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Abstract: Peer-to-peer (P2P) computing offers new opportunities for building highly distributed 
data systems. Unlike client-server computing, P2P is a very dynamic environment where peers 
can join and leave the network at any time. This yields important advantages such as operation 
without central coordination, peers autonomy, and scale up to large number of peers. However, 
providing high-level data management services is difficult. Most techniques designed in distrib-
uted database systems which statically exploit schema and network information no longer apply. 
New techniques are needed which should be decentralized, dynamic and self-adaptive. In this 
paper, we survey the techniques which have been developed for query processing in P2P sys-
tems. We first give an overview of the existing P2P networks, and compare their properties from 
the perspective of data management. Then, we discuss the approaches which are used for 
schema mapping. Then, we describe the algorithms which have been proposed for query rout-
ing. In particular, we focus on query routing in unstructured networks and DHTs. Finally, we 
present the techniques which have been proposed for processing complex queries, e.g. top-k 
queries, in P2P systems, in particular in DHTs. 

Keywords: P2P systems, query processing, schema mapping, query routing, complex queries, 
top-k queries. 
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Traitement de Requêtes dans les Systèmes Pair-à-Pair 
 

 

Résumé: Le pair-à-pair (P2P) fournit de nouvelles opportunités pour construire des systèmes de 
gestion de données distribués à grande échelle. Contrairement au client-serveur, le P2P est un 
environnement très dynamique, où les pairs peuvent rejoindre ou quitter le réseau à tout mo-
ment. Ceci offre des avantages importants comme la décentralisation du contrôle, l’autonomie 
des pairs et le passage à l’échelle en nombre de pairs. Mais le support de services de gestion de 
gestion  de données de haut niveau est difficile car les techniques de gestion de bases de don-
nées distribuées qui exploitent statiquement un schéma ne sont pas applicables. Nous avons be-
soin de nouvelles techniques qui soient décentralisées, dynamiques et adaptatives. Dans cet arti-
cle, nous étudions les techniques développées pour le traitement de requêtes dans les systèmes 
P2P. Nous commençons par une introduction aux réseaux P2P et une comparaison de leurs pro-
priétés du point de vue de la gestion de données. Puis nous présentons les approches à la gestion 
de schémas et les algorithmes proposés pour le routage de requêtes. En particulier, nous nous 
intéressons aux réseaux non structurés et aux DHTs. Enfin, nous présentons les techniques pro-
posées pour le traitement de requêtes complexes, par ex. top-k, dans les systèmes P2P, en parti-
culier, dans les DHTs. 

Mots clés: Systèmes P2P, traitement de requêtes, traduction de schémas, routage de requêtes, 
requêtes complexes, requêtes top-k.  
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1 Introduction 

Data management in distributed systems has been traditionally achieved by distributed database 

systems [OV99] which enable users to transparently access and update several databases in a 

network using a high-level query language (e.g. SQL). Transparency is achieved through a 

global schema which hides the local databases’ heterogeneity. In its simplest form, a distributed 

database system is a centralized server that supports a global schema and implements distrib-

uted database techniques (query processing, transaction management, consistency management, 

etc.). This approach has proved effective for applications that can benefit from centralized con-

trol and full-fledge database capabilities, e.g. information systems. However, it cannot scale up 

to more than tens of databases.  Data integration systems [TV00, TRV98] extend the distributed 

database approach to access data sources on the Internet with a simpler query language in read-

only mode. Parallel database systems [Val93] also extend the distributed database approach to 

improve performance (transaction throughput or query response time) by exploiting database 

partitioning in a multiprocessor or cluster system. Although data integration systems and parallel 

database systems can scale up to hundreds of data sources or database partitions, they still rely 

on a centralized global schema and strong assumptions about the network. 

In contrast, P2P systems adopt a completely decentralized approach to resource manage-

ment. By distributing data storage, processing, and bandwidth across autonomous peers in the 

network, they can scale without the need for powerful servers. P2P systems have been success-

fully used for sharing computation, e.g. Seti@home [ACKL+02, Set06] and Genome@home 

[LSP03, Gen06], communication, e.g. ICQ [Icq06] and Jabber [Jab03], internet services, e.g. 

P2P multicast systems [CDKR02, LRSS02, CJKR+03, BKRS+04] and security applications 

[KR02, JWZ03, VAS04], or data, e.g. Gnutella [Gnu06, JAB01, Jov00], KaZaA [Kaz06] and 

PeerDB [OST03, SOTZ03].  

There are several features that distinguish P2P systems from traditional distributed database 

systems (DDBS) and make it difficult to provide advanced data management services over P2P 

networks [SOTZ03]: 

• Peers are very dynamic and can join and leave the system anytime. However, in DDBS, 

nodes are added to and removed from the system in a controlled manner. 

• Usually there is no predefined global schema for describing the data which are shared by 

the peers. 

• In P2P systems, the answers to queries are typically incomplete. The reason is that some 

peers may be absent at query execution time. In addition, due to the very large scale of the 

network, forwarding a query to all peers can be very inefficient. 

• In P2P systems, there is no centralized catalog that can be used to determine the peers that 

hold relevant data to a query. However, such a catalog is an essential component of DDBS. 

Initial research on P2P systems has focused on improving the performance of query routing in 

the unstructured systems which rely on flooding. This work led to structured solutions based on 

distributed hash tables (DHT), e.g. CAN [RFHK+01] and Chord [SMKK+01], or hybrid solu-

tions with super-peers [NSS03].  
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Although very useful, most of the initial P2P systems are quite simple (e.g. file sharing), support 

limited functions (e.g. keyword search) and use simple techniques (e.g. resource location by 

flooding) which have performance problems. In order to overcome these limitations, recent 

works have concentrated on supporting advanced applications which must deal with semanti-

cally rich data (e.g. XML documents, relational tables, etc.) using a high-level SQL-like query 

language, e.g. ActiveXML [ABCM+03], Edutella [NWQD+02, NSS03], Piazza [HIMT03, 

TIMH+03], PIER [HHLT+03]. 

One of the main services which are needed for supporting advanced P2P applications is a 

query processing service which deals with schema-based queries. However, providing such a 

service in P2P systems is quite challenging because of the specific features of these systems, e.g. 

lack of a global schema. Most techniques designed for distributed database systems which stati-

cally exploit schema and network information no longer apply. New techniques are needed 

which should be decentralized, dynamic and self-adaptive. Therefore, novel techniques have 

been proposed to perform decentralized schema mapping, to route queries to relevant peers 

without relying on a centralized catalog, and to execute queries, especially complex queries such 

as top-k queries, in a fully distributed fashion while taking into account the dynamic behavior of 

peers. 

In this paper, we survey the techniques which have been proposed for query processing in 

P2P systems. In particular, we focus on schema-based queries which essential for advanced data 

management applications. We first give an overview of the existing P2P networks, and compare 

their properties from the perspective of data management. Then, we discuss the approaches 

which are used in P2P systems for schema mapping. Then, we present the algorithms which 

have been proposed for routing queries to relevant peers. In particular, we focus on query rout-

ing in unstructured networks and DHTs. Then, we present the techniques which have been pro-

posed for processing complex queries in P2P systems, in particular in DHTs. Examples of com-

plex queries are top-k queries, join queries, range queries and multi-attribute queries. 

 The rest of this paper is organized as follows. In Section  2, we present and discuss P2P 

networks. In Section  3, we present schema mapping in P2P systems. In Section  4, we focus on 

query routing in P2P systems. Section  5 deals with complex queries. Section  6 concludes. 

2 P2P Networks 

All P2P systems rely on a P2P network to operate. This network is built on top of the physical 

network (typically the Internet), and thus referred to as overlay network. The degree of centrali-

zation and the topology of the overlay network strongly impact the nonfunctional properties of 

the P2P system, such as fault-tolerance, self-maintainability, performance, scalability, and secu-

rity. For simplicity, we consider three main classes of P2P networks: unstructured, structured, 

and super-peer. 

2.1 Unstructured 

In unstructured P2P networks, the overlay network is created in a nondeterministic (ad hoc) 

manner and data placement is completely unrelated to the overlay topology. Each peer knows its 

neighbors, but does not know the resources they have. Query routing is typically done by flood-

in
ria

-0
01

28
22

1,
 v

er
si

on
 2

 - 
6 

Fe
b 

20
07



Survey of query processing in P2P systems  5 

RR n° 6112 

ing the query to the peers that are in limited hop distance from the query originator. There are 

also more sophisticated and efficient query routing techniques in unstructured systems (see Sec-

tion  4 for more details).  

There is no restriction on the manner to describe the desired data (query expressiveness), 

i.e. key look-up, SQL-like query, and other approaches can be used. Fault-tolerance is very high 

since all peers provide equal functionality and are able to replicate data. In addition, each peer is 

autonomous to decide which data to store. However, the main problems of unstructured net-

works are scalability and incompleteness of query results. Query routing mechanisms based on 

flooding usually do not scale up to a large number of peers because of the huge amount of load 

which they incur on the network. Also, the incompleteness of the results can be high since some 

peers containing relevant data may not be reached because they are too far away from the query 

originator. 

Examples of P2P systems supported by unstructured networks include Gnutella [Jov00, 

JAB01, Gnu06], KaZaA [Kaz06] and FreeHaven [DFM00]. 

2.2 Structured 

Structured networks have emerged to solve the scalability problem of unstructured networks. 

They achieve this goal by tightly controlling the overlay topology and data placement. Data (or 

pointers to them) are placed at precisely specified locations and mappings between data and 

their locations (e.g. a file identifier is mapped to a peer address) are provided in the form of a 

distributed routing table. 

Distributed hash table (DHT) is the main representative of structured P2P networks. A DHT 

provides a hash table interface with primitives put(key,value) and get(key), where key is an ob-

ject identifier, and each peer is responsible for storing the values (object contents) correspond-

ing to a certain range of keys. Each peer also knows a certain number of other peers, called 

neighbors, and holds a routing table that associates its neighbors’ identifiers to the correspond-

ing addresses. Most DHT data access operations consist of a lookup, for finding the address of 

the peer p that holds the requested data, followed by direct communication with p. In the lookup 

step, several hops may be performed according to nodes’ neighborhoods. 

Queries can be efficiently routed since the routing scheme allows one to find a peer respon-

sible for a key in O(log n) routing hops, where n is the number of peers in the network. Because 

a peer is responsible for storing the values corresponding to its range of keys, autonomy is lim-

ited. Furthermore, DHT queries are typically limited to exact match keyword search. Active 

research is on-going to extend the DHT capabilities to deal with more complex queries such as 

range queries [GS04], join queries [HHLT+03], and top-k queries [APV06b]. 

Examples of P2P systems supported by structured networks include Chord [SMKK+01], 

CAN [RFHK+01], Tapestry [ZHSR+04], Pastry [RD01a], Freenet [CMHS+02], PIER 

[HHLT+03], OceanStore [KBCC+00], Past [RD01b], and P-Grid [ACDD+03, AHA03]. Freenet 

is often qualified as a loosely structured system because the nodes of its P2P network can pro-

duce an estimate (not with certainty) of which node is most likely to store certain data [AS04]. 

They use a chain mode propagation approach, where each node makes a local decision about to 

which node to send the request message next. P-Grid is not supported by a DHT either. It is 

based on a virtual distributed search tree. 

in
ria

-0
01

28
22

1,
 v

er
si

on
 2

 - 
6 

Fe
b 

20
07



6                                      Reza Akbarinia, Esther Pacitti, Patrick Valduriez  

INRIA 

2.3 Super-peer 

Unstructured and structured P2P networks are considered “pure” because all their peers provide 

the same functionality. In contrast, super-peer networks are hybrid between client-server sys-

tems and pure P2P networks. Like client-server systems, some peers, the super-peers, act as 

dedicated servers for some other peers and can perform complex functions such as indexing, 

query processing, access control, and meta-data management. Using only one super-peer re-

duces to client-server with all the problems associated with a single server. Like pure P2P net-

works, super-peers can be organized in a P2P fashion and communicate with one another in 

sophisticated ways, thereby allowing the partitioning or replication of global information across 

all super-peers. Super-peers can be dynamically elected (e.g. based on bandwidth and process-

ing power) and replaced in the presence of failures.  

In a super-peer network, a requesting peer simply sends the request, which can be expressed 

in a high-level language, to its responsible super-peer. The super-peer can then find the relevant 

peers either directly through its index or indirectly using its neighbor super-peers. 

The main advantages of super-peer networks are efficiency and quality of service (i.e. the 

user-perceived efficiency, e.g. completeness of query results, query response time, etc.). The 

time needed to find data by directly accessing indices in a super-peer is very small compared 

with flooding. In addition, super-peer networks exploit and take advantage of peers’ different 

capabilities in terms of CPU power, bandwidth, or storage capacity as super-peers take on a 

large portion of the entire network load. In contrast, in pure P2P networks, all nodes are equally 

loaded regardless of their capabilities. Access control can also be better enforced since directory 

and security information can be maintained at the super-peers. However, autonomy is restricted 

since peers cannot log in freely to any super-peer. Fault-tolerance is typically low since super-

peers are single points of failure for their sub-peers (dynamic replacement of super-peers can 

alleviate this problem). 

Examples of super-peer networks include Napster [Nap06], Publius [WAL00], Edutella 

[NSS03, NWQD+02], and JXTA [Jxt06]. A more recent version of Gnutella also relies on su-

per-peers [AS04]. 

2.4 Comparing P2P Networks 

From the perspective of data management, the main requirements of a P2P network are 

[DGY03]: autonomy, query expressiveness, efficiency, quality of service, fault-tolerance, and 

security. We describe these requirements in the following. Then, we compare P2P networks 

based on these requirements. 

− Autonomy: an autonomous peer should be able to join or leave the system at any time 
without restriction. It should also be able to control the data it stores and which other 
peers can store its data, e.g. some other trusted peers. 

− Query expressiveness: the query language should allow the user to describe the de-
sired data at the appropriate level of detail. The simplest form of query is key look-up 
which is only appropriate for finding files. Keyword search with ranking of results is 
appropriate for searching documents. But for more structured data, an SQL-like query 
language is necessary. 
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− Efficiency: the efficient use of the P2P network resources (bandwidth, computing 
power, storage) should result in lower cost and thus higher throughput of queries, i.e. a 
higher number of queries can be processed by the P2P system in a given time. 

− Quality of service: refers to the user-perceived efficiency of the P2P network, e.g. 
completeness of query results, data consistency, data availability, query response time, 
etc. 

− Fault-tolerance: efficiency and quality of services should be provided despite the oc-
currence of peers failures. 

− Security: the open nature of a P2P network makes security a major challenge since one 
cannot rely on trusted servers. Wrt. data management, the main security issue is access 
control which includes enforcing intellectual property rights on data contents. 

 

Table 1 summarizes how the requirements for data management are possibly attained by the 

three main classes of P2P networks. This is a rough comparison to understand the respective 

merits of each class. For instance, “high” means it can be high. Obviously, there is room for 

improvement in each class of P2P networks. For instance, fault-tolerance can be made higher in 

super-peer by relying on replication and fail-over techniques. 

Table 1. Comparison of P2P networks 

Requirements Unstructured Structured Super-peer 

Autonomy high low moderate 
Query expressiveness “high” low “high” 
Efficiency low high high 
QoS low high high 
Fault-tolerance high high how 
Security low low high 

 

3 Schema Mapping 

Semantic heterogeneity is a key problem in any large scale data sharing system, be it a data inte-

gration system or a P2P management system [MBDH05]. The data sources involved are typi-

cally designed independently, and hence use different schemas. To be able to do meaningful 

inter-operation between the data of two sources, the system needs a schema mapping, i.e. a set 

of expressions that specify how the data in one source corresponds to the data in the other. In 

relational systems, schema mapping signifies the process of defining the semantic equivalence 

between relations and attributes of the two schemas [BAHS+06]. 

In this section, we first give a brief description of schema mapping in data integration sys-

tems. Then, we discuss the approaches which are used in P2P systems for schema mapping. 
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Figure 1. Schema Mapping using a Global Mediated Schema 

 

3.1 Schema Mapping in Data Integration Systems 

To be able to query heterogeneous data sources, data integration systems [TV00, TRV98] typi-

cally rely on the definition of a global mediated schema (see Figure 1). The local schemas of 

the data sources are mapped over the mediated schema, and the mappings are maintained at a 

mediator. Users issue their queries in terms of the mediated schema, and the mediator reformu-

lates the query into sub-queries which are expressed on local schemas and can be executed at 

data sources.  There is a wrapper close to each data source that provides translation services 

between the mediated schema and the local query language [Ull97]. 

In data integration systems, there are two main approaches for defining the mappings: 

Global-as-view (GAV) which defines the mediated schema as a view of the local schemas, and 

Local-as-View (LAV) which describes the local schemas as a view of the mediated schema 

[Len02]. In GAV, the autonomy of data sources is higher than LAV because they can define 

their local schemas as they want. However, if any new source is added to a system that uses the 

GAV approach, considerable effort may be necessary to update the mediator code. Thus, GAV 

should be favored when the sources are not likely to change. The advantage of a LAV modeling 

is that new sources can be added with far less work than in GAV. LAV should be favored when 

the mediated schema is not likely to change, i.e. the mediated schema is complete enough that 

all the local schemas can be described as a view of it. 
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3.2 Schema Mapping in P2P Systems 

Due to specific characteristics of P2P systems, e.g. the dynamic and autonomous nature of 

peers, the approaches that rely on centralized global schemas no longer apply in P2P systems. 

Thus, the main problem is to support decentralized schema mapping so that a query on one 

peer’s schema can be reformulated in a query on another peer’s schema. The approaches which 

are used by P2P systems for defining and creating the mappings between peers' schemas can be 

classified as follows: pairwise schema mapping, mapping based on machine learning techniques, 

common agreement mapping, and schema mapping using IR techniques. 
 

 
Figure 2. An Example of Pairwise Schema Mapping in Piazza 

3.2.1 Pairwise Schema Mapping  

In this approach, the users define the mapping between their local schemas and the schema of 

any other schema which is interesting for them. Relying on the transitivity of the defined map-

pings, the system tries to extract mappings between schemas which have no defined mapping. 

Piazza [TIMH+03] follows this approach (see Figure 2). In Piazza, the data are shared as 

XML documents, and each peer has a schema, expressed in XMLSchema, which defines the 

terminology and the structural constraints of the peer. When a new peer (with a new schema) 

joins the system for the first time, it maps its schema to the schema of some other peers of the 

network. Each mapping definition begins with an XML template that matches some path or sub-

tree of an instance of the target schema, i.e., a prefix of a legal string in the target DTD's gram-

mar. Elements in the template may be annotated with query expressions (in a subset of XQuery) 

that bind variables to XML nodes in the source.  

The Local Relational Model (LRM) [BGKM+02] is another example that follows this ap-

proach. LRM assumes that the peers hold relational databases, and each peer knows a set of 

peers with which it can exchange data and services. This set of peers is called p's acquaintances. 

Each peer must define semantic dependencies and translation rules between its data and the data 

shared by each of its acquaintances. The defined mappings form a semantic network, which is 

used for query reformulation in the P2P system.  

PGrid also assumes the existence of pairwise mappings between peers, initially constructed 

by skilled experts [ACH03]. Relying on the transitivity of these mappings and using a gossiping 
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algorithm, PGrid extracts new mappings that relate the schemas of the peers between which 

there is no predefined schema mapping. 

3.2.2 Mapping based on Machine Learning Techniques 

This approach is usually used when the shared data is defined based on ontologies and taxono-

mies as proposed in the Semantic Web [W3C01]. It uses machine learning techniques to auto-

matically extract the mappings between the shared schemas. The extracted mappings are stored 

over the network, in order to be used for processing future queries. 

GLUE [DMDD+03] uses this approach. Given two ontologies, for each concept in one, 

GLUE finds the most similar concept in the other. It gives well founded probabilistic definitions 

to several practical similarity measures. It uses multiple learning strategies, each of which ex-

ploits a different type of information either in the data instances or in the taxonomic structure of 

the ontologies. To further improve mapping accuracy, GLUE incorporates commonsense 

knowledge and domain constraints into the schema mapping process. The basic idea is to pro-

vide classifiers for the concepts. To decide the similarity between two concepts A and B, the 

data of concept B is classified using A’s classifier and vice versa. The amount of values that can 

be successfully classified into A and B represent the similarity between A and B. 

 

 

Figure 3. Common Agreement Schema Mapping in APPA 

3.2.3 Common Agreement Mapping 

In this approach, the peers that have a common interest agree on a common schema description 

for data sharing. The common schema is usually prepared and maintained by expert users. 

APPA [AMPV06a, AM06, AMPV04] makes the assumption that peers wishing to cooperate, 

e.g. for the duration of an experiment, agree on a Common Schema Description (CSD). Given a 

CSD, a peer schema can be specified using views. This is similar to the LAV approach in data 

integration systems, except that, in APPA, queries at a peer are expressed in terms of the local 

views, not the CSD. Another difference between this approach and LAV is that the CSD is not a 

global schema, i.e. it is common to a limited set of peers with common interest (see Figure 3). 

Thus, the CSD makes no problem for the scalability of the system. When a peer decides to share 

data, it needs to map its local schema to the CSD. Given two CSD relation definitions r1 and r2, 

an example of peer mapping at peer p is: p:r(A,B,D) ⊆ csd:r1(A,B,C), csd:r2(C,D,E). In this ex-

ample, the relation r(A,B,D) which is shared by peer p is mapped to relations r1(A,B,C), 

csd:r2(C,D,E) which are involved in the CSD. In APPA, the mappings between the CSD and 
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each peer's local schema are stored locally at the peer. Given a query Q on the local schema, the 

peer reformulates Q to a query on the CSD using locally stored mappings. 

AutoMed [MP04] is another system that relies on common agreements for schema mapping. 

It defines the mappings by using primitive bidirectional transformations defined in terms of a 

low-level data model. 

3.2.4 Schema Mapping using IR Techniques 

This approach extracts the schema mappings at query execution time using IR techniques by 

exploring the schema descriptions provided by users. PeerDB [OST03] follows this approach 

for query processing in unstructured P2P networks. For each relation which is shared by a peer, 

the description of the relation and its attributes is maintained at that peer. The descriptions are 

provided by users upon creation of relations, and serve as a kind of synonymous names of rela-

tion names and attributes. When a query is issued, some agents are flooded to the peers to find 

out potential matches and bring the corresponding meta-data back. By matching keywords from 

the meta-data of the relations, PeerDB is able to find relations that are potentially similar to the 

query relations. The found relations are presented to the user who has issued the query, and she 

decides on whether or not to proceed with the execution of the query at the remote peer which 

owns the relations. 

Edutella [NSS03] also follows this approach for schema mapping in super-peer networks.  

Resources in the Edutella are described using the RDF metadata model, and the descriptions are 

stored at super-peers. When a user issues a query at a peer p, the query is sent to p's super-peer 

where the stored schema descriptions are explored and the address of the relevant peers are re-

turned to the user. If the super-peer does not find relevant peers, it sends the query to other su-

per-peers such that they search relevant peers by exploring their stored schema descriptions. In 

order to explore stored schemas, super-peers use the RDF-QEL query language. RDF-QEL is 

based on Datalog semantics and thus compatible with all existing query languages, supporting 

query functionalities which extend the usual relational query languages. 

4 Query Routing 

The main problem for query processing in P2P systems is how to route the query to relevant 

peers, i.e. those that hold some data related to the query, [LW06]. Once the query is routed to 

relevant peers, it is executed at those peers and the answers are returned to the query originator. 

In this section, we describe the approaches for query routing in unstructured systems, 

DHTs, and super-peer systems. 

4.1 Query Routing in Unstructured Systems 

The approaches used in unstructured systems for query routing can be classified in the following 

groups [TR03b]: Breath-First Search (BFS), Iterative deepening, random walks, adaptive prob-

abilistic search, local indices, bloom filter based indices, and distributed resource location pro-

tocol. 
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4.1.1 BFS 

This approach, which is used originally by Gnutella for data discovery, floods the query to all 

accessible peers within a TTL (Time To Live) hop distance as follows. Whenever a query with a 

TTL is issued at a peer, called query originator, it is forwarded to all its neighbors. Each peer, 

which receives the query, decreases the TTL by one and if it is greater than one sends the query 

and TTL to its neighbors. By continuing this procedure, all accessible peers whose hop distance 

from the query originator is less than or equal to TTL receive the query. Each peer that receives 

the query executes it locally and returns the answers directly to the query originator (see Figure 

4).  

Modified BFS [KGZ02] is a variation of the BFS approach in which the peers randomly 

choose only a ratio of their neighbors and forward the query only to these neighbors (see Figure 

5). Although this approach reduces the number of messages needed for query routing, it may 

lose many of the good answers which could be found by BFS. 

Intelligent BFS [KGZ02] is another variation. For each recently answered query, peers 

maintain the query and the number of answers which are found via each of their neighbors. 

