
HAL Id: inria-00126895
https://hal.inria.fr/inria-00126895v2

Submitted on 29 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Practical Typechecking for Macro Tree
Transducers

Alain Frisch, Haruo Hosoya

To cite this version:
Alain Frisch, Haruo Hosoya. Towards Practical Typechecking for Macro Tree Transducers. [Research
Report] RR-6107, INRIA. 2007, pp.28. �inria-00126895v2�

https://hal.inria.fr/inria-00126895v2
https://hal.archives-ouvertes.fr

in
ria

-0
01

26
89

5,
 v

er
si

on
 2

 -
 2

9
Ja

n
20

07

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
61

07
--

F
R

+
E

N
G

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Towards Practical Typechecking for Macro Tree
Transducers

Alain Frisch — Haruo Hosoya

N° 6107

Janvier 2007

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le ChesnayCedex (France)

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Towards Pratial Typeheking for Maro Tree TransduersAlain Frish∗ , Haruo Hosoya†Thème SYM � Systèmes symboliquesProjet GalliumRapport de reherhe n° 6107 � Janvier 2007 � 28 pages
Abstrat: Maro tree transduers (mtt) are an important model that both overs many usefulXML transformations and allows deidable exat typeheking. This paper reports our �rst steptoward an implementation of mtt typeheker that has a pratial e�ieny. Our approah is torepresent an input type obtained from a bakward inferene as an alternating tree automaton,in a style similar to Tozawa's XSLT0 typeheking. In this approah, typeheking redues toheking emptiness of an alternating tree automaton. We propose several optimizations (Carte-sian fatorization, state partitioning) on the bakward inferene proess in order to produemuh smaller alternating tree automata than the naive algorithm, and we present our e�ientalgorithm for heking emptiness of alternating tree automata, where we exploit the expliit rep-resentation of alternation for loal optimizations. Our preliminary experiments on�rm that ouralgorithm has a pratial performane that an typehek simple transformations with respetto the full XHTML in a reasonable time.Key-words: tree automata, tree transduers, exat typeheking, alternating automata

∗ INRIA, projet Gallium
† University of Tokyo

Vers un typage pratiable pour les maro transduteurs d'arbreRésumé : Les maro transduteurs d'arbre (mtt) onstituent un modèle important, dans lamesure où ils permettent de réaliser de nombreuses transformations XML et où ils admettentun typage exat déidable. Cet artile rend ompte d'une première étape en diretion del'implémentation d'un typeur pour les mtt e�ae en pratique. Notre approhe onsiste àreprésenter le type d'entrée obtenu par inférene inverse sous la forme d'un automate d'arbrealternant, dans un style similaire à elui introduit par Tozawa pour le typage de XSLT0. Leproblème de la véri�ation du bon typage du transduteur se réduit alors à elui du test devide pour un automate d'arbre alternant. Nous proposons plusieurs optimisations (fatorisationartésienne, partionnement des états) pour le proessus d'inférene inverse, ave l'objetif deproduire des automates alternants signi�ativement plus petits qu'ave l'algorithme naïf. Nousdérivons également un algorithme e�ae pour le test de vide pour un automate d'arbrealternant, dans lequel nous exploitons la représentation expliite de l'alternation pour permettredes optimisations loales. Nos expérienes préliminaires on�rment que notre algorithme atteintdes performanes su�santes pour typer des transformations par rapport à la DTD XHTMLomplète, en un temps raisonnable.Mots-lés : automates d'arbre, transduteurs d'arbre, typage exat, automates alternants

Towards Pratial Typeheking for Maro Tree Transduers 31 IntrodutionStati typeheking for XML transformations is an important problem that has expetedly asigni�ant impat on real-world XML developments. To this end, several researh groups havemade e�orts in building typed XML programming languages [8, 3℄ with muh in�uene fromthe tradition of typed funtional languages [2, 10℄. While this line of work has suessfullytreated general, Turing-omplete languages, its approximative nature has resulted in an eventrivial transformation like the identity funtion to fail to typehek unless a large amount ofode dupliates and type annotations are introdued [7℄. Suh situation has led us to payattention to ompletely di�erent approahes that have no suh de�ieny, among whih exattypeheking has emergingly beome promising. The exat typeheking approah has extensivelybeen investigated for years [12, 20, 16, 23, 26, 24, 11, 15, 1, 13, 18, 14℄, in whih maro treetransduers (mtt) have been one of the most important models sine they allow deidable exattypeheking [5℄, yet over many useful XML transformations [5, 11, 4, 19℄. Unfortunately, thesestudies are mainly theoretial and their pratiality has never been lear exept for some smallases [23, 26℄.This paper reports our �rst step toward a pratial implementation of typeheker for mtts.As a basi part, we follow an already-established sheme alled bakward inferene, whih om-putes the preimage of the output type for the subjet transformation and then heks it againstthe given input type. This is beause, as known well, the more obvious, forward inferene doesnot work sine the image of the input type is not always a regular tree language in general. Ourproposal is, on top of this sheme, to use a representation of the preimage by an alternatingtree automaton [21℄, extending the idea used in Tozawa's typeheking for XSLT0 [23℄. In thisapproah, typeheking redues to heking emptiness of an alternating tree automaton.Whereas normal tree automata use only disjuntions in the transition relation, alternatingtree automata an use both disjuntions and onjuntions. This extra freedom permits a moreompat representation (they an be exponentially more suint than normal tree automata)and make them a good intermediate language to study optimizations. Having expliit represen-tation of transitions as Boolean formulas allowed us to derive optimized versions of the rulesfor bakward inferene, suh as Cartesian deomposition or state partitioning (Setion 4.1).These optimizations allow our algorithm to sale to large types. We also use Boolean reasoningto derive an e�ient emptiness algorithm for alternating tree automata (Setion 4.2). For in-stane, this algorithm uses the following fat as an e�ient shortut: when onsidering a formula
φ = φ1∧φ2, if φ1 turns out to denote an empty set, then so is φ, and thus the algorithm doesn'teven need to look at φ2. Note that the exploited fat is immediately available in alternating treeautomata, while it is not in normal tree automata.We have made extensive experiments on our implementation. We have written several sizesof transformations and veri�ed against the full XHTML automatially generated from its DTD(in reality, transformations are often small, but types that they work on are quite big in manyases; exellent statistial evidenes are provided in [17℄.) The results show that, for this saleof transformations, our implementation has suessfully ompleted typeheking in a reasonabletime even with XHTML, whih is onsidered to be quite large. We have also ompared theperformane of our implementation with Tozawa and Hagiya's [26℄ and on�rmed that ours hasomparable speed for their small examples that are used in their own experiments.On the theoretial side, we have established an exat relationship with two major existingalgorithms for mtt typeheking, a lassial algorithm based on �funtion enumeration� [4℄ andan algorithm proposed by Maneth, Perst, and Seidl (MPS algorithm) [12℄. Conretely, we have
RR n° 6107

4 Alain Frish , Haruo Hosoyaproved that (1) the lassial algorithm is idential to our algorithm followed by determinizationof an alternating tree automaton, and that (2) MPS algorithm is idential to our algorithmfollowed by emptiness test of an alternating tree automaton. A partiular impliation is that ouralgorithm inherits one of useful properties of MPS algorithm: polynomial-time omplexity underthe restrition of a bounded number of opying [12℄ (mtt typeheking is in general exponential-time omplete). The proofs appear in the appendix, however, sine this paper is foused ratheron the pratial side.Related work Numerous tehniques for exat typeheking for XML transformations havebeen proposed. Many of these take their target languages from the tree transduer family.Those inlude tehniques for maro tree transduers [12, 4℄, for maro forest transduers [20℄,for k-pebble tree transduers [16, 4℄, for subsets of XSLT [23, 26℄, for high-level tree transduers[24℄, and a tree transformation language TL [11℄. Other tehniques treat XML query languagesin the selet-onstrut style [15, 1, 13℄ or even simpler transformations [18, 14℄. Most of the abovementioned work provides only theoretial results; the only exeptions are [23, 26℄, where someexperimental results are shown though we have examined muh bigger examples (in partiularin the size of types).Several algorithms in pragmati approahes have been proposed to address high omplexityproblems related to XML typeheking. A top-down algorithm for inlusion test on tree au-tomata has been developed and used in XDue typeheker [9℄; an improved version is proposedin [22℄. A similar idea has been exploited in the work on CDue on the emptiness hek foralternating tree automata [6℄; the emptiness hek algorithm in our present work is stronglyin�uened by this. Tozawa and Hagiya have developed BDD-based algorithms for inlusion teston tree automata [25℄ and for satis�ability test on a ertain logi related to XML typeheking[26℄.Overview This paper is organized as follows. In Setion 2, we reall the lassial de�nitionsof maro tree transduers (mtt), bottom-up tree automata (bta), and alternating tree automata(ata). In Setion 3, we present the two omponents of our typeheking algorithm: bakwardtype inferene (whih produes an ata from an mtt and a deterministi bta) and emptiness hekfor alternating tree automata. In Setion 4, we revisit these two omponents from a pratialpoint of view and we desribe important optimizations and implementation tehniques. InSetion 5, we report the results of our experiments with our implementation of the typehekerfor several XML transformations. In Setion 6, we onlude this paper with our future diretion.Appendix A is devoted to a preise omparison between our algorithm and the lassial algorithmor the Maneth-Perst-Seidl algorithm for typeheking mtt. We show that eah of these algorithmsan be retrieved from ours by omposing with a know algorithm. In Appendix B, we proposethe notion of bounded-traversing alternating tree automata, whih is a natural ounterpart ofsyntatial bounded-opying mtts as proposed in [12℄. We show in partiular that this notionensures that the emptiness hek runs in polynomial time.2 Preliminaries2.1 Maro Tree TransduersWe assume an alphabet Σ where eah symbol a ∈ Σ is assoiated with its arity; often we write
a(n) to denote a symbol a with arity n. We assume that there is a symbol ǫ with zero-arity.

