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Véronique Cortier∗, Stéphanie Delaune∗ , Graham Steel†

Thème SYM — Systèmes symboliques
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Modélisation de la conjuration de clefs

Résumé : Les interfaces de programmation (IP) sont omniprésentes. Une classe parti-
culière est celle des IP dites de sécurité qui utilisent des primitives cryptographiques (e.g.
chiffrement, signature, . . . ) pour assurer des propriétés dites de sécurité (e.g. secret).
L’interface de programmation de sécurité la plus connue à l’heure actuelle est sans aucun
doute SSL.

Nous proposons un formalisme à la Dolev-Yao permettant de prendre en compte la tech-
nique de conjuration de clefs. Cette technique permet à un attaquant de faire croire qu’il
a en sa possession une clef particulière. Pour cela, il utilise les commandes de l’IP avec
pour entrée un nombre aléatoire jusqu’à ce que la commande interprète ce nombre aléatoire
comme un chiffré valide. Nous montrons que le problème de la sécurité dans ce modèle est
décidable pour une classe d’IP particulière comprenant l’architecture cryptographique com-
mune d’IBM (Common Cryptographic Architecture). Cette IP de sécurité est notamment
présente dans les automates bancaires.

Mots-clés : protocoles de sécurité, interface de programmation, ou exclusif, procédure de
décision
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4 V. Cortier, S. Delaune & G. Steel

1 Introduction

Cryptographic security APIs are sets of functions designed to facilitate the secure generation,
storage, use and destruction of cryptographic keys. Security APIs for secure hardware
devices typically manage keys by keeping a secret master key inside the device. This is used
to encrypt all the ‘working keys’ used for operational functions, so that they can be securely
stored outside the device. One technique used by attackers attempting to breach security
is to try calling API functions with random values in the place of encrypted keys, to see if
they are allowed to pass, or whether the device signals an error. This process is known as
key conjuring [1]. Learning the encrypted value of a key might not seem useful, but several
attacks have been presented that leverage this trick in order to compromise the security of
an API [1, 5].

A promising approach to security API analysis involves adapting Dolev-Yao style protocol
analysis techniques [12], where details of cryptographic algorithms used are abstracted away,
and a logical model is constructed, with rules describing the operations of the intruder and
protocol. This can be adapted quite naturally to API analysis by considering the API to be
a set of 2-party protocols, each describing an exchange between the secure hardware module
and the host machine [14, 16, 9]. However, in previous work, the key conjuring trick was
treated in an ad-hoc fashion, by adding a number of pre-chosen keys to the intruder’s initial
knowledge [14, 16, 9], or by adding a rule to allow particular keys to be conjured [13]. This
raises doubts about completeness of the search for attacks, and hence the strength of any
proofs of security.

The aim of the work in this paper is to address this problem by proposing a formal model
that identifies all computationally feasible key conjuring operations, and allows these to be
incorporated into a Dolev-Yao style model for security analysis of the API. We propose a
transformation that automatically computes all the possible ways of performing key conjur-
ing from the API rules. Our transformation takes as input a set of formal rules representing
the behaviour of an API and outputs new formal rules representing key conjuring. In this
manner, we eliminate the need for the user to generate key conjuring rules by hand. As far
as we are aware, