, -2) 193?202 Conference proceeding of Monte Carlo and probabilistic methods for partial differential equations, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00904500

D. Heath and E. Platen, A variance reduction technique based on integral representations, Quantitative Finance, vol.54, issue.5, pp.362-369, 2002.
DOI : 10.1016/0378-4754(93)E0068-G

Y. Iba, Population Monte Carlo algorithms Trans, Jpn. Soc. Artif. Intell, vol.16, issue.2, pp.279-286, 2001.

K. M. Jansons and G. D. Lythe, Exponential Timestepping with Boundary Test for Stochastic Differential Equations, SIAM Journal on Scientific Computing, vol.24, issue.5, pp.1809-1822, 2003.
DOI : 10.1137/S1064827501399535

A. Kebaier, Réduction de Variance et discrétisation d'´ equations différentielles stochastiques. Théorèmes limites presque sûres pour les martingales quasi-continuesàcontinuesà gauche, 2005.

A. Kohatsu-higa and R. Pettersson, Variance Reduction Methods for Simulation of Densities on Wiener Space, SIAM Journal on Numerical Analysis, vol.40, issue.2, pp.431-450, 2002.
DOI : 10.1137/S0036142901385507

P. E. Kloeden, E. Platen, A. Lejay, and S. Maire, Numerical solution of stochastic differential equations Computing the first eigenelements of some linear operators using a branching Monte Carlo method, J. Comput. Phys, issue.23, pp.227-9794, 1992.

V. Linetsky, On the transition densities for reflected diffusions, Advances in Applied Probability, vol.23, issue.02, pp.435-460, 2005.
DOI : 10.2307/3214260

P. Lions and A. Sznitman, Stochastic differential equations with reflecting boundary conditions, Communications on Pure and Applied Mathematics, vol.11, issue.4, pp.511-537, 1984.
DOI : 10.1002/cpa.3160370408

G. N. Mil-'shte?-in, Solution of the first boundary value problem for equations of parabolic type by means of the integration of stochastic differential equations, Teor. Veroyatnost . i Primenen, vol.40, issue.3, pp.657-665, 1995.

G. N. Mil-'shtejn and N. F. Rybkina, An algorithm for random walks over small ellipsoids for solving the general Dirichlet problem, Comput. Math. Math. Phys, vol.33, issue.5, pp.631-647, 1993.

G. N. Milstein and M. V. Tretyakov, Simulation of a space-time bounded diffusion, The Annals of Applied Probability, vol.9, issue.3, pp.732-779, 1999.
DOI : 10.1214/aoap/1029962812

G. N. Milstein and M. V. Tretyakov, Stochastic numerics for mathematical physics. Scientific Computation, 2004.

M. E. Muller, Some Continuous Monte Carlo Methods for the Dirichlet Problem, The Annals of Mathematical Statistics, vol.27, issue.3, pp.569-589, 1956.
DOI : 10.1214/aoms/1177728169

N. J. Newton, Variance Reduction for Simulated Diffusions, SIAM Journal on Applied Mathematics, vol.54, issue.6, pp.1780-1805, 1994.
DOI : 10.1137/S0036139992236220

R. Pettersson, Approximations for stochastic differential equations with reflecting convex boundaries. Stochastic Process, Appl, vol.59, issue.2, pp.295-308, 1995.

M. A. Pinsky, Partial Differential Equations and Boundary-Value Problems with Applications, International Series in Pure and Applied Mathematics, 1998.

L. Ss-lomi´nskilomi´nski, Euler's approximations of solutions of SDEs with reflecting boundary. Stochastic Process, Appl, vol.94, issue.2, pp.317-337, 2001.

N. A. Simonov and M. Mascagni, Random walk algorithm for estimating effective properties of digitized porous media. Monte Carlo Methods Appl, Conference proceeding of IV IMACS Seminar on Monte Carlo Methods, pp.3-4, 2004.

D. Veestraeten, The Conditional Probability Density Function for a Reflected Brownian Motion, Computational Economics, vol.24, issue.2, pp.185-207, 2005.
DOI : 10.1023/B:CSEM.0000049491.13935.af

G. Zou and R. D. Skeel, Robust Variance Reduction for Random Walk Methods, SIAM Journal on Scientific Computing, vol.25, issue.6, pp.1964-1981, 2004.
DOI : 10.1137/S1064827503424025

E. Projet, T. Cnrs, and I. ?. Iecn, Campus scientifique, BP 70239, 54506 Vandoeuvre-l` es-Nancy cedex (France) E-mail address: Madalina.Deaconu@inria.fr E-mail address