INRIA

Towards Pratial Typeheking for Maro Tree Transduers 5Trees, ranged over by v,w, . . ., are de�ned as follows:
v ::= a(n)(v1, . . . , vn)We write ǫ for ǫ() and ~v = (v1, . . . , vn) to represent a tuple of trees. Assume a set of variables,ranged over by x, y, A maro tree transduer (mtt) T is a tuple (P,P0,Π) where P is a �niteset of proedures, P0 ⊆ P is a set of initial proedures, and Π is a set of (transformation) ruleseah of the form

p(k)(a(n)(x1, . . . , xn), y1, . . . , yk)→ ewhere eah yi is alled (aumulating) parameter and e is a (n, k)-expression. We will abbreviatethe tuples (x1, . . . , xn) and (y1, . . . , yk) to ~x and ~y. Note that eah proedure is assoiated withits arity, i.e., the number of parameters; we write p(k) to denote a proedure p with arity k. An
(n, k)-expression e is de�ned by the following grammar

e ::= a(m)(e1, . . . , em) | p(l)(xh, e1, . . . , el) | yjwhere only yj with 1 ≤ j ≤ k and xh with 1 ≤ h ≤ n an appear as variables. We assume thateah initial proedure has arity zero.We desribe the semantis of an mtt (P,P0,Π) by a denotation funtion [[·]]. First, thesemantis of a proedure p(k) takes a tree a(n)(v1, . . . , vn) and parameters ~w = (w1, . . . , wk) andreturns the set of trees resulted from evaluating any of p's body expressions.
[[p(k)]](a(n)(~v), ~w) =

⋃

(p(k)(a(n)(~x),~y)→e)∈Π

[[e]](~v, ~w)Then, the semantis of an (n, k)-expression e takes a urrent n-tuple ~v = (v1, . . . , vn) of treesand a k-tuple of parameters ~w = (w1, . . . , wk), and returns the set of trees resulted from theevaluation. It is de�ned as follows.
[[a(m)(e1, . . . , em)]](~v, ~w) = {a(m)(v′1, . . . , v

′
m) | v′i ∈ [[ei]](~v, ~w) for i = 1, . . . ,m}

[[p(l)(xh, e1, . . . , el)]](~v, ~w) = {[[p(l)]](vh, (w′1, . . . , w
′
l)) | w

′
j ∈ [[ej]](~v, ~w) for j = 1, . . . , l}

[[yj]](~v, ~w) = {wj}A onstrutor expression a(m)(e1, . . . , em) evaluates eah subexpression ei and reonstruts a treenode with a and the results of these subexpressions. A proedure all p(xh, e1, . . . , el) evaluatesthe proedure p under the h-th subtree vh, passing the results of e1, . . . , el as parameters. Avariable expression yj simply results in the orresponding parameter's value wj. Note that an mttis allowed to inspet only the input tree and never a part of the output tree being onstruted.Also, parameters only aumulate subtrees that will potentially beome part of the output andnever point to parts of the input.The whole semantis of the mtt with respet to a given input tree v is de�ned by T (v) =
⋃

p0∈P0
[[p0]](v). An mtt T is deterministi when T (v) has at most one element for any v; also,

T is total when T (v) has at least one element for any v. We will also use the lassial de�nitionof images and preimages: T (V) =
⋃

v∈V T (v), T −1(V ′) = {v | ∃v′ ∈ V ′.v′ ∈ T (v)}.2.2 Tree Automata and AlternationA (bottom-up) tree automaton (bta) M is a tuple (Q,QF ,∆) where Q is a �nite set of states,
QF ⊆ Q is a set of �nal states, and ∆ is a set of (transition) rules eah of the form q ←RR n° 6107

6 Alain Frish , Haruo Hosoyaa(n)(q1, . . . , qn) where eah qi is from Q. We will write ~q for the tuple (q1, . . . , qn). Given a bta
M = (Q,QF ,∆), aeptane of a tree by a state is de�ned indutively as follows: M aeptsa tree a(n)(~v) by a state q when there is a rule q ← a(n)(~q) in ∆ suh that eah subtree vi isaepted by the orresponding state qi. M aepts a tree v whenM aepts v by a �nal state
q ∈ QF . We write [[q]]M for the set of trees that the automaton M aepts by the state q (wedrop the subsript M when it is lear), and L(M) =

⋃

q∈QF
[[q]] for the set of trees aeptedby the automatonM. Also, we sometimes say that a value v has type q when v is aepted bythe state q. A bta (Q,QF ,∆) is omplete and deterministi when, for any onstrutor a(n) and

n-tuple of states ~q, there is exatly one transition rule of the form q ← a(n)(~q) in ∆. Suh a btais alled deterministi bottom-up tree automaton (dbta). For any value v, there is exatly onestate q suh that v ∈ [[q]]. In other words, the olletion {[[q]] | q ∈ Q} is a partition of the set oftrees.An alternating tree automaton (ata) A is a tuple (Ξ,Ξ0,Φ) where Ξ is a �nite set of states,
Ξ0 ⊆ Ξ is a set of initial state, and Φ is a funtion that maps eah pair (X,a(n)) of a state andan n-ary onstrutor to an n-formula, where n-formulas are de�ned by the following grammar.

φ ::= ↓i X | φ1 ∨ φ2 | φ1 ∧ φ2 | ⊤ | ⊥(with 1 ≤ i ≤ n). In partiular, note that a 0-ary formula evaluates naturally to a Boolean.Given an ata A = (Ξ,Ξ0,Φ), we de�ne aeptane of a tree by a state. A aepts a tree a(n)(~v)by a state X when ~v ⊢ Φ(X,a(n)) holds, where the judgment ~v ⊢ φ is de�ned indutively asfollows:� ~v ⊢ φ1 ∧ φ2 if ~v ⊢ φ1 and ~v ⊢ φ2.� ~v ⊢ φ1 ∨ φ2 if ~v ⊢ φ1 or ~v ⊢ φ2.� ~v ⊢ ⊤.� ~v ⊢↓i X if A aepts vi by X.That is, ~v ⊢ φ intuitively means that φ holds by interpreting eah ↓i X as �vi has type X.� Wewrite [[X]] for the set of trees aepted by a state X and [[φ]] = {~v | ~v ⊢ φ} for the set of n-tuplesaepted by an n-formula φ. We write L(A) =
⋃

X0∈Ξ0
[[X0]] for the language aepted by theata A. Note that a bta M = (Q,QF ,∆) an be seen as an ata with the same set of statesand �nal states by de�ning the funtion Φ as Φ(q, a(n)) =

∨

(q←a(n)(~q))∈∆

∧

i=1,..,n ↓i qi, and thede�nitions for the semantis of states and the language aepted by the automaton seen as abta or an ata then oinide. We will use the notation ≃ to represent semantial equivalene ofpairs of states or pairs of formulas.3 Typeheking3.1 Bakward infereneGiven a dbta Mout (�output type�), a bta Min (�input type�), and an mtt T , the goal oftypeheking is to verify that T (L(Min)) ⊆ L(Mout). It is well known that T (L(Min)) isin general beyond regular tree languages and hene the forward inferene approah (i.e., �rstalulate an automaton representing T (L(Min)) and hek it to be inluded in L(Mout)) doesnot work. Therefore an approah usually taken is the bakward inferene, whih is based onthe observation that T (L(Min)) ⊆ L(Mout) ⇐⇒ L(Min) ∩ T −1(L(M)) = ∅, where M isINRIA

Towards Pratial Typeheking for Maro Tree Transduers 7the omplement automaton of Mout. Intuitively, if the intersetion L(Min) ∩ T −1(L(M)) isnot empty, then it is possible to exhibit a tree v in this intersetion. Sine this tree satis�esthat v ∈ L(Min) and T (v) 6⊆ L(Mout), it means that there is a ounter-example of the well-typedness of the mtt with respet to the given input and output types. Algorithmially, theapproah onsists of omputing an automaton A representing T −1(L(M)) and then hekingthat L(Min) ∩ L(A) = ∅. Sine the language T −1(L(M)) is regular and indeed suh automata
A an e�etively be omputed, the above disjointness is deidable.The originality of our approah is to ompute A as an alternating tree automaton. Let adbtaM = (Q,QF ,∆) and an mtt T = (P,P0,Π) be given. Here, note that the automatonM,whih denotes the omplement of the output typeMout, an be obtained fromMout in a lineartime sineMout is deterministi. FromM and T , we build an ata A = (Ξ,Ξ0,Φ) where

Ξ = {〈p(k), q, ~q〉 | p(k) ∈ P, q ∈ Q, ~q ∈ Qk}
Ξ0 = {〈p0, q〉 | p0 ∈ P0, q ∈ QF}

Φ(〈p(k), q, ~q〉, a(n)) =
∨

(p(k)(a(n)(~x),~y)→e)∈Π

Inf(e, q, ~q).Here, the funtion Inf is de�ned indutively as follows.
Inf(b(m)(e1, . . . , em), q, ~q) =

∨

(q←b(m)(~q′))∈∆

∧

j=1,..m

Inf(ej , q
′
j , ~q)

Inf(p(l)(xh, e1, . . . , el), q, ~q) =
∨

~q′∈Ql

↓h 〈p
(l), q, ~q′〉 ∧

∧

j=1,..,l

Inf(ej , q
′
j , ~q)

Inf(yj, q, ~q) =

{

⊤ (q = qj)
⊥ (q 6= qj)Let us explain why this algorithm works. Sine a preise disussion is ritial for understand-ing subsequent setions, we summarize our justi�ation here as a formal proof.Theorem 1 L(A) = T −1(L(M)).Proof: Intuitively, eah state 〈p, q, ~q〉 represents the set of trees v suh that the proedure pmay transform v to some tree u of type q, assuming that the parameters yi are bound to trees

wi eah of type qi. Formally, we prove the following invariant
∀v. ∀~w ∈ [[~q]]. v ∈ [[〈p(k), q, ~q〉]] ⇐⇒ [[p(k)]](v, ~w) ∩ [[q]] 6= ∅ (1)where ~w ∈ [[~q]] means w1 ∈ [[q1]], . . . , wk ∈ [[qk]]. Note that this invariant implies that the right-hand side does not depend on the spei� hoie of the values wi from the sets [[qi]]; this pointwill be ruial later. From this invariant, the initial states Ξ0 represent the set of trees that wewant and hene the result follows:
L(A) =

⋃

{[[〈p0, q〉]] | p0 ∈ P0, q ∈ QF}
= {v | [[p0]](v) ∩ [[q]] 6= ∅, p0 ∈ P0, q ∈ QF }
= {v | T (v) ∩ L(M) 6= ∅}
= T −1(L(M))The proof of the invariant (1) proeeds by indution on the struture of v. For the proof, we�rst need to onsider an invariant that holds for the funtion Inf. Informally, Inf(e, q, ~q) infersRR n° 6107

8 Alain Frish , Haruo Hosoyaan n-formula representing the set of n-tuples ~v suh that the expression e may transform ~v tosome tree of type q, assuming that the parameters yi are bound to trees wi eah of type qi.Formally, we prove the following:
∀~v. ∀~w ∈ [[~q]]. ~v ∈ [[Inf(e, q, ~q)]] ⇐⇒ [[e]](~v, ~w) ∩ [[q]] 6= ∅ (2)Indeed, this implies the invariant (1). Let v = a(n)(~v); for all ~w ∈ [[~q]]:

v ∈ [[〈p(k), q, ~q〉]] ⇐⇒ ~v ∈ [[Φ(〈p(k), q, ~q〉, a(n))]]