When a peer receives a query, it identifies all queries similar to the received query, e.g. using a 

query similarity metric, and sends the query to a set of its neighbors that have returned most 

answers for the similar queries. If an answer is found for the query at a peer, a message is sent to 

the peers over the reverse path in order to update their statistics. Like standard BFS, each peer 

that receives the query decreases the TTL by one, and if it is equal to zero, the query is dis-

carded.  Compared to modified BFS, intelligent BFS can find many more answers. However, it 

produces more routing messages, i.e. because of update messages. In addition, it can not be eas-

ily adapted to the peer departures and data deletions. 

 

4.1.2 Iterative Deepening 

Iterative deepening [YG02, LCCL+02] is used when the user is satisfied by only one (or a small 

number) of the closest answers. In this algorithm, the query originator performs consecutive 

BFS searches such that the first BFS has a low TTL, e.g. 1, and each new BFS uses a TTL 

greater than the previous one. The algorithm ends when the required number of answers is found 

or a BFS with the predefined maximum TTL is done. For the cases where a sufficient number of 

answers are available at the peers that are close to the query originator, this algorithm achieves 

  
Figure 4. Example of BFS: the received query is 
forwarded to all the neighbors 

 Figure 5. Example of Modified BFS: the received 
query is forwarded to a randomly selected set of 
neighbors 
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good performance gains compared to the standard BFS. In other cases, its overhead and re-

sponse time may be much higher than the standard BFS. 

4.1.3 Random Walks 

In Random Walks [LCCL+02], for each query, the query originator forwards k query messages 

to k of its randomly chosen neighbors. Each of these messages follows its own path, having in-

termediate peers forward it to a randomly chosen neighbor at each step (see Figure 6). These 

messages are known as walkers. When the TTL of a walker reaches zero, it is discarded. Each 

walker periodically contacts the query originator, asking whether the termination condition is 

held or not. If the response is positive, the walker terminates. 

Let k be the number of walkers. The main advantage of the Random Walks algorithm is that 

it produces k × TTL routing messages in the worst case, a number which does not depend on the 

underlying network. Simulation results in [LCCL+02] show that routing messages can be re-

duced significantly compared to the standard BFS. The main disadvantage of this algorithm is 

its highly variable performance, because success rates and the number of found answers vary 

greatly depending on network topology and the random choices. Another drawback of this 

method is that it cannot learn anything from its previous successes or failures. 

4.1.4 Adaptive Probabilistic Search 

 In Adaptive Probabilistic Search (APS) [TR03a], for each recently requested data, the peers 

maintain the data identifier and probability of returning the data by each of their neighbors. 

Given a query asking for a data, the query originator establishes k independent walkers and 

sends them to its neighbors. Each intermediate peer, which receives a walker, sends it to the 

neighbor that has the highest probability to return the requested data. Initially equal for all 

neighbors, the probability values are updated using either an optimistic approach or a pessimis-

tic approach. In the optimistic approach, when a peer sends a walker to a neighbor, it increases 

in advance the corresponding probability value. However, if the walker terminates without the 

requested data, a message is sent over the walker path to decrease the corresponding probability 

values. The pessimistic approach makes the assumption that the data cannot be found, so it de-

creases the corresponding probability value after sending the walker to a neighbor. If the walker 

finds the data, all peers over the walker path update their probability values by increasing them.  

 
Figure 6. Example of Random Walks: each received walk is forwarded to only one neighbor 
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To remember a walker’s path, each peer appends its ID in the query message during query 

forwarding. If a walker w2 passes by a peer where another walker w1 stopped before, the walker 

w2 terminates unsuccessfully.  APS has very good performance as it is bandwidth-efficient: the 

number of routing messages produced by it is very close to that of Random Walks. In spite of 

this, the probability of finding the requested data by APS is much higher than that of Random 

Walks. However, if the topology of the P2P system changes quickly, the ability of APS to an-

swer queries reduces significantly. 

4.1.5 Local Indices  

In this approach [YG02, CG02], each peer p indexes the data shared by all peers which are 

within a certain radius r, i.e. the peers whose hop-distance from p is less than or equal to r. The 

query routing is done in a BFS-like way, except that the query is processed only at the peers that 

are at certain hop distances from the query originator. To minimize the overhead, the hop dis-

tance between two consecutive peers that process the query must be 2∗r + 1. In other words, the 

query must be processed at peers whose distance from the query originator is m∗(2∗r + 1) for 

m=1,2, …. This allows querying all data without any overlap. The processing time of this ap-

proach is less than that of standard BFS because only a certain number of peers process the 

query. However, the number of routing messages is comparable to that of standard BFS. In addi-

tion, whenever a peer joins/leaves the network or updates its shared data, a flooding with TTL=r 

is needed in order to update the peers’ indices, so the overhead becomes very significant for 

highly dynamic environments. 

4.1.6 Bloom Filter based Indices 

In [RK02], the indexing of data is done using Bloom filters. Each peer holds d bloom filters for 

each neighbor, such that the ith filter summarizes the data that can be found i hops away through 

that specific neighbor. When a peer receives a query requesting a data, it checks its local data, if 

the data is found it is returned to the query originator. Otherwise, the peer forwards the query to 

the neighbor who has the minimum numbered filter that represents the data among its members. 

The advantage of representing the indexed data by Bloom filters [Blo70] is that they are 

space efficient, i.e. with a small space, one can index a large number of data. However, it is not 

possible to remove a data from a Bloom filter, so they are not easily adaptable to highly dy-

namic environments. In addition, it is possible that a Bloom filter gives a false positive answer, 

i.e. the Bloom filter wrongly returns a positive answer in response to a question asking the 

membership of a data item. 

4.1.7 Distributed Resource Location Protocol 

In Distributed Resource Location Protocol (DRLP) [MK02], the peers index the location of all 

data which are the answer for recently issued queries. The indexing is done gradually as follows. 

Peers with no information about the location of a requested data, forward the query to a set of 

randomly chosen neighbors. If the data is found at some peer, a message is sent over the reverse 

path to the query originator, storing the data location at those peers. In subsequent requests, 

peers with indexed location information forward the query directly to the relevant peers. This 

algorithm initially spends many routing messages for query processing. In subsequent requests, 
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it might take only one message to discover it. Thus, if a query is issued frequently, this approach 

is very efficient. 

4.2 Query routing in DHTs 

Distribute Hash Tables (DHTs) provide an efficient and scalable solution for data location in 

P2P systems. While there are significant implementation differences between DHTs, they all 

map a given key onto a peer p, called responsible for the key, using a hash function and can 

lookup p efficiently, usually in O(log n) routing hops where n is the number of peers 

[HHHL+02]. DHTs typically provide an operation put(key, data) that stores the data at the peer 

that is responsible for key. For requesting a data, there is an operation get(key) that routes the 

key to the peer that is responsible for it, and retrieves the requested data.  

The way by which a DHT routes the keys to their responsible depends on the DHT’s rout-

ing geometry [GGGR+03], i.e. the topology which is used by the DHT for arranging peers and 

routing queries over them. The routing geometries in DHTs can be [GGGR+03]: tree, hyper-

cube, butterfly, XOR and hybrid. In the following, we describe these geometries and discuss 

query routing. 

4.2.1 Tree 

Tree is the first geometry which is used for organizing the peers of a DHT and routing queries 

among them. In this approach, peer identifiers constitute the leaves of a binary tree of depth log 

n where n is the number of nodes of the tree. The responsible for a given key is the peer whose 

identifier has the highest number of prefix bits which are common with the key. Let h(p, q) be 

the height of the smallest common sub-tree between two peers p and q. For each 1≤i≤log n, each 

peer p knows the address of a peer q such that h(p, q)=i. This means that, for each 1≤i≤log n, 

the peer p knows a peer q such that the number of common prefix bits in the identifiers of p and 

q is i. The routing of a key proceeds by doing a longest prefix match at each intermediate peer 

until reaching to the peer which has the most common prefix bit with the key. The basic routing 

algorithms in Tapestry [ZHSR+04] is rather similar to this algorithm. In Tapestry, each identi-

fier is associated with a node that is the root of a spanning tree used to route messages for the 

given identifier. The Tapestry routing geometry is very closely associated to a tree structure and 

we classify it as such.  

The tree geometry gives a great deal of freedom to peers in choosing their neighbors: each 

peer has 2i 
-1 options in choosing a neighbor in a sub-tree with height i. Thus, in total, each peer 

has about 2 
log n *(logn - 1 ) / 2  options to select all its neighbors. Therefore, the tree geometry has 

good neighbor selection flexibility. However, it has no flexibility for message routing: there is 

only one neighbor which the message must be forwarded to, i.e. this is the neighbor that has the 

most common prefix bits with the given key. 