⇐⇒ ∃(p(k)(a(n)(~x), ~y)→ e) ∈ Π. ~v ∈ [[Inf(e, q, ~q)]]

by(2)
⇐⇒ ∃(p(k)(a(n)(~x), ~y)→ e) ∈ Π. [[e]](~v, ~w) ∩ [[q]] 6= ∅

⇐⇒ [[p]](v, ~w) ∩ [[q]] 6= ∅The invariant (2) is in turn proved by indution on the struture of e.Case e = b(m)(e1, . . . , em). In order for a tree u of type q to be produed from the onstrutorexpression, �rst, there must be a transition q ← b(m)(~q′) ∈ ∆. In addition, u's eah subtreemust have type q′i and must be produed from the orresponding subexpression ei. Forthe latter ondition, we an use the indution hypothesis for (2). Formally, for all ~w ∈ [[~q]]:
~v ∈ [[Inf(e, q, ~q)]] ⇐⇒ ~v ∈ [[

∨

q→b(m)(~q′)∈∆

∧

j=1,...,m

Inf(ej , q
′
j, ~q)]]

⇐⇒ ∃(q ← b(m)(~q′)) ∈ ∆. ∀j = 1, . . . ,m. ~v ∈ [[Inf(ej , q
′
j , ~q)]]

byI.H.for(2)
⇐⇒ ∃(q ← b(m)(~q′)) ∈ ∆. ∀j = 1, . . . ,m. [[ej]](~v, ~w) ∩ [[q′j]] 6= ∅

⇐⇒ [[e]](~v, ~w) ∩ [[q]] 6= ∅Case e = p(l)(xh, e1, . . . , el). In order for a tree u of type q to be produed from the proedureall, �rst, a tree w′j of some type q′j must be yielded from eah parameter expression
ej . In addition, the h-th input tree must have type 〈p(l), q, (q′1, . . . , q

′
l)〉 sine the resulttree u must be produed by the proedure p(l) from the h-th input tree with parameters

w′1, . . . , w
′
l of types q′1, . . . , q

′
l. We an use the indution hypothesis for (2) for the formerondition and that for (1) for the latter ondition. Formally, for all ~w ∈ [[~q]]:

~v ∈ [[Inf(e, q, ~q)]] ⇐⇒ ~v ∈ [[
∨

~q′∈Ql

↓h 〈p, q, ~q′〉 ∧
∧

j=1,...,l

Inf(ej , q
′
j , ~q)]]

⇐⇒ ∃~q′ ∈ Ql. vh ∈ [[〈p, q, ~q′〉]] ∧ ∀j = 1, . . . , l. ~v ∈ [[Inf(ej , q
′
j, ~q)]]

byI.H.for(2)
⇐⇒ ∃~q′ ∈ Ql. vh ∈ [[〈p, q, ~q′〉]] ∧ ∀j = 1, . . . , l. [[ej]](~v, ~w) ∩ [[q′j]] 6= ∅

⇐⇒ ∃~q′ ∈ Ql. vh ∈ [[〈p, q, ~q′〉]]

∧ ∃ ~w′. ∀j = 1, . . . , l. w′j ∈ [[ej]](~v, ~w) ∧ w′j ∈ [[q′j]]

(3)We an show that the last ondition holds i�
∃ ~w′. [[p(l)]](vh, ~w′) ∩ [[q]] 6= ∅ ∧ ∀j = 1, . . . , l. w′j ∈ [[ej]](~v, ~w) (4)

INRIA

Towards Pratial Typeheking for Maro Tree Transduers 9whih is equivalent to [[p(xh, e1, . . . , em)]] ∩ [[q]] 6= ∅. Indeed, for the �only if� diretion, weapply the indution hypothesis for (1) where we instantiate ~w with the spei� ~w′ in (3)�this is exatly the plae that uses the fat that the quanti�ation on ~w appears outsidethe � ⇐⇒ � in (1)�and obtain the following:
∃~q′ ∈ Ql. ∃ ~w′. [[p(l)]](vh, ~w′) ∩ [[q]] 6= ∅

∧ ∀j = 1, . . . , l. w′j ∈ [[ej]](~v, ~w) ∧ w′j ∈ [[q′j]]
(5)By dropping the ondition w′j ∈ [[q′j]] (and the unused quanti�ation on ~q′), we obtain (4).For the �if� diretion, sine that the automaton M is omplete, i.e., there is in general astate q for any value w suh that w ∈ [[q]], we obtain (5) from (4). Then, the indutionhypothesis for (1) yields (3).Case e = yj. In order for a tree of type q to be produed from the variable expression, yj musthave type q. Formally, �rst note that ~v ∈ [[Inf(e, q, ~q)]] ⇐⇒ q = qj, for any ~v. Note alsothat, sineM is deterministi bottom-up, all the states are pair-wise disjoint: [[q]]∩[[q′]] = ∅whenever q 6= q′. Therefore, for all ~w ∈ [[~q]]:

~v ∈ [[Inf(e, q, ~q)]] ⇐⇒ q = qj

⇐⇒ wj ∈ [[q]]

⇐⇒ [[e]](~v, ~w) ∩ [[q]] 6= ∅

�In the proof above, the ase for variable expressions ritially uses the determinism onstraint.Indeed, the statement of the theorem does not neessarily hold if M is nondeterministi. Forexample, onsider the nondeterministi btaM with the transition rules
q0 ← b(q1, q2) q1 ← ǫ q2 ← ǫ(q0 is the initial state) and typehek the mtt T with the transformation rules

p0(a(x1)) → p(x1, ǫ)
p(ǫ, y1) → b(y1, y1)(p0 is the initial proedure) with respet to the result type q0. With this mtt, the input value a(ǫ)translates to b(ǫ, ǫ), whih is aepted byM. However, our algorithm will infer an input type thatdenotes the empty set, whih is inorret. To see this more losely, onsider inferene on the bodyof p with the result type q = q0 and the parameter type ~q = (q1). The ondition (2) does not holdsine the only hoie of ~w ∈ [[~q]] is ~w = (ǫ) and, in this ase, the right hand side holds whereas theleft hand side does not sine Inf(b(y1, y1), q0, (q1)) = Inf(y1, q1, (q1))∧ Inf(y1, q2, (q1)) = ⊤∧⊥ =

⊥. The same argument an be done with the parameter type ~q = (q2). Now, in inferene on thebody of p0 with the result type q0, the all to p must have parameter type q1 or q2 sine onlythese an aept ǫ. From the previous inferene, we onlude that the input type inferred forthe all is again the empty set type; so is the whole input type.However, the variable ase is the only that uses determinism. Therefore, if the mtt usesno parameter, i.e., is a simple, top-down tree transduer, then the same algorithm works fora non-deterministi output type.1 Moreover, if the mtt T is deterministi and total, we have1Completeness of the output type is not needed for our algorithm to work on top-down tree transduers.This is beause the only plae where we use ompleteness in the proof is the ase for proedure alls, in whihompleteness is atually not neessary if there is no parameter.RR n° 6107

10 Alain Frish , Haruo HosoyaT −1(L(Mout)) = T −1(L(Mout)). It su�es to hek L(Min) ⊆ T
−1(L(Mout)) instead of

L(Min) ∩ T
−1(L(Mout)) = ∅. This ould be advantageous sine a diret onversion from anXML shema yields a non-deterministi automaton, and determinizing it has a potential blow-up (though this step is known to take only a reasonable time in pratie) whereas inlusion anbe tested more e�iently by using known lever algorithms that avoid a full materializationof a deterministi automaton [9, 22, 25℄. Tozawa presents in his work [23℄ a bakward infer-ene algorithm based on alternating tree automata for deterministi forest transduers with noparameters where he exploits the above observation to obtain a simple algorithm.Finally, it remains to hek L(Min) ∩ L(A) = ∅, for whih we �rst alulate an ata A′representing L(Min) ∩ L(A) (this an easily be done sine an ata an freely use intersetions)and then hek the emptiness of A′. The next setion explains how to do this. The size of theata A is polynomial in the sizes ofMout and of T . The size of A′ is thus polynomial in the sizesofMin,Mout, and T .3.2 Emptiness hekLet A = (Ξ,Ξ0,Φ) an alternating tree automaton. We want to deide whether the set L(A)is empty or not. We �rst de�ne the following system of impliations ρ where we introduepropositional variables X onsisting of all subsets of Ξ:

ρ = {X ⇐ X1 ∧ . . . ∧Xn | ∃a
(n). (X1, . . . ,Xn) ∈ DNF(

∧

X∈X Φ(X,a(n)))}}Here, DNF(φ) omputes φ's disjuntive normal form by pushing intersetions under unions andregrouping atoms of the form ↓i X for a �xed i; the result is formatted as a set of n-tuples ofstate sets. More preisely:
DNF(⊤) = {(∅, . . . , ∅)}
DNF(⊥) = ∅
DNF(φ1 ∧ φ2) = {(X1 ∪ Y 1, . . . ,Xn ∪ Y n) | (X1, . . . ,Xn) ∈ DNF(φ1), (Y 1, . . . , Y n) ∈ DNF(φ2)}
DNF(φ1 ∨ φ2) = DNF(φ1) ∪DNF(φ2)
DNF(↓h X) = {(∅, . . . , ∅, {X}, ∅, . . . , ∅)} (the h-th element is {X})Then, with the system of impliations above, we verify that ρ ⊢ {X} for some X ∈ Ξ0. Thejudgment ρ ⊢ X here is de�ned suh that it holds when it an be derived by the single rule: if

ρ ontains X ⇐ X1 ∧ . . . ∧Xn and ρ ⊢ Xi for any i = 1, . . . , n, then ρ ⊢ X .Eah propositional variable X intuitively denotes that the intersetion of the sets denotedby all the states in X is non-empty: ⋂

X∈X [[X]] 6= ∅. Thus, we an prove the following.Proposition 1 L(A) 6= ∅ i� ρ ⊢ {X} for some X ∈ Ξ0.Proof: The result follows by showing that v ∈
⋂

X∈X [[X]] for some v i� ρ ⊢ X . The �only if�diretion an be proved by indution on the struture of v. The �if� diretion an be proved byindution on the derivation of ρ ⊢ X . �This emptiness hek an be implemented in linear size with respet to the size of ρ, whihitself is exponential in the size of A.
INRIA

Towards Pratial Typeheking for Maro Tree Transduers 114 Algorithm and optimizationsAs we explained above, our algorithm splits the type-heking proess in two phases: �rst, weompute an alternating tree automaton from the output type and the mtt; seond, we hekemptiness of this tree automaton. In this setion, we are going to desribe some details andoptimizations about these two phases.4.1 Bakward infereneA simple algorithm to ompute the input type as an alternating tree automaton is to follownaively the formal onstrution given in Setion 3. A �rst observation is that it is possible tobuild the automaton lazily, starting from the initial states, produing new states and omputing
Φ(_) only on demand. This is sometimes useful sine the emptiness hek algorithm we aregoing to desribe in the next setion works in a top-down way and will not always materializethe whole automaton.The de�ning equations for the funtion Inf as given in Setion 3 produe huge formulas.We will now desribe new equations that produe muh smaller formulas in pratie. Beforedesribing them, it is onvenient to generalize the notation Inf(e, q, ~q) by allowing a set of states
q ⊆ Q instead of a single state q ∈ Q for the output type. Intuitively, we want Inf(e, q, ~q) tobe semantially equivalent to ∨

q∈q Inf(e, q, ~q). We obtain a diret de�nition of Inf(e, q, ~q) byadapting the rules for Inf(e, q, ~q):
Inf(b(m)(e1, . . . , em), q, ~q) =

∨

(q←b(m)(~q′))∈∆,q∈q

∧

j=1...,m

Inf(ej , {q
′
j}, ~q)

Inf(p(l)(xh, e1, . . . , el), q, ~q) =
∨

~q′∈Ql

↓h 〈p
(l), q, ~q′〉 ∧

∧

j=1,...,l

Inf(ej , {q
′
j}, ~q)

Inf(yj, q, ~q) =

{

⊤ (qj ∈ q)
⊥ (qj 6∈ q)We have used the notation ↓h 〈p(l), q, ~q′〉. Intuitively, this should be semantially equivalent tothe union ∨

q∈q ↓h 〈p
(l), q, ~q′〉. Instead of using this as a de�nition, we prefer to hange the setof states of the automaton:

Ξ = {〈p(k), q, q1, . . . , qk〉 | p
(k) ∈ P, q ⊆ Q, ~q ∈ Qk}

Ξ0 = {〈p0, QF 〉 | p0 ∈ P0}
Φ(〈p(k), q, ~q〉, a(n)) =

∨

(p(k)(a(n)(~x),~y)=e)∈R Inf(e, q, ~q).In theory, this new alternating tree automaton ould have exponentially many more states.However, in pratie, and beause of the optimizations we will desribe now, this atually reduessigni�antly the number of states that need to be omputed.The setions below will use the semantial equivalene ∨

q∈q Inf(e, {q}, ~q) ≃ Inf(e, q, ~q) men-tioned above in order to simplify formulas.4.1.1 Cartesian fatorizationThe rule for the onstrutor expression b(m)(e1, . . . , em) an be written:
Inf(b(m)(e1, . . . , em), q, ~q) =

∨

~q′∈∆(q,b(m))

∧

j=1...,m

Inf(ej , {q
′
j}, ~q)RR n° 6107

12 Alain Frish , Haruo Hosoyawhere ∆(q, b(m)) = {~q′ | q ← b(m)(~q′) ∈ ∆, q ∈ q} ⊆ Qm. Now assume that we have adeomposition of this set ∆(q, b(m)) as a union of l Cartesian produts:
∆(q, b(m)) = (q1

1 × . . .× q1
m) ∪ . . . ∪ (ql

1 × . . . × ql
m)where the qi

j are sets of states. It is always possible to �nd suh a deomposition: at worst,using only singletons for the qi
j , we will have as many terms in the union as m-tuples in

∆(q, b(m)). But often, we an produe a deomposition with fewer terms in the union. Letus write Cart(∆(q, b(m)) for suh a deomposition (seen as a subset of (2Q)m). One an thenuse the following rule:
Inf(b(m)(e1, . . . , em), q, ~q) =

∨

(q1,...,q
m

)∈Cart(∆(q,b(m)))

∧

j=1,..,m

Inf(ej , qj , ~q)4.1.2 State partitioningIntuition The rule for proedure all enumerates all the possible states for the value of pa-rameters of the alled proedure. In its urrent form, this rule always produes a big union with
|Q|l terms. However, it may be the ase that we don't need fully preise information about thevalue of a parameter to do the bakward type inferene.Let us illustrate that with a simple example. Assume that the alled proedure p(1) has asingle parameter y1 and that it never does anything else with y1 than opying it (that is, any rulefor p whose right-hand side mentions y1 is of the form p(1)(a(n)(x1, . . . , xn), y1) = y1). Clearly,all the states 〈p, q, q′1〉 with q′1 ∈ q are equivalent, and similarly for all the states 〈p, q, q′′1〉 with
q′′1 6∈ q. This is beause whether the result of the proedure all will be or not in q only dependson the input tree (beause there might be other rules whose right-hand side don't involve y1at all) and on whether the value for the parameter is itself in q or not. In partiular, we don'tknow to know exatly in whih state the aumulator is. So the rule for alling this proedureould just be:

Inf(p(xh, e1), q, ~q)

=
∨

q′1∈Q

↓h 〈p, q, q′1〉 ∧ Inf(e1, {q
′
1}, ~q)

=

∨

q′1∈q

↓h 〈p, q, q′1〉 ∧ Inf(e1, {q
′
1}, ~q)

 ∪

∨

q′′1∈Q\q

↓h 〈p, q, q′′1〉 ∧ Inf(e1, {q
′′
1}, ~q)

=
(

↓h 〈p, q, q′1〉 ∧ Inf(e1, q, ~q)
)

∨
(

↓h 〈p, q, q′′1 〉 ∧ Inf(e1, Q\q, ~q)
)where in the last line q′1 (resp. q′′1) is hosen arbitrarily in q (resp. Q\q).A new rule More generally, in the rule for a all to a proedure p(l), we don't need to onsiderall the l-tuples ~q′, but only a subset of them that apture all the possible situations. First, weassume that for given proedure p(l) and output type q, one an ompute for eah j = 1, .., l anequivalene relation E〈p(l), q, j〉 suh that:

(∀j = 1, .., l. (q′j , q
′′
j) ∈ E〈p(l), q, j〉)⇒ 〈p(l), q, ~q′〉 ≃ 〈p(l), q, ~q′′〉 (∗)

INRIA

Towards Pratial Typeheking for Maro Tree Transduers 13Let us look again at the right-hand side of the de�nition for Inf(p(l)(xh, e1, . . . , el), q, ~q):
Inf(p(l)(xh, e1, . . . , el), q, ~q) =

∨

~q′∈Ql

↓h 〈p
(l), q, ~q′〉 ∧

∧

j=1,...,l

Inf(ej , {q
′
j}, ~q)

Let us split this union aording to the equivalene lass of the q′j modulo the relations E〈p(l), q, j〉.If for eah j, we hoose an equivalene lass qj for the relation E〈p(l), q, j〉 (we write qj ⊳

E〈p(l), q, j〉), then all the states 〈p(l), q, ~q′〉 with ~q′ ∈ q1×. . .×ql are equivalent to 〈p(l), q,C(q1 × . . .× ql)〉,where C is a hoie funtion (it piks an arbitrary element from its argument). We an thusrewrite the right hand-side to:
∨

q1⊳E〈p(l),q,1〉,...,ql⊳E〈p(l),q,l〉

↓h 〈p
(l), q,C(q1 × . . .× ql)〉 ∧

∨

~q′∈q1×...×ql

∧

j=1,...,l

Inf(ej , {q
′
j}, ~q)

The union of all the formulas ∧

j=1,..,l Inf(ej , {q
′
j}, ~q) for ~q′ ∈ q1 × . . . × ql is equivalent to

∧

j=1,..,l Inf(ej , qj , ~q). Consequently, we obtain the following new rule:
Inf(p(l)(xh, e1, . . . , el), q, ~q) =

∨

q1⊳E〈p(l),q,1〉,...,ql⊳E〈p(l),q,l〉

↓h 〈p
(l), q,C(q1 × . . .× ql)〉 ∧

∧

j=1,...,l

Inf(ej , qj , ~q)

In the worst ase, all the equivalene relations E〈p(l), q, j〉 are the identity, and the right-handside is the same as for the old rule. But if we an identify larger equivalene lasses, we ansigni�antly redue the number of terms in the union on the right-hand side.Computing the equivalene relations Now we will give an algorithm to ompute therelations E〈p(k), q, j〉 satisfying the ondition (∗). We will also de�ne equivalene relations
E[e, q, j] for any (n, k)-expression e (with j = 1, .., k), suh that:

(∀j = 1, .., k.(q′j , q
′′
j) ∈ E[e, q, j])⇒ Inf(e, q, ~q′) ≃ Inf(e, q, ~q′′)We an use the rules used to de�ne the formulas Inf(e, q, ~q) in order to obtain su�ient onditionsto be satis�ed so that these properties hold. We will express these onditions by a system ofequations. Before giving this system, we need to introdue some notations. If E1 and E2 are twoequivalene relations on Q, we write E1 ⊑ E2 if E2 ⊆ E1 (when equivalene relations are seenas subsets of Q2). The smallest equivalene relation for this ordering is the equivalene relationwith a single equivalene lass. The largest equivalene relation is the identity on Q. For twoequivalene relations E1, E2, we an de�ne their least upper bound E1 ⊔E2 as the set-theoretiintersetion. For an equivalene relation E and a set of states q, we write q ⊳ E if q is one ofthe equivalene lass modulo E. Abusing the notation by identifying an equivalene relationwith the partition it indues on Q, we will write {Q} for the smallest relation and {q,Q\q} forthe relation with the two equivalene lasses q and its omplement. The system of equations isderived from the rules used to de�ne the funtion Inf:

RR n° 6107

14 Alain Frish , Haruo Hosoya
E[b(m)(e1, . . . , em), q, i] ⊒

⊔

{E[ej , qj, i] | (q1, . . . , qm) ∈ Cart(∆(q, b(m))), j = 1..m}

E[p(l)(xh, e1, . . . , el), q, i] ⊒
⊔

{E[ej , qj, i] | qj ⊳ E〈p(l), q, j〉, j = 1..l}

E[yj, q, i] ⊒

{

{q,Q\q} (i = j)
{Q} (i 6= j)

E〈p(k), q, j〉 ⊒
⊔

{E[e, q, j] | p(k)(a(n)(~x), ~y) = e) ∈ R}Let us explain why these onditions imply the required properties for the equivalene rela-tion and how they are derived from the rules de�ning Inf. We will use an intuitive indu-tion argument (on expressions), even though a formal proof atually requires an indutionon trees. Consider the rule for the proedure all. The new rule we have obtained aboveimplies that in order to have Inf(p(l)(xh, e1, . . . , el), q, ~q′) ≃ Inf(p(l)(xh, e1, . . . , el), q, ~q′′), it issu�ient to have Inf(ej , qj ,
~q′) ≃ Inf(ej , qj,