 

 

 

 

 

 

in
ria

-0
01

28
22

1,
 v

er
si

on
 2

 - 
6 

Fe
b 

20
07



16                                      Reza Akbarinia, Esther Pacitti, Patrick Valduriez  

INRIA 

 

4.2.2 Hypercube 

The hypercube geometry is based on partitioning a d-dimensional space into a set of separate 

zones and attributing each zone to one peer. Peers have unique identifiers with log n bits, where 

n is the total number of peers of the hypercube. Each peer p has log n neighbors such that the 

identifier of the ith neighbor and p differ only in the ith bit. Thus, there is only one different bit 

between the identifier of p and each of its neighbors (see Figure 7). The distance between two 

peers is the number of bits on which their identifiers differ. Query routing proceeds by greedily 

forwarding the given key via intermediate peers to the peer that has minimum bit difference with 

the key. Thus, it is somehow similar to routing on the tree. The difference is that the hypercube 

allows bit differences to be reduced in any order while with the tree, bit differences have to be 

reduced in strictly left-to-right order. 

The number of options for selecting a route between two peers with k bit differences is (log 

n) ∗ (log n - 1) ∗ … ∗ (log n - k), i.e. the first peer on the route has log n choices, and each next 

peer on the route has one choice less than its predecessor. Thus, in the hypercube, there is great 

flexibility for route selection. However, for selecting its neighbors, a peer has only one choice. 

Thus, the hypercube geometry has no flexibility in the neighbor selection. This is the opposite of 

what occurs with the tree, which has much neighbor selection flexibility but no route selection 

flexibility. 

The routing geometry used in CAN [RFHK+01] resembles a hypercube geometry. CAN 

uses a d-dimensional coordinate space which is partitioned into n zones and each zone is occu-

pied by one peer. When d = log n, the neighbor sets in CAN are similar to those of a log n di-

mensional hypercube. 

4.2.3 Ring 

The Ring geometry is based on a one dimensional cyclic space such that the peers are ordered 

on the circle clockwise with respect to their identifiers (see Figure 8). Chord [SMKK+01] is a 

DHT protocol that relies on this geometry for query routing. In Chord, each peer has an m-bit 

identifier, and the responsible for a key is the first peer whose identifier is equal or follows k. 

 
 
 
 
 
 
 
 
 
 

 

Figure 7. Example of Hypercube Routing 
Geometry 

 

 Figure 8. Example of Ring Routing Ge-

ometry: the fleshes point out to the 

neighbors of the peer #1. 
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Each peer p maintains the address of log n other peers on the ring such that the ith neighbor is 

the peer whose distance from p clockwise in the circle is 2i−1
 mod n. Hence, any peer can route a 

given key to its responsible in log n hops because each hop cuts the distance to the destination 

by half.  

Although the original Chord protocol defines a specific set of neighbors for each peer, the 

ring geometry does not necessarily needs such rigidity in neighbor selection. In the ring geome-

try, p can select its ith neighbor from the peers whose distance from p clockwise in the circle is 

in the range [2i-1
 mod n  , 2

i 
mod n). This implies that in the ring geometry, each peer has 2i-1 

options in selecting its ith neighbor. Thus in terms of flexibility of neighbor selection, there are a 

total of approximately 2 
(log n - 1)*(logn - 1 ) / 2 options for each peer. 

The flexibility in route selection can be computed as follows. For communicating a message 

between two peers with a log n distance, the first peer has approximately log n of its neighbors 

that make progress towards the destination. The next peer has approximately (log n) - 1 options 

for selecting the next hop, and so on. This yields a total of approximately (log n)! possible 

routes for a typical path.  

4.2.4 Butterfly 

The Butterfly geometry is an extension of the traditional butterfly network that supports the 

scalability requirements of DHTs. Viceroy [MNR02] is a DHT that uses this geometry for effi-

cient data location. The peers of a butterfly with size n are portioned into log n levels and n / log 

n rows (see Figure 9). The peers of each row are subsequently connected to each other using 

successor/predecessor links. The number of peers in each row is log n, thus a sequential lookup 

in each row is done in O(log n). In addition to successor/predecessor links, each peer has some 

links to the peers of other rows. The inter-row links are arranged in such a way that the distance 

between a peer in Level 1 of any row to any other row is log n. Routing a query in the Butterfly 

is done in three steps as follows. First, the query is sequentially forwarded to the peer that is at 

Level l of the same row as the query originator. This is done in O(log n) routing hops. 2) 

 

Figure 9. Example of the Butterfly Routing Geometry 
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Second, from Level 1, the query is routed in O(log n) routing hops to the row to which the des-

tination peer belongs. Third, at the destination row, the query is traversed sequentially to the 

destination peers. Each of these steps is done in O(log n) routing hops, thus the total time of 

query routing is O(log n).  The advantages of the Butterfly geometry is that the size of the rout-

ing table per peer, i.e. the number of neighbors of each peer, is a small constant number 

whereas, in most of other geometries, this size is O(log n). However, the Butterfly geometry has 

poor neighbor and route selection flexibility, i.e. there is only one choice for selecting the 

neighbors or the route. 

4.2.5 XOR 

The XOR approach uses a symmetric unidirectional tree topology for structuring the peers of the 

P2P network. Kademlia [MM02] is a DHT that uses the XOR geometry for query routing. In 

Kademlia, the distance between two peers is computed as the numeric value of the exclusive OR 

(XOR) of their identifiers. Each peer p has log n neighbors, where the ith neighbor is any peer 

whose XOR distance from p is a value in [2i , 2i+1). Query routing proceeds by greedily reducing 

via intermediate peers the XOR distance from the destination peer. Kademlia provides the same 

neighbor selection flexibility as the tree geometry. In addition, in terms of route selection, the 

XOR geometry can reduce the bit differences in any order, and does not require strict left-to-

right bit fixing as the tree geometry. Thus, it has a great route selection flexibility which is com-

parable to that of the ring geometry. 

4.2.6 Hybrid 

Hybrid geometries use a combination of geometries. Pastry [RD01a] combines the tree and ring 

geometries in order to achieve more efficiency and flexibility. Peer identifiers are maintained as 

both the leaves of a binary tree and as points on a one-dimensional circle. In Pastry, the distance 

between a given pair of nodes is computed in two different ways: the tree distance between them 

and the ring distance between them. Peers have great flexibility of neighbor selection. For se-

lecting their neighbors, peers take into account the proximity properties, i.e. they select the 

neighbors that are close to them in the underlying physical network. The route selection is also 

very flexible because, to route a message, peers have the possibility to choose one of the hops 

that do make progress on the tree or on the ring. 

4.2.7 Comparing DHT Routing Geometries 

Depending on their routing geometries, DHTs have different routing properties. Table 2 com-

pares the DHT routing geometries from the point of view of the following routing properties: 

• Route selection flexibility. This is defined as the number of options which a peers has for 

routing the query to the next hop. The higher this flexibility is, the more resilient the routing 

procedure is to dynamic behavior of peers.  

• Neighbor selection flexibility. This is defined as the number of options which a peer has 

for selecting its neighbors. The higher this flexibility is, the more possibilities peers have 

for choosing neighbors which are close to them in the underlying network. 
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• Routing table size. This is the number of peers about which a peer needs to maintain rout-

ing information, e.g. their address. The larger the routing table size is, the higher the over-

head of maintaining the overlay network is. 

Table 2. Comparison of DHT Routing Geometries 

DHT routing 

Geometry 

Neighbor selection 

flexibility 

Route  selection 

flexibility 

Routing table 

size 

Tree O(2 log n *log n) O(1) O(log n) 
Hypercube O(1) O((log n) !) O(log n) 
Ring  O(2 log n *log n) O((lon n) !) O(log n) 
Butterfly O(1) O(1) O(1) 
XOR O(2 log n *log n) O((log n) !) O(log n) 
    

4.3 Super-peer  

Super-peer networks typically rely on some powerful and highly available peers, called super-

peers, to index the data shared by peers which are connected to the system. Edutella is one of 

the most known super-peer networks. In Edutella, super-peers are arranged in the HyperCup 

topology [SSDN02] (see Figure 10), so messages can be communicated between any two super-

peers in O(log m) routing hops, where m is the number of super-peers. The process of joining a 

super-peer to the network consists of two parts: taking the appropriate position in the HyperCuP 

topology and announcing itself to its neighbors. Each ordinary peer joins the system by connect-

ing to a super-peer. 

To support efficient query routing, at each super-peer, two kinds of routing indices are 

maintained: super-peer / peer (SP/P) indices and super-peer / super-peer (SP/SP) indices. Que-

ries are routed over super-peers by using the SP/SP indices, and to ordinary peers based on the 

SP/P indices. 