~q′′) for all j = 1, .., l and for all qj ⊳ E〈p(l), q, j〉,and thus, by indution, it is also su�ient to have (q′i, q
′′
i) ∈ E[ej , qj, i] for all i, for all

j = 1, .., l and for all qj ⊳ E〈p(l), q, j〉. In other words, a su�ient ondition is (q′i, q
′′
i) ∈

⋂

{E[ej , qj, i] | qj ⊳ E〈p(l), q, j〉, j = 1..l}, from whih we obtain the equation above (we re-all that ⊔ orresponds to set-theoreti intersetion of relations). The reasoning is similar forthe onstrutor expression. Indeed, the rule we have obtained in the previous setion tells usthat in order to have Inf(b(m)(e1, . . . , em), q, ~q′) ≃ Inf(b(m)(e1, . . . , em), q, ~q′′), it is su�ient tohave Inf(ej , qj ,
~q′) ≃ Inf(ej , qj ,

~q′′) for all (q1, . . . , qm) ∈ Cart(∆(q, b(m))) and j = 1, ..,m.As we explained before, it is desirable to ompute equivalene relations with large equivalenelasses (that is, small for the ⊑ ordering). Here is how we an ompute a family of equivalenerelations satisfying the system of equations above. First, we onsider the CPO of funtionsmapping a triple (e, q, i) to an equivalene relation on Q and we reformulate the system ofequation as �nding an element x of this CPO suh that f(x) ⊑ x, where f is obtained from theright-hand sides of the equations. To ompute suh an element, we start from x0 the smallestelement of the CPO, and we onsider the sequene de�ned by xn+1 = xn ⊔ f(xn). Sine thissequene is monotoni and the CPO is �nite, the sequene reahes a onstant value after a �nitenumber of iterations. This value x satis�es f(x) ⊑ x as expeted. We onjeture that thiselement is atually a smallest �xpoint for f , but we have no proof of this fat (note that thefuntion f is not monotoni).4.1.3 Sharing the omputationGiven the rules de�ning the formulas Inf(e, q, ~q), we might end up omputing the same formulaseveral times. A very lassial optimization onsists in memoizing the results of suh omputa-tions. This is made even more e�etive by hash-onsing the expressions. Indeed, in pratie, fora given mtt proedure, many onstrutors have idential expressions.4.1.4 Complementing the outputIn the example at the beginning of the previous subsetion, we have displayed a formula whereboth Inf(e, q, ~q) and Inf(e,Q\q, ~q) appear. One may wonder what is the relation between thesetwo sub-formulas. Let us reall the required properties for these two formulas:
[[Inf(e, q, ~q)]] = {v | [[p]](~v, ~w) ∩ [[q]] 6= ∅}

[[Inf(e,Q\q, ~q)]] = {v | [[p]](~v, ~w) ∩ [[Q\q]] 6= ∅} INRIA

Towards Pratial Typeheking for Maro Tree Transduers 15(for ~w ∈ [[~q]]). Note that [[Q\q]] is the omplement of [[q]]. As a onsequene, if [[p]] is a totaldeterministi funtion (that is, if [[p]](~v, ~w) is always a singleton), then [[Inf(e,Q\q, ~q)]] is theomplement of [[Inf(e, q, ~q)]]. If we extend the syntax of formula in alternating tree automatawith negation (whose semantis is trivial to de�ne), we an thus introdue the following rule:
Inf(e, q, ~q) = ¬Inf(e,Q\q, ~q)to be applied e.g. when the ardinal of q is stritly larger than half the ardinal of Q. In pratie,we observed a huge impat of this optimization: the number of onstruted states is dividedby two in all our experienes, and the emptiness algorithm runs muh more e�iently. Also,beause of the memoization tehnique mentioned above, this optimization allows us to sharemore omputation. That said, we don't have a lear explanation for the very important impatof this optimization.The rule above an only be applied when the expression e denotes a total and deterministifuntion. We use a very simple syntati riterion to ensure that: we require all the reahableproedures p(k) to have exatly one rule p(k)(a(n)(x1, . . . , xn), y1, . . . , yk) → e for eah symbol

a(n).4.2 Emptiness algorithmIn this setion, we desribe an e�ient algorithm to hek emptiness of an alternating treeautomaton. Instead of giving diretly the �nal version of the algorithm whih would look quiteobsure, we prefer to start desribing formally a simple algorithm and then explain variousoptimizations.Let A = (Ξ,Ξ0,Φ) be an ata as de�ned in Setion 2.2. Negation (as introdued in Se-tion 4.1.4) will be onsidered later when desribing optimizations. The basi algorithm relies ona powerset onstrution to translate A into a bottom-up tree automaton M = (Q,QF ,∆). Wede�ne Q as the powerset 2Ξ. Intuitively, a state X = {X1, . . . ,Xm} in Q represents the inter-setion of the ata states Xi. For suh a state and a tag a(n), one must thus onsider the formula
ϕ(X,a(n)) =

∧

i=1,..,m Φ(Xi, a
(n)), and put in ∆ transitions of the form X ← a(n)(X1, . . . ,Xn)to mimi the formula ϕ(X,a(n)). First, we put ϕ(X,a(n)) in disjuntive normal form, using the

DNF funtion introdued in Setion 2:
ϕ(X,a(n)) ≃

∨

(X1,...,Xn)∈DNF(ϕ(X,a(n)))

∧

i=1,..,n

∧

X∈Xi

↓i XThe transition relation ∆ onsists of all the transitions X ← a(n)(X1, . . . ,Xn) suh that
(X1, . . . ,Xn) ∈ DNF(ϕ(X,a(n))). One de�nes QF = {{X} | X ∈ Ξ0}. One an easily establishthat [[X]]M =

⋂

X∈X [[X]]A and thus that L(M) = L(A).It is well-known that deiding emptiness of a bottom-up tree automaton an be done inlinear time. The lassial algorithm to do so works in a bottom up way and thus requires tofully materialize the automaton (whih is of exponential size ompared to the original ata).However, the onstrution above produes the automaton in a top-down way: for a given state
X, the onstrution gives all the transitions of the form X ← We an exploit this fat toderive an algorithm that doesn't neessarily require the whole automaton M to be built. Thealgorithm is given below in pseudo-ode. The funtion empty takes a state X and returns trueif it is empty or false otherwise. The test is done under a number of assertions represented bytwo global variables P,N whih stores sets ofM-states. The set stored in P (resp. N) represents
RR n° 6107

16 Alain Frish , Haruo Hosoyapositive (resp. negative) emptiness assumptions: states whih are assumed to be empty (resp.non-empty). When the state X under onsideration is neither in P or N, it is �rst assumed to beempty (added to P). This assumption is then heked reursively by exploring all the inomingtransitions (for all possible tags and all omponents of the disjuntive normal form orrespondingto this tag) and if a ontradition is found, the set of positive assumptions is baktraked and
X is added to the set of negative assumptions. This memoization-based sheme is standard foroindutive algorithms.funtion empty (X)if X ∈ P then return trueif X ∈ N then return falselet P_saved = P inP ← P ∪ {X};foreah a(n) ∈ Σif not (empty_formula (ϕ(X,a(n)))) thenP ← P_savedN := N ∪ {X}return falsereturn truefuntion empty_formula (φ)foreah (X1, . . . ,Xn) ∈ DNF(φ)if not (empty_sub (X1, . . . ,Xn)) thenreturn falsereturn truefuntion empty_sub (X1, . . . ,Xn)foreah 1 ≤ i ≤ nif (empty Xi) thenreturn truereturn falseThis algorithm is not linear in the size of the automatonM beause of the baktraking on P.This baktraking an be avoided (as desribed in [6℄, Chapter 7 or in [22℄), but the tehnique israther involved and would make the presentation of the optimizations quite obsure. Moreover,we have indeed implemented the non-baktraking version (with all the optimizations) but wedid not observe any notieable speedup in our tests.A �rst optimization improves the e�etiveness of the memoization sets P and N. It is based onthe fat that if X1 ⊆ X2 then [[X2]] ⊆ [[X1]]. As a onsequene, if X

′
⊆ X for some X

′
∈ P, then

empty(X) an immediately return true. Similarly, if X ⊆ X
′ for some X

′
∈ N, then empty(X)an immediately return false.Enumeration and pruning of the disjuntive normal form The disjuntive normal formof a formula an be exponentially larger than the formula itself. Our �rst improvement on-sists in not materializing it but enumerating it lazily with a pruning tehnique that avoids theexponential behavior in many ases.funtion empty_formula (φ) INRIA

Towards Pratial Typeheking for Maro Tree Transduers 17return (empty_dnf ([φ℄,(∅, . . . , ∅)))funtion empty_dnf (l,((X1, . . . ,Xn) as a)) =math l with| [℄ -> return false| ⊤ :: rest -> return (empty_dnf (rest,a))| ⊥ :: rest -> return true| φ1 ∨ φ2 :: rest ->if not (empty_dnf (φ1 :: rest,a)) then return falsereturn (empty_dnf (φ2 :: rest,a))| φ1 ∧ φ2 :: rest ->return (empty_dnf (φ1::φ2::rest,a))| ↓h X :: rest ->if empty (Xh ∪ {X})) then return truereturn (empty_dnf (rest,(X1, . . . ,Xh ∪ {X}, . . . ,Xn)))The �rst argument of empty_dnf is a list of formula whose onjuntion must be put indisjuntive normal form. The seond argument is an n-tuple (where n is the arity of the urrentsymbol) whih aumulates a �pre�x� of the urrent term of the disjuntive normal form beingbuilt. When an atomi formula ↓h X is found, the state X is added to the h-th omponent ofthe aumulator. Here we have inluded an important optimization: if the new state Xh ∪ {X}denotes an empty set, then one an prune the enumeration. For instane, for a formula of theform ↓1 X ∧ φ where X turns out to be empty, the enumeration will not even look at φ. Thisoptimization enfores the invariant that no omponent of the aumulator denotes an emptyset. As a onsequene, when the funtion empty_dnf reahes an empty list of formulas, theaumulator represents an element of the disjuntive normal form for whih empty_sub wouldreturn false.The order in whih we onsider the two sub-formulas φ1 and φ2 in the formulas φ1 ∧ φ2 and
φ1 ∨ φ2 might have a big impat on performanes. It might be worthwhile to look for heuristisguiding this hoie.Witness It is not di�ult to see that the algorithm an be further instrumented in order toprodue a witness for non-emptiness (that is, when empty(X) returns false, it also returns atree v whih belongs to [[X]]). To do so, we keep for eah state in N a witness, and we alsoattah a witness to eah omponent of the aumulator (X1, . . . ,Xn) in the enumeration forthe disjuntive normal form. When heking for the emptiness of Xh ∪ {X}, we know that Xhis a non-empty state, and we have at our disposal a witness v for this state. Before doing thereursive all to empty, we an �rst hek whether this witness v is in [[X]] (this an be donevery e�iently). If this is the ase, we know that Xh ∪ {X} is also non-empty. In pratie, thisoptimization avoids many alls to empty.Negation and re�exivity We have mentioned in Setion 4.1.4 an optimization whih intro-dues alternating formulas with negation. Using De Morgan's laws, we an push the negationdown and thus assume that it an only appear immediately above an atomi formula ↓i X. Ofourse, it is possible to get rid of the negation by introduing for eah state X a dual state
¬X whose transition formula (for eah tag) is the negation of the one for X; this only doublesthe number of states. However, we prefer to support diretly in the algorithm negated atomi
RR n° 6107