In the SP/P indices, each super-peer stores information about the characteristics of the data 

which are shared by the peers that are connected to it. These indices are used to route a query 

from the super-peer to its connected peers. At join time, peers provide their metadata informa-

tion to their super-peer by publishing an advertisement. To index the provided metadata, 

Edutella uses the schema-based approaches which have successfully been used in the context of 

mediator-based information systems (e.g. [Wie92]). To ensure that the indices are always up-to-

date, peers notify super-peers when their data change. When a peer leaves the network, all refer-

ences to this peer are removed from the indices. If a super-peer fails, its formerly connected 

peers must connect to another super-peer chosen at random, and provide their metadata to it. 

The second type of indices is SP/SP indices which are essentially summaries (possibly also 

approximations) of SP/P indices. Update of SP/SP indices is triggered after any modification to 

SP/P indices as follows. When a super-peer changes its SP/P index, e.g. due to a peer's 

join/leave, it broadcasts an announcement of update to the super-peer network by using the Hy-

perCuP protocol. The other super-peers update their SP/SP indices accordingly. Although such 

a broadcast is not optimal, it is not too costly either because the number of super-peers is much 

less than the number of all peers. Furthermore, if peers join/leave frequently, the super-peer can 
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send a summary announcement periodically instead of sending a separate announcement for 

each join/leave. 

The query routing in Edutella is done as follows. When a peer receives a query issued by 

the user, it sends the query to its super-peer. At the super-peer, the metadata used in the query 

are matched against the SP/P indices in order to determine local peers which are able to answer 

the query. If the query cannot be satisfied by local peers, it is forwarded to other super-peers 

using SP/SP indices. 

5 Complex Query Processing 

In the previous section, we discussed the techniques for routing queries to relevant peers. These 

techniques allow P2P systems to provide good support for exact-match queries. However, sup-

porting more complex queries cannot be done easily in P2P systems, particularly in DHTs. Ex-

amples of complex queries are: top-k queries, join queries, range queries and multi-attribute 

queries. In this section, we discuss the techniques which have been proposed to support complex 

queries in P2P systems. 

5.1 Top-k Queries 

Top-k queries have attracted much attention in many fields of information technology such as 

network and system monitoring [BO03, KOTZ04, CW04], information retrieval [MTW05, 

BNST05, PZS96], multimedia databases [CGM04, NR99, DMNK02], spatial data analysis 

[BBK01, CP02, HS03], etc. With a top-k query, the user can specify a number k of the most 

relevant answers to be returned by the system. The degree of relevance (score) of the answers to 

the query is determined by a scoring function. Top-k queries are very useful for data manage-

ment in P2P systems [APV06a], in particular when the number of all the answers is very large. 

For example, consider a P2P system with medical doctors who want to share some (restricted) 

patient data for an epidemiological study. Assume that all doctors agreed on a common Patient 

SP SP 

SP SP 

SP SP 

SP SP 

                    Figure 10. Edutella architecture 
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description in relational format. Then, one doctor may want to submit the following query to 

obtain the 10 top answers ranked by a scoring function over height and weight: 

        SELECT   * 

        FROM      Patient P 

        WHERE   (P.disease = “diabetes”) AND  

                         (P.height < 170) AND (P.weight > 70) 

        ORDER BY scoring-function(height, weight) 

        STOP AFTER 10 

The scoring function specifies how closely each data item matches the conditions. For in-

stance, in the query above, the scoring function could be (weight - (height - 100)) which com-

putes the amount of overweight. 

Efficient execution of Top-k queries in large-scale P2P systems is difficult. In this section, 

we first discuss the most efficient techniques proposed for top-k query processing in distributed 

systems. Then, we present the techniques proposed for P2P systems. 

5.1.1 Top-k queries in Distributed Systems 

The most efficient approaches for top-k query processing in distributed systems are based on the 

Threshold Algorithm (TA) [FLN03, GKB00, NR99]. TA is applicable for queries where the 

scoring function is monotone, i.e., any increase in the value of the input does not decrease the 

value of the output. Many of the popular aggregation functions, e.g. Min, Max, Average, are 

monotone. Given m lists of n data items such that each data item has a local score in each list 

and the lists are sorted according to the local scores of their data items, assume the overall score 

of a data item is computed based on the local scores of the data item in all lists using the scoring 

function. TA finds k data items whose overall scores are the highest as follows. TA goes down 

the sorted lists in parallel, one position at a time, and for each data item, retrieves its local scores 

in all lists, and computes the overall score. This process continues until finding k data items 

whose overall scores are greater than a threshold which is the overall score of a virtual data item 

whose local scores are the local scores which are at current position in the lists. 

The TA algorithm can be applied to relational top-k query processing by viewing each col-

umn of a table as a list, thus sorting the columns according to their values, and using the TA 

algorithm for finding the k tuples whose overall scores are the highest. 

Several TA-style algorithms, i.e. extensions of TA, have been yet proposed for distributed 

top-k query processing. In the context of the KLEE framework [MTW05], the authors propose a 

TA-style algorithm which aims at minimizing the communication cost of top-k query processing 

in distributed systems.  This algorithm yields much performance gains at the expense of a small 

reduction in answer completeness. In KLEE, the m sorted lists are distributed over m nodes, and 

each node divides its list into c cells and maintains statistical information describing the cells, 

e.g. lower, upper, average and frequency of local scores which fall in the cell. KLEE uses 

Bloom filters to compactly represent, for each cell, the set of data items whose local scores fall 

in the cell. This information on cells along with the Bloom filters contribute at reducing the 

number of local scores which should be communicated over network, so reducing the communi-

cation cost.  
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The Three Phase Uniform Threshold (TPUT) [CW04] is a TA-Style algorithm that executes 

top-k queries in three round trips. TPUT assumes that each list is held by one node, which we 

call the list holder. TPUT works in three phases as follows.  

1. Each list holder sends to the query originator its k top data items, i.e. the k data items whose 

local scores in the list are the highest. Let f be the scoring function, d be a received data 

item, and si(d) be the local score of d in list i, then the partial sum of d is defined as psum(d) 

= s1’(d) + s2’(d) + … + sm’(d) where si’(d)= si(d) if d has been sent to the query originator 

from the holder of list i, otherwise si’(d) = 0.  The query originator calculates the partial 

sums for all received data items and identifies the items with the k highest partial sums. The 

partial sum of the kth data item is called phase-1 bottom and denoted by λ1. 

2. The query originator sends a threshold value τ = λ1/m to every list holder. Then, each list 

holder sends to the query originator all its data items whose local scores are not less than τ. 

The intuition is that if a data item is not reported by any node in this phase, its score must 

be less than λ1, so it cannot be one of the top-k data items. Let D be the set of data items re-

ceived from list holders, the query originator calculates the new partial sums for the data 

items involved in D, and identifies the items with the k highest partial sums. The partial sum 

of the kth data item is called phase-2 bottom, and denoted by λ2. Let the upper bound score 

of a data item d be defined as uscore(d) = u1 (d) + u2(d) + … + um (d) where ui (d)= si(d) if d 

has been received from the holder of list i, otherwise ui (d) = τ. For each data item d∈D, if 

the upper bound score of d is less than λ2, it is removed from D. The data items which re-

main in D are called the top-k candidate data items.  

3. The query originator sends the set of top-k candidate data items to each list holder which 

returns back the scores of these items. Then, the query originator calculates the overall 

score, extracts the k data items with highest scores, and returns the answer to the user 

As shown in [CW04], for the cases where the number of lists (i.e. m) is high, the response time 

of TPUT is much better than that of the basic TA algorithm. 

5.1.2 Top-k Queries in P2P systems 

We now discuss the techniques for top-k query processing in each of the three classes of P2P 

systems. 

5.1.2.1 Top-k Queries in Unstructured Systems 

One possible approach for processing top-k queries in unstructured systems is to route the query 

to all peers, retrieve all available answers, score them using the scoring function, and return to 

the user the k highest scored answers. However, as shown in [AMPV06b], this approach is not 

efficient in terms of response time and communication cost. 

PlanetP [CPMN03] is an unstructured P2P system that supports top-k queries. In PlanetP, a 

content-addressable publish/subscribe service replicates global documents across P2P communi-

ties up to ten thousand peers. The top-k query processing algorithm works as follows. Given a 

query Q, the query originator computes a relevance ranking of peers with respect to Q, contacts 

them one by one from top to bottom of ranking and asks them to return a set of their top-scored 

document names together with their scores. To compute the relevance of peers, a global fully 

replicated index is used that contains term-to-peer mappings. This algorithm has very good per-
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formance in moderate-scale systems. However, in a large P2P system, keeping up-to-date the 

replicated index is a major problem that hurts scalability.  