18 Alain Frish , Haruo Hosoyaformulas ¬ ↓i X, beause we an use the very simple fat that it denotes a set whih does notinterset ↓i X. The algorithm is thus modi�ed to work with pairs of sets of A-states, written
(X,Y), whih intuitively represents the set ⋂

X∈X [[X]]A\
⋃

Y ∈Y [[Y]]A. We de�ne ϕ((X,Y), a(n))as ∧

X∈X Φ(X,a(n))∧
∧

Y ∈Y ¬Φ(Y, a(n)). The fat mentioned above translates itself into a short-ut ase in the empty funtion: if the input is (X,Y) with X ∩ Y 6= ∅, then the result is true(meaning that (X,Y) trivially denotes an empty set of trees).The interesting ases for enumeration of the normal form are:| ↓h X :: rest ->if empty (Xh ∪ {X})) then return truereturn (empty_dnf (rest,((X1, Y 1), . . . , (Xh ∪ {X}, Y h), . . . , (Xn, Y n))))| ¬ ↓h Y :: rest ->if empty (Y h ∪ {Y })) then return truereturn (empty_dnf (rest,((X1, Y 1), . . . , (Xh, Y h ∪ {Y }), . . . , (Xn, Y n))))Preproessing Note the following trivial fats: For a formula φ1 ∧ φ2 to be empty, it issu�ient to have φ1 or φ2 empty; for a formula φ1 ∨ φ2 to be empty, it is su�ient to have φ1and φ2 empty; for a formula ↓i X to be empty, it is su�ient to have all the formulas Φ(X,a(n))empty; for a formula ¬ ↓i X to be empty, it is su�ient to have all the formulas ¬Φ(X,a(n))empty.Using these su�ient onditions and a largest �xpoint omputation, we get a sound ande�ient approximation of emptiness for formulas (it returns true only if the formula is indeedempty, but it may also return false is this ase). We use this approximate riterion to replaeany subformula φ whih is trivially empty with ⊥ and any subformula φ suh that ¬φ is triviallyempty with ⊤ (and then apply Boolean tautologies to eliminate ⊥ and ⊤ as arguments of ∨or ∧). In pratie, this optimization is very e�etive in reduing the size and omplexity offormulas involved in the real (exat) emptiness hek.5 ExperimentsWe have experimented on our typeheker with various XML transformations implemented asmtts. Although we did not try very big transformations, we did work with large input andoutput tree automata automatially generated from the XHTML DTD (without taking XMLattributes into aount). Note that beause this DTD has many tags, the mtts atually havemany transitions sine they typially opy tags, whih requires all onstrutors orresponding tothese tags to be enumerated. They do not have too many proedures, though. The bottom-updeterministi automaton that we generated from the XHTML DTD has 35 states.Table 1 gives the elapsed times spent in typeheking several transformations and the numberof states of the inferred alternating tree automaton that have been materialized. The experimentwas onduted on an Intel Pentium 4 proessor 2.80Ghz, running Linux kernel 2.4.27, and thetypeheking time inludes the whole proess (determinization of the output type, bakwardinferene, intersetion with the input type, emptiness hek). The typeheker is implementedin and ompiled by Objetive Caml 3.09.3.We also indiate the number of proedures in eah mtt, the maximum number of parameters,and the minimum integer b, if any, suh that the mtt is syntatially b-bounded opying. Intu-itively, the integer b aptures the maximum number of times the mtt traverses any node of theinput tree. This notion has been introdued in [12℄ where the existene of b is shown to implyINRIA

Towards Pratial Typeheking for Maro Tree Transduers 19the polynomiality of the algorithm desribed in that paper (see also Appendix A.2). Here, weobserve that even unbounded-opying mtts an be typeheked e�iently.Transformation: (1) (2) (3) (4) (5) (6) (7)# of proedures: 2 2 3 5 4 6 6Max # of parameters: 1 1 1 1 2 2 2Bounded opying: 1 1 2 ∞ ∞ 2 1Type-heking time (ms): 1057 1042 0373 0377 0337 0409 0410# of states in the ata: 147 147 43 74 37 49 49Table 1: Results of the experimentsUnless otherwise stated, transformations are heked to have type XHTML→XHTML (i.e., bothinput and output types are XHTML). Transformation (1) removes all the tags, keeping theirontents. Transformation (2) is a variant that drops the <div> tags instead. The typehekerdetets that the latter doesn't have type XHTML→XHTML by produing a ounter-example:<html><head><title/></head><body><div/></body>Indeed, removing the <div> element may produe a <body> element with an empty ontent,whih is not valid in XHTML. Transformation (3) opies all the <a> elements (and their orre-sponding subtrees) into a new <div> element and prepends the <div> to the <body> element.Transformation (4) groups together adjaent elements, onatenating their ontents. Trans-formation (5) extrats from an XHTML doument a tree of depth 2 whih represents the onep-tual nesting struture of <h1> and <h2> heading elements (note that, in XHTML, the strutureamong headings is �at). Transformation (6) builds a tree representing a table of ontents forthe top two levels of itemizations, giving setion and subsetion numbers to them (where thenumbers are onstruted as Peano numerals), and prepends the resulting tree to the <body>element. Transformation (7) is a variant that only returns the table of ontents.We have also translated some transformations (that an be expressed as mtts) used byTozawa and Hagiya in [26℄ (namely htmlopy, inventory, pref2app, pref2html, prefopy).Our implementation takes between 2ms and 6ms to typehek these mtts, exept for inventoryfor whih it takes 22 ms. Tozawa and Hagiya report performane between 5ms and 1000ms ona Pentium M 1.8 Ghz for the satis�ability hek (whih orresponds to our emptiness hek andexludes the time taken by bakward inferene). Although these results indiate our advantagesover them to some extent, sine the numbers are too small and they have not undertakenexperiments as big as ours, it is hard to draw a meaningful onlusion.6 Conlusion and Future WorkWe have presented an e�ient typeheking algorithm for mtts based on the idea of usingalternating tree automata for representing the preimage of the given mtt obtained from thebakward type inferene. This representation was useful for deriving optimization tehniqueson the bakward inferene phase suh as state partitioning and Cartesian fatorization, andwas also e�etive for speeding up the subsequent emptiness hek phase by exploiting Booleanequivalenes among formulas. Our experimental results on�rmed that our tehniques allowus to typehek small sizes of transformations with respet to the full XHTML type. Finally,
RR n° 6107

20 Alain Frish , Haruo Hosoyawe have also made an exat onnetion to two known algorithms, a lassial one and Maneth-Perst-Seidl's, the latter implying an important polynomial omplexity under a bounded-opyingrestrition.The present work is only the �rst step toward a truly pratial typeheker for mtts. Inthe future, we will seek for further improvements that allow typeheking larger and moreompliated transformations. In partiular, transformations with upward axes an be obtainedby ompositions of mtts as proved in [11℄ and a apability to typehek suh ompositions of mttsin a reasonable time will be important. We have some preliminary ideas for the improvementand plan to pursue them as a next step. In the end, we hope to be able to handle (at least areasonably large subset of) XSLT.Referenes[1℄ N. Alon, T. Milo, F. Neven, D. Suiu, and V. Vianu. XML with data values: Typehekingrevisited. In Proeedings of Symposium on Priniples of Database Systems (PODS), 2001.[2℄ A. W. Appel and D. B. MaQueen. Standard ML of New Jersey. In Third Int'l Symp.on Prog. Lang. Implementation and Logi Programming, pages 1�13. Springer-Verlag, Aug.1991.[3℄ V. Benzaken, G. Castagna, and A. Frish. CDue: An XML-entri general-purpose lan-guage. In Proeedings of the International Conferene on Funtional Programming (ICFP),pages 51�63, 2003.[4℄ J. Engelfriet and S. Maneth. A omparison of pebble tree transduers with maro treetransduers. Ata Informatia, 39(9):613�698, 2003.[5℄ J. Engelfriet and H. Vogler. Maro tree transduers. J. Comput. Syst. Si., 31(1):710�146,1985.[6℄ A. Frish. Théorie, oneption et réalisation d'un langage de programmation adapté à XML.PhD thesis, Universit Paris 7, 2004.[7℄ H. Hosoya. Regular expression �lters for XML. Journal of Funtional Programming,16(6):711�750, 2006. Short version appeared in Proeedings of Programming Tehnolo-gies for XML (PLAN-X), pp.13�27, 2004.[8℄ H. Hosoya and B. C. Piere. XDue: A typed XML proessing language. ACM Transationson Internet Tehnology, 3(2):117�148, 2003. Short version appeared in Proeedings of ThirdInternational Workshop on the Web and Databases (WebDB2000), volume 1997 of LetureNotes in Computer Siene, pp. 226�244, Springer-Verlag.[9℄ H. Hosoya, J. Vouillon, and B. C. Piere. Regular expression types for XML. ACM Transa-tions on Programming Languages and Systems, 27(1):46�90, 2004. Short version appeared inProeedings of the International Conferene on Funtional Programming (ICFP), pp.11-22,2000.[10℄ X. Leroy, D. Doligez, J. Garrigue, J. Vouillon, and D. Rémy. The Objetive Caml system.Software and doumentation available on the Web, http://pauilla.inria.fr/oaml/,1996. INRIA

Towards Pratial Typeheking for Maro Tree Transduers 21[11℄ S. Maneth, T. Perst, A. Berlea, and H. Seidl. XML type heking with maro tree trans-duers. In Proeedings of Symposium on Priniples of Database Systems (PODS), pages283�294, 2005.[12℄ S. Maneth, T. Perst, and H. Seidl. Exat XML type heking in polynomial time. InInternational Conferene on Database Theory (ICDT), pages 254�268, 2007.[13℄ W. Martens and F. Neven. Typeheking top-down uniform unranked tree transduers. InProeedings of International Conferene on Database Theory, pages 64�78, 2003.[14℄ W. Martens and F. Neven. Frontiers of tratability for typeheking simple XML transfor-mations. In Proeedings of Symposium on Priniples of Database Systems (PODS), pages23�34, 2004.[15℄ T. Milo and D. Suiu. Type inferene for queries on semistrutured data. In Proeedings ofSymposium on Priniples of Database Systems, pages 215�226, Philadelphia, May 1999.[16℄ T. Milo, D. Suiu, and V. Vianu. Typeheking for XML transformers. In Proeedingsof the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Priniples of DatabaseSystems, pages 11�22. ACM, May 2000.[17℄ A. Møller, M. Ø. Olesen, and M. I. Shwartzbah. Stati validation of XSL Transformations.Tehnial Report RS-05-32, BRICS, Otober 2005. Draft, aepted for TOPLAS.[18℄ M. Murata. Transformation of douments and shemas by patterns and ontextual ondi-tions. In Priniples of Doument Proessing '96, volume 1293 of Leture Notes in ComputerSiene, pages 153�169. Springer-Verlag, 1997.[19℄ K. Nakano and S.-C. Mu. A pushdown mahine for reursive XML proessing. In APLAS,pages 340�356, 2006.[20℄ T. Perst and H. Seidl. Maro forest transduers. Information Proessing Letters, 89(3):141�149, 2004.[21℄ G. Slutzki. Alternating tree automata. Theoretial Computer Siene, 41:305�318, 1985.[22℄ T. Suda and H. Hosoya. Non-baktraking top-down algorithm for heking tree automataontainment. In Proeedings of Conferene on Implementation and Appliations of Au-tomata (CIAA), pages 83�92, 2005.[23℄ A. Tozawa. Towards stati type heking for XSLT. In Proeedings of ACM Symposiumon Doument Engineering, 2001.[24℄ A. Tozawa. XML type heking using high-level tree transduer. In Funtional and LogiProgramming (FLOPS), pages 81�96, 2006.[25℄ A. Tozawa and M. Hagiya. XML shema ontainment heking based on semi-impliit teh-niques. In 8th International Conferene on Implementation and Appliation of Automata,volume 2759 of Leture Notes in Computer Siene, pages 213�225. Springer-Verlag, 2003.[26℄ A. Tozawa and M. Hagiya. E�ient deision proedure for a logi for XML. unpublishedmanusipt, 2004.
RR n° 6107

22 Alain Frish , Haruo HosoyaA ComparisonIn this setion, we ompare our algorithm with two existing algorithms, the lassial one basedon funtion enumeration and the Maneth-Perst-Seidl algorithm.A.1 Classial AlgorithmThe lassial algorithm presented here is known as a folklore. Variants an be found in theliterature for deterministi mtts [4℄ and for maro forest transduers [20℄. The algorithm takesa dbtaM = (Q,QF ,∆) and an mtt T = (P,P0,Π) and builds a dbta N ′ = (D,DF , δ) where:
D = {〈p(m), ~q〉 | p(m) ∈ P, ~q ∈ Qm} → 2Q

DF = {d ∈ D | p0 ∈ P0, d(〈p0〉) ∩QF 6= ∅}

δ = {d← a(n)(~d) | d(〈p(m), ~q〉) =
⋃

(p(m)(a(n)(~x),~y)→e)∈Π DInf(e, ~d, ~q)}Here, the funtion DInf is de�ned as follows.
DInf(b(m)(e1, . . . , em), ~d, ~q) = {q′ | q′ ← b(m)(~q′) ∈ ∆, q′j ∈ DInf(ej , ~d, ~q) ∀j = 1, . . . ,m }

DInf(p(xh, e1, . . . , el), ~d, ~q) =
⋃

{dh(〈p, ~q′〉) | q′i ∈ DInf(ei, ~d, ~q), i = 1, . . . , l}

DInf(yj , ~d, ~q) = {qj}The onstruted automaton N ′ has, as states, the set of all funtions that map eah pair of aproedure and parameter types to a set of states. Intuitively, eah state d represents the set oftrees v suh that, given a proedure p(m) and states ~q, the set of results of evaluating p withthe tree v and parameters ~w of types ~q is exatly desribed by the states d(〈p, ~q〉). Thus, theinitial states DF represent the set of trees v suh that the set of results from evaluating an initialproedure p0 with v ontains a tree aepted by the given dbtaM.The funtion DInf omputes, from given expression e, states ~d from D, and states ~q from Q,the set of states that exatly desribes the set of results of evaluating e with a tuple ~v of treesof types ~d and parameters of types ~q. Then we an ollet in δ transitions d ← a(n)(~d) for all
a(n) and all ~d suh that d is omputed for all p(m) and all ~q by using DInf with the expressionon p(m)'s eah rule for the symbol a(n). By this intuition, eah of the three ases for DInf anbe understood as follows.� The set of results of evaluating the onstrutor expression b(m)(e1, . . . , em) is desribed bythe set of states ~q′ that have a transition q′ ← b(m)(~q′) ∈ ∆ suh that eah q′i desribes theresults of evaluating the orresponding subexpression ei.� The set of results of evaluating the proedure all p(xh, e1, . . . , el) is the set of results ofevaluating p with the h-th input tree vh and parameters resulted from evaluating eah ei.This set an be obtained by olleting the results of applying the funtion dh to p and ~q′where eah q′i is one of the states that desribe the set of results of ei.� The set of results of evaluating the variable expression yj is exatly desribed by its type

qj.Thus, the intuition behind is rather di�erent from our approah. Nevertheless, we an provethat the resulting automaton from the lassial algorithm is isomorphi to the one obtained fromour approah followed by determinization.
INRIA

Towards Pratial Typeheking for Maro Tree Transduers 23Determinization of an ata an be done as follows. From an ata A = (Ξ,Ξ0,Φ), we build adbta N = (R,RF ,Γ) where
R = 2Ξ

RF = {r ∈ Ξ | r ∩ Ξ0 6= ∅}

Γ = {r ← a(n)(~r) | r = {X | ~r ⊢ Φ(X,a(n))}}.Here, the judgment ~r ⊢ φ is de�ned indutively as follows.� ~r ⊢ φ1 ∧ φ2 if ~r ⊢ φ1 and ~r ⊢ φ2.� ~r ⊢ φ1 ∨ φ2 if ~r ⊢ φ1 or ~r ⊢ φ2.� ~r ⊢ ⊤.� ~r ⊢↓i X if X ∈ ri.That is, ~r ⊢ φ intuitively means that φ holds by interpreting eah ↓i X as �X is a member ofthe set ri�.The intuition behind determinization of an ata is the same as that of a nondeterministitree automaton. That is, eah state r in N denotes the set of trees v that have type X for allmembers X of r and do not have type Y for all non-members Y of r.
[[r]] =

⋂

X∈r

[[X]] \
⋃

Y 6∈r

[[Y]] (6)This implies that any tree annot have type r and r′ at the same time when r 6= r′. Thus, thestates of the tree automaton N form a partition of all the trees, that is, N is omplete anddeterministi. From this, we an understand the equivalene between A and N sine eah �nalstate in N ontains an initial state in the original ata A and therefore the set of suh �nal statesforms a partition of the sets denoted by the initial states of A. Then, by using the formula (6),the interpretation �X is ontained in ri� of ↓i X in the judgment ~r ⊢ φ implies that [[ri]] ⊆ [[X]].Here, we an see a parallelism between the intuition of the judgment ~v ⊢ φ (where ↓i X isinterpreted �vi ∈ [[X]]�) and that of ~r ⊢ φ. Indeed, a key property to the proof below is: ~v ⊢ φ ifand only if ~r ⊢ φ for some ~r suh that ~v ∈ [[~r]].Proposition 2 A and N are equivalent.Proof: To prove the result, it su�es to show the following.
v ∈ [[r]] ⇐⇒ r = {X | v ∈ [[X]]}. (7)(Note that this is a rewriting of the equation (6).) Indeed, this implies

v ∈ L(N) ⇐⇒ v ∈ [[RF]]

by(7)
⇐⇒ ∃r. (r ∩ Ξ0 6= ∅ ∧ r = {X | v ∈ [[X]]})

⇐⇒ ∃X ∈ Ξ0. v ∈ [[X]]

⇐⇒ v ∈ L(A).The proof proeeds by indution on the struture of v. To show (7), the following is su�ient
(∃~r. ~v ∈ [[~r]] ∧ ~r ⊢ φ) ⇐⇒ ~v ⊢ φ. (8)RR n° 6107

24 Alain Frish , Haruo Hosoyasine this implies (7):
a(n)(~v) ∈ [[r]] ⇐⇒ ∃(r ← a(n)(~r)) ∈ Γ. ~v ∈ [[~r]]

⇐⇒ ∃~r. r = {X | ~r ⊢ Φ(X,a(n))} ∧ ~v ∈ [[~r]]

by(8)
⇐⇒ r = {X | ~v ⊢ Φ(X,a(n))}

⇐⇒ r = {X | a(n)(~v) ∈ [[X]]}.The proof of (8) itself is done by indution on the struture of φ. The �only if� diretion isstraightforward. For the �if� diretion, let ri = {X | vi ∈ [[X]]} for i = 1, . . . , n. By theindution hypothesis, (7) gives vi ∈ [[ri]]. The rest is ase analysis on φ.� Case φ = ⊥. This never arises.� Case φ = ⊤. This ase trivially holds.� Case φ =↓h X. From ~v ⊢ φ, we have vh ∈ [[X]] and therefore X ∈ rh by the de�nition of
rh. This implies the result.� Case φ = φ1 ∧ φ2. By the indution hypothesis, ~v ∈ [[~r′]] and ~r′ ⊢ φ1 with ~v ∈ [[~r′′]] and
~r′′ ⊢ φ2 for some ~r′ and ~r′′. Sine N is deterministi, both ~r′ and ~r′′ atually equal to ~r.Hene the result follows.� Case φ = φ1 ∨ φ2. Similar to the previous ase. �Proposition 3 Let N be obtained by determinizing the ata from the last setion. Then, N and

N ′ are isomorphi.Proof: De�ne the funtion β from D to R as follows:
β(d) = {〈p(m), q, ~q〉 | p(m) ∈ P, ~q ∈ Qm, q ∈ d(〈p, ~q〉)}Clearly, β is bijetive: β−1(r)(〈p, ~q〉) = {q | 〈p(m), q, ~q〉 ∈ r}. It remains to show that β is anisomorphism between N and N ′, that is, (1) β(DF) = RF and (2) β(δ(d)) = Γ(β(d)) for eah

d. The ondition (1) learly holds sine d(p0) ∩QF 6= ∅ i� 〈p0, q〉 ∈ β(d) for some q ∈ QF . Toprove (2), it su�es to show
q ∈ DInf(e, ~d, ~q) i� β(~d) ⊢ Inf(e, q, ~q).Here, β(d1, . . . , dk) stands for (β(d1), . . . , β(dk)). The proof is by indution on the struture of

e. � Case e = b(m)(e1, . . . , em).
q ∈ DInf(e, ~d, ~q) ⇐⇒ ∃(q ← b(m)(~q′)) ∈ ∆. ∀j. q′j ∈ DInf(ej , ~d, ~q)

byI.H.
⇐⇒ ∃(q ← b(m)(~q′)) ∈ ∆. ∀j. β(~d) ⊢ Inf(ej , q

′
j, ~q)