In the context of APPA, we proposed a fully distributed (FD) framework to execute top-k 

queries in unstructured P2P systems [APV06a, AMPV06b]. FD involves a family of algorithms 

that are simple but effective. FD's execution is completely distributed and does not depend on 

the existence of certain peers. It also addresses the volatility of peers during query execution and 

deals with situations where some peers leave the system before finishing query processing. 

Given a top-k query Q with a specified TTL, the basic algorithm of FD is performed in four 

phases as follows: 

1. Query forward. In this phase, using one of the yet proposed algorithms, Q is forwarded to 

the accessible peers whose hop-distance from the query originator is less than TTL. 

2. Local query execution and wait. Each peer p that receives Q, executes it locally, i.e. ac-

cesses the local data items that match the query predicate, scores them using a scoring func-

tion, selects the k top data items and saves them as well as their scores locally. Then p waits 

to receive its neighbors’ results. However, since some of the neighbors may leave the P2P 

system and never send a score-list to p, for the wait time there is a limit which is computed 

for each peer based on the received TTL, network parameters and peer's local processing 

parameters. 

3. Merge-and-backward. In this phase, the top scores are bubbled up to the query originator 

using a tree based algorithm as follows. After its wait time has expired, p merges its k local 

top scores with those received from its neighbors and sends the result to its parent (the peer 

from which it received Q) in the form of a score-list. In order to minimize network traffic, 

FD does not bubble up the top data items (which could be large), only their scores and ad-

dresses. A score-list is simply a list of k couples (a, s), such that a is the address of the peer 

owning the data item and s its score. 

4. Data retrieval. After receiving the score-lists sent from its neighbors, the query originator 

makes the final score-list which is gained by merging its k local top scores with the merged 

score-lists received from its neighbors. Then it directly retrieves the k top data items from 

the peers which hold them. 

We proposed several techniques to reduce FD's communication cost. We also proposed so-

lutions to the problems which may occur during the execution of the top-k queries due to the 

dynamic behavior of peers [APV06a]. In particular, we addressed the following problems: peers 

becoming inaccessible in the merge-and-backward phase; peers that hold top data items becom-

ing inaccessible in the data retrieval phase; late reception of score-lists by a peer, after its wait 

time has expired. 

5.1.2.2 Top-k Queries in Super-peer Systems 

In [BNST05], the authors propose a top-k query processing algorithm for Edutella, a super-peer 

network. In Edutella, a small percentage of nodes are super-peers and are assumed to be highly 

available with very good computing capacity. The super-peers are responsible for top-k query 

processing and other peers only execute the queries locally and score their resources. The  top-k 

query processing algorithm works as follows. Given a query Q, the query originator sends Q to 

its super-peer, and sends Q to other super-peers. The super-peers forward Q to the relevant peers 
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connected to them. Each peer that has some data items relevant to Q scores them and sends its 

maximum scored data item to its super-peer. Each super-peer chooses the overall maximum 

scored item from all received data items. For determining the second best item, it only asks one 

peer, the one which has returned the first top item, to return its second top scored item. Then, 

the super-peer selects the overall second top item from the previously received items and the 

newly received item. Then, it asks the peer which has returned the second top item and so on 

until all k top items will be retrieved. Finally the super-peers send their top items to the super-

peer of the query originator, to extract overall k top items, and to send them to the query origina-

tor. 

5.1.2.3 Top-k Queries in DHTs 

The main functionality of a DHT is to map a set of keys to the peers of the P2P system and 

lookup efficiently the responsible of any given key which is involved in the set. This offers effi-

cient and scalable support for exact match queries. However, it is quite challenging to support 

top-k queries on top of DHTs [BAHS+06]. A simple solution is to retrieve all tuples of the rela-

tions involved in the query, compute the score of each retrieved tuple, and finally return the k 

tuples whose scores are the highest. However, this solution cannot scale up to a large number of 

stored tuples. Another solution is to store all tuples of each relation by using the same key (e.g. 

relation's name), so that all tuples are stored at the same peer. Then, top-k query processing can 

be performed at that central peer using well-known centralized algorithms. However, the central 

peer becomes a bottleneck and single point of failure. 

In the context of APPA, which is a network independent P2P system [AMPV06a], we pro-

posed an efficient solution for processing top-k queries in DHTs [AMPV06b]. The solution is 

based on the TA algorithm [FLN03, GKB00, NR99] which is widely used in distributed sys-

tems. It can scale up to large numbers of peers and avoids any centralized data storage. The so-

lution is based on a data storage mechanism that stores the shared data in the DHT in a fully 

distributed fashion. We describe this solution below. 

Data storage mechanism 

In the APPA data storage mechanism, peers store their relational data in the DHT with two 

complementary methods: tuple storage and attribute-value storage. With the tuple storage 

method, each tuple of a relation is stored in the DHT using its tuple identifier (e.g. its primary 

key) as the storage key. This enables looking up a tuple by its identifier.  

Attribute value storage stores individually the attributes that may appear in a query’s equal-

ity predicate or in a query's scoring function in the DHT. Thus, like database secondary indices, 

it allows looking up the tuples using their attribute values. The attribute value storage method 

has two important properties. 1) after retrieving an attribute value from the DHT, peers can re-

trieve easily the corresponding tuple of the attribute value; 2) attribute values that are relatively 

“close” are stored at the same peer. To provide the first property, the key, which is used for stor-

ing the entire tuple, is stored along with the attribute value. The second property is provided by 

using the concept of domain partitioning as follows. Consider an attribute a and let Da be its 

domain of values. Assume there is a total order < on Da, e.g. Da is numeric, string, date, etc. Da 

is partitioned into n nonempty sub-domains d1, d2, …, dn such that their union is equal to Da, the 

intersection of any two different sub-domains is empty, and for each v1∈di and v2∈dj, if i<j then 

in
ria

-0
01

28
22

1,
 v

er
si

on
 2

 - 
6 

Fe
b 

20
07



Survey of query processing in P2P systems  25 

RR n° 6112 

we have v1<v2. Upon attribute-value storage, the hash function is applied on the sub-domain of 

the attribute value. Thus, for the attribute values that fall in the same sub-domain, the storage 

key is the same; thereby they will be stored at the same peer. To avoid attribute storage skew, 

i.e. skewed distribution of attribute values within sub-domains, domain partitioning is done in 

such a way that attribute values are uniformly distributed in sub-domains. This technique uses 

histogram-based information that describes the distribution of values of the attribute.  

Top-k query processing algorithm 

Let Q be a given top-k query, f be its scoring function, and pint be the peer at which Q is issued. 

For simplicity, let us assume that f is a monotonic scoring function. Let scoring attributes be the 

set of attributes that are passed to the scoring function as arguments. The top-k query processing 

algorithm, called DHTop, starts at pint and proceeds in two phases: (1) prepare ordered lists of 

candidate sub-domains; (2) continuously retrieve candidate attribute values and their tuples until 

finding the k top tuples. 

1. For each scoring attribute α, pint prepares the list of sub-domains and orders them according 

to their positive impact on the scoring function, i.e. the sub-domains for which the scoring 

function is higher are at the beginning of the list. For each list, pint removes from the list the 

sub-domains of which no member can satisfy Q’s conditions. For instance, if there is a con-

dition that enforce the scoring attribute to be equal to a constant, e.g. α = u, then pint re-

moves from the list all its sub-domains but the sub-domain to which the constant value be-

longs. The list prepared in this phase for a scoring attribute α is denoted by CDLα.  

2. For each scoring attribute α in parallel, pint proceeds as follows. It sends Q and α to the 

peer, say p, that is responsible for storing the values of the first sub-domain of CDLα, and 

requests it to return the values of α that are stored at it. The values are returned to pint in or-

der of their positive impact on the scoring function. After receiving each attribute value, pint 

retrieves its corresponding tuple, computes the tuple’s score, and keeps it if its score is one 

of the k highest scores yet computed. This process continues until having k tuples whose 

scores are higher than a threshold which is computed based on the attribute values retrieved 

yet. If the attribute values that p returns to pint are not sufficient for determining the k top 

tuples, pint sends Q and α to the responsible of the second sub-domain of CDLα. 

The threshold is computed as follows. Let α1, α2, …, αm be the scoring attributes. Let v1, v2, …, 

vm be the last values retrieved respectively for attributes α1, α2, …, αm. The threshold is defined 

to be δ = f(v1, v2, …, vm). A main feature of the DHTop algorithm is that after retrieving each 

new attribute value the value of the threshold decreases. Thus, after retrieving a certain number 

of attribute values and their tuples, the threshold gets less than k of the retrieved tuples and the 

algorithm ends. It is analytically proved that DHTop works correctly for monotonic scoring 

functions and also for a large group of non-monotonic functions. 

Although very effective, DHTop has the following limitations. First, it assumes top-k que-

ries with no join operation, thus it is needed to extend this algorithm to support top-k join que-

ries. Second, there are many scoring functions which are not supported by DHTop, e.g. many of 

polynomial functions. 
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5.2 Other complex queries 

In this section, we deal with three kinds of complex queries: range queries, multi-attribute que-

ries, and join queries. The processing of such queries in unstructured and super-peer networks 

does not raise any difficulty, i.e. range queries and multi-attribute queries can be processed like 

simple selection queries, and join queries can be processed as in distributed systems. However, 

processing these queries in DHTs is much more challenging. In the rest of this section, we focus 

on processing these complex queries in DHTs. 

5.2.1 Range queries 

Range queries are difficult to process in DHTs. With a range query, the user requests the data 

such that their attribute values are in a specific range, e.g. patients whose weight is between 50 

and 60 kilograms. The main problem for supporting range queries in DHTs is that the hash func-

tion, which is used by the DHT to map data on peers, does not maintain data proximity, i.e. the 

hash of two close data may be two far numbers. There have been several proposals to support 

range queries on top of DHTs. In [GAA03], the authors rely on locality sensitive hashing to 

ensure that, with high probability, nearby values are mapped to the same peer. They propose a 

family of locality sensitive hash functions, called min-wise independent permutations. The simu-

lation results show good performance of the solution. However, there is the problem of load 

unbalance for large networks. 

SkipNet [HJST+03] is a lexicographic order-preserving DHT that allows data items with 

similar values to be placed on contiguous peers. It uses names rather than hashed identifiers to 

order peers in the overlay network, and each peer is responsible for a range of strings. This fa-

cilitates the execution of range queries. However, it is not efficient because the number of peers 

to be visited is linear in the query range. 

In [GS04], an adaptive mechanism for efficient processing of range queries in DHTs is pro-

posed. It builds a logical Range Search Tree (RST) on top of a DHT, and stores the attribute 

values in the RST. A given range query is decomposed into a small number of sub-queries 

which are sent to a small number of peers in of the RST, and the query's answer is the union of 

the answers to the sub-queries. However, the problem is that the load is not uniformly distrib-

uted over the peers, i.e. the closer a peer is to the root of RST, the higher is its load. 

Sahin et al. [SGAA02] extend the CAN system for d=2 such that a virtual hash space is 

constructed for each attribute as a 2-dimensional square bounded by the lower and higher values 

of the attribute’s domain. The space is further partitioned into zones, and each zone is assigned 

to a peer. That peer stores the attribute values which are in the partition it owns, as well as rout-

ing information about adjacent zones. A given range query is routed to the peers which maintain 

the domain partitions involved in the range. Another extension of CAN is proposed in [AX02] 

which maps nearby ranges to nearby CAN zones. A subset of peers, called interval keepers, is 

responsible for sub-domains of the attribute’s domain. When a range query is issued, it is routed 

to interval keepers, and via them to the peers which maintain the relevant data to the query. 

However, the two above methods are devised for 2-dimensional CAN systems, and it is hard to 

apply them to other DHTs such as Chord. 
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5.2.2 Join queries 

Due to the specific method of DHTs for data distribution, i.e. using hash functions for choosing 

the location where the data should be stored, the execution of join queries over these systems is 

quite challenging.  In [HHLT+03], the authors addressed the problem of join query processing in 

PIER. A key is constructed from the “namespace” and the “resource ID”. There is a namespace 

for each relation and the resource ID is the primary key for base tuples in that relation. Queries 

are multicast to all peers in the two namespaces (relations) to be joined. Two algorithms are 

used for processing equi-join queries. The first algorithm is a version of the symmetric hash join 

algorithm [WA91]. Each peer in the two namespaces finds the relevant tuples and hashes them 

to a new query namespace. The resource ID in the new namespace is the concatenation of join 

attributes. The second algorithm, called “fetch matches”, assumes that one of the relations is 

already hashed on the join attributes. Each peer in the second namespace finds tuples matching 

the query and retrieves the corresponding tuples from the first relation. The authors leverage two 

other techniques, namely the symmetric semi-join rewrite and the Bloom filter rewrite, to reduce 

the high bandwidth overheads of the symmetric hash join. For an overlay of 10,000 peers, they 

evaluated the performance of their algorithms through simulation. The results show good per-

formance of the proposed algorithms. However, for the cases where the join relations have a 

large number of tuples, this solution is not efficient, especially in terms of communication cost. 

To avoid multicasting the query to large numbers of peers, the authors in [TP03] propose to 

allocate a limited number of special powerful peers, called range guards, for the task of join 

query processing. They divide the domain of the join attributes, and each partition is dedicated 

to a range guard. Join queries are sent only to range guards, where the query is executed. Effi-

cient selection of range guards and performance evaluation of their proposal were left as future 

work. However, the disadvantage of this solution is that the existence of the required special 

peers is not evident in many P2P networks. 

5.2.3 Multi-Attribute queries 

There has been some work for supporting multi-attribute queries on top of DHTs [BAHS+06]. 

Multi-Attribute Addressable Network (MAAN) [CFCS03] is a P2P system that addresses both 

multi-attribute and range queries in DHTs. It is built on top of Chord and is the first system that 

supports both query types in DHTs. MAAN executes multi-attribute range queries in O(log n + 

n ∗ smin) routing hops, where n is the number of peers of the DHT and smin is the minimum range 

selectivity across all attributes. The range selectivity is defined to be the ratio of the query range 

to the entire attribute domain range. MAAN makes the assumption that a locality preserving 

hash function would ensure load balance. The authors acknowledge that there is a selectivity 

breakpoint at which full flooding becomes more efficient than their technique. Another draw-

back of MAAN is that it requires a fixed global schema which is known in advance to all peers.  

In RDFPeers [CF04] the authors extend this solution to allow heterogeneity in peers schemas. 

Each peer contains RDF based data items described as triples <subject, predicate, object>. The 

triples are hashed onto MAAN peers. The experimental results show improvement in load bal-

ance, but no test for skewed query loads was done. 
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6 Conclusion 

In this paper, we discussed schema based query processing in P2P systems. First, we introduced 

the three main kinds of P2P networks: unstructured, structured and super-peer. We briefly de-

scribed each of these P2P networks, and compared them based on the main requirements for 

data management: autonomy, query expressiveness, efficiency, quality of service, fault-tolerance 

and security. Each kind of P2P network provides partial support for these requirements, i.e. 

there is no P2P network that supports all of the requirements. For example structured networks, 

i.e. DHTs, have low query expressiveness, super-peer networks are not fault-tolerant, and un-

structured networks are usually inefficient. 

Second, we discussed schema mapping in P2P systems. Due to their specific characteristics, 

e.g. the dynamic and autonomous nature of peers, P2P systems cannot rely on centralized global 

schemas which have been proposed for distributed database systems. We presented the tech-

niques used in P2P systems. Although there has been significant progress, there are still many 

limitations for P2P schema mapping. In particular, these techniques typically need some kind of 

human intervention and the quality of the mappings is not very high. 

Third, we presented the techniques for routing queries to relevant peers. We first described 

the algorithms of query routing in unstructured systems. The main concern in unstructured sys-

tems is how to route the query to obtain high quality answers while minimizing the communica-

tion cost. Usually, the algorithms where peers maintain some kind of statistics outperform the 

others. However, for highly dynamic systems, these algorithms may incur a high communication 

overhead without significant gains in answers' quality. We also discussed the problem of query 

routing in structured systems, particularly in DHTs. We presented the main routing geometries 

which are used in DHTs. We analyzed the routing properties of these geometries and compared 

them from the point of view of these properties. 

Finally, we described the techniques for processing complex queries in P2P systems, in par-

ticular in DHTs. We focused on top-k queries, join queries, range queries, and multi-attribute 

queries. 

Although significant progress has been made in P2P schema-based query processing, there 

are still many open issues. In particular, there are some limitations with the solutions proposed 

for schema mapping and query processing in DHTs. 
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