⇐⇒ β(~d) ⊢
∨

(q←b(m)(~q′))∈∆

∧

j=1...,m

Inf(ej , q
′
j, ~q)

⇐⇒ β(~d) ⊢ Inf(e, q, ~q) INRIA

Towards Pratial Typeheking for Maro Tree Transduers 25� Case e = p(xh, e1, . . . , el).
q ∈ DInf(e, ~d, ~q) ⇐⇒

⋃

{dh(p, ~q′) | q′i ∈ DInf(ei, ~d, ~q), i = 1, . . . , l}

⇐⇒ ∃~q′. q ∈ dh(p, ~q′) and ∀i. q′i ∈ DInf(ei, ~d, ~q′)
byI.H.
⇐⇒ ∃~q′. 〈p, q, ~q′〉 ∈ β(dh) and ∀i. β(~d) ⊢ Inf(ei, q, ~q′)

⇐⇒ β(~d) ⊢
∨

~q′∈Ql

∧

i=1,...,l

Inf(ei, q, ~q′)∧ ↓i 〈p, q, ~q′〉

⇐⇒ β(~d) ⊢ Inf(e, q, ~q)� Case e = yj . First, q ∈ DInf(yj, ~d, ~q) i� q = qj. If q = qj, then Inf(e, q, ~q) = ⊤ andtherefore the RHS holds. If q 6= qj, then Inf(e, q, ~q) = ⊥ and therefore the RHS does nothold. �A.2 Maneth-Perst-Seidl AlgorithmFirst, for simpliity in omparing the two algorithms, following [12℄, we onsider an mtt wherethe input type is already enoded into proedures. That is, instead of the original mtt T , wetake an mtt T ′ and a btaMin suh that
T ′(v) =

{

T (v) (v ∈ L(Min))
∅ (otherwise).That is, T ′ behaves exatly the same as T for the inputs from L(Min) but returns no result forthe other inputs. See [12℄ for a onrete onstrution. Having done this, we only need to hekthat {v | T ′(v) ∩ L(M) 6= ∅} = ∅.In Maneth-Perst-Seidl algorithm, we onstrut a new mtt U from T ′ = (P,P0,Π) speializedto the output-type dbtaM = (Q,QF ,∆) suh that U(v) = T ′(v) ∩ L(M) for any tree v. Thisan be done by onstruting the mtt U = (S, S0,Ω) where

S = {〈p(m), q, ~q〉
(m)
| p(m) ∈ P, q, ~q ∈ Qm}

S0 = {〈p0, q〉 | p0 ∈ P0, q ∈ QF}

Ω = {〈p(m), q, ~q〉(a(n)(~x), ~y)→ e′ | (p(m)(a(n)(~x), ~y)→ e) ∈ Π, e′ ∈ Spec(e, q, ~q)}.Here, we de�ne the funtion Spec as follows.
Spec(a(e1, . . . , en), q, ~q) = {a(e′1, . . . , e

′
n) | q ← a(q′1, . . . , q

′
n) ∈ ∆, ∀i. e′i ∈ Spec(ei, q

′
i, ~q)}

Spec(p(xh, e1, . . . , el), q, ~q) = {〈p, q, ~q′〉(xh, e′1, . . . , e
′
l) |

~q′ ∈ Ql, ∀i. e′i ∈ Spec(ei, q
′
i, ~q)}

Spec(yi, q, ~q) = {yi}Intuitively, eah proedure 〈p, q, ~q〉 in the new mtt U yields, for any input value v and for anyparameters ~w of types ~q, the same results as p but restrited to type q:
[[〈p(m), q, ~q〉]](v, ~w) = [[p(m)]](v, ~w) ∩ [[q]]Similarly, Spec(e, q, ~q) yields, for any input values ~v and for all parameters ~w of types ~q, thesame results as e but restrited to type q:
[[Spec(e, q, ~q)]](~v, ~w) = [[e]](~v, ~w) ∩ [[q]]RR n° 6107

26 Alain Frish , Haruo HosoyaAfter thus onstruting the mtt U , the remaining is to hek that the translation of U is empty,i.e., U(v) = ∅ for any value v. This an be done as follows. De�ne �rst the following system ofimpliations ρ′ where we introdue propositional variables X onsisting of all subsets of S:
ρ′ = {X ⇐ X1 ∧ . . . ∧Xn | ∃a

(n). ∃e1, . . . , ek. ∀s(m) ∈ X. ∃j. (s(m)(a(n)(~x), ~y)→ ej) ∈ Ω,

∀i = 1, . . . , n. Xi = {s′ ∈ S | ∃j = 1, . . . , k. s′(xi, . . .) ours in ej}}and then verify that ρ′ ⊢ {s} for some s ∈ S0. Intuitively, eah propositional variable X denoteswhether there is some input v from whih any proedure in the set X translates to some valuewith some parameters:
∃v. ∀s(m) ∈ X. ∃~w. [[s(m)]](v, ~w) 6= ∅Now, we an prove that the system of impliations obtained from the MPS and the one fromour algorithm are exatly the same. From this, we an diretly arry over useful properties foundfor the MPS algorithm to our algorithm. In partiular, our algorithm has the same polynomialtime omplexity under the restrition of a �nitely bounded number of opying [12℄.Proposition 4 Given an input type that aepts all trees and the mtt T ′ de�ned above, let Aand ρ be the ata and the system of impliations obtained by the algorithm in Setion 3. Let Ξ0be A's initial states. Then, (ρ,Ξ0) and (ρ′, S0) are idential.Proof: Note that both ρ and ρ′ onsist of all variables X where X is from the set P ×Q×Qm.The result follows by showing X ⇐ X1 ∧ . . .∧Xn ∈ ρ i� X ⇐ X1 ∧ . . . ∧Xn ∈ ρ′. It su�es toshow for any X and i,

∃e1, . . . , ek. ∀s ∈ X. ∃j. (s(a(~x), ~y)→ ej) ∈ Ω,X i = {s′ ∈ S | ∃j = 1, . . . , k. s′(xi, . . .) ours in ej}i�
(X1, . . . ,Xn) ∈ DNF(

∧

s∈X

Φ(s, a)).This follows by showing that, for all (X1, . . . ,Xn) ∈ DNF(Inf(e1, q1, ~q1) ∧ . . . ∧ Inf(ek, qk, ~qk)),
∃j = 1, . . . , k. s′(xi) ours in Spec(ej , qj, ~qj) ⇐⇒ s′ ∈ Xi.This an be proved by indution on |e1|+ . . . + |ek| where |e| is the size of e. �Corollary 1 For any b-bounded opying mtt, our algorithm runs in polynomial time.B Alternating tree automata with bounded traversingThe orollary in the last setion depends on the proof of polynomiality from [12℄. It gives theinformation that the emptiness hek for alternating automata has polynomial time omplexitywhen the alternating automata is obtained by the basi bakward inferene algorithm fromSetion 3 when applied to a b-bounded opying mtt. It seems natural to look for a ounterpart ofthe notion of b-bounded opying for alternating automata that diretly ensures the polynomialityof the emptiness hek.Let A = (Ξ,Ξ0,Φ) be an ata. For eah state X ∈ Ξ, we de�ne the maximal traversal number

b[X] as the least �xpoint of a onstraint system over N = {1 < 2 < . . . < ∞}, the omplete
INRIA

Towards Pratial Typeheking for Maro Tree Transduers 27lattie of naturals extended with ∞. The onstraint system onsists of all the onstraints of theform:
b[X] ≥ bi[Φ(X,a(n))]for a(n) ∈ Σ and 1 ≤ i ≤ n, where bi[φ] is de�ned indutively:

bi[⊤] = 0
bi[⊥] = 0
bi[φ1 ∧ φ2] = bi[φ1] + bi[φ2]
bi[φ1 ∨ φ2] = max(bi[φ1], bi[φ2])

bi[↓h X] =

{

b[X] if i = h

0 if i 6= hThe ata A is (syntatially) b-bounded traversing if b[X] ≤ b for all X ∈ X0.We mention without proving it formally that when we apply our bakward inferene algo-rithm to a b-bounded opying mtt, then the resulting ata is b-bounded traversing. More preisely,we an show that b[〈p(k), q, ~q〉] ≤ b[p(k)] where b[p(k)] denotes the maximal opy number for theproedure p(k), as de�ned in [12℄. As a matter of fat, the optimizations given in Setion 4.1preserve this property (but the ata formally has exponentially many more states, even if inpratie only a fration of them is going to be materialized).Now it remains to establish that the emptiness hek for a b-bounded traversing ata runsin polynomial time. We de�ne b[X] as ΣX∈Xb[X]. For any b-formula φ and (X1, . . . ,Xn) ∈

DNF(φ) and 1 ≤ i ≤ n, we observe that b[Xi] ≤ bi[φ]. The proof is by indution on the strutureof φ. As a onsequene, for any (X1, . . . ,Xn) ∈ DNF(
∧

X∈X Φ(X,a(n))), we have b[X i] ≤ b[X].So, if the ata is b-bounded traversing, then the emptiness hek algorithm will only onsider setof states X suh that b[X] ≤ b. Sine b[X] is a lower bound for the ardinal of X (beause
b[X] ≥ 1 for all X), we see that the algorithm only looks at a polynomial number of set of states
X. To onlude this setion, we observe that the intersetion of a b-bounded traversal ata anda b′-bounded traversal ata is a (b + b′)-bounded traversal ata, and that a non-deterministi treeautomaton is isomorphi to a 1-bounded traversal ata. This is useful to typehek a b-boundedopying mtt, beause we need to ompute the intersetion of the inferred ata, whih is b-boundedtraversal, and of the input type, whih is given by a non-deterministi tree automaton. As aresult, we obtain a (b + 1)-bounded ata.

RR n° 6107

28 Alain Frish , Haruo HosoyaContents1 Introdution 32 Preliminaries 42.1 Maro Tree Transduers . 42.2 Tree Automata and Alternation . 53 Typeheking 63.1 Bakward inferene . 63.2 Emptiness hek . 104 Algorithm and optimizations 114.1 Bakward inferene . 114.1.1 Cartesian fatorization . 114.1.2 State partitioning . 124.1.3 Sharing the omputation . 144.1.4 Complementing the output . 144.2 Emptiness algorithm . 155 Experiments 186 Conlusion and Future Work 19A Comparison 22A.1 Classial Algorithm . 22A.2 Maneth-Perst-Seidl Algorithm . 25B Alternating tree automata with bounded traversing 26

INRIA

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le ChesnayCedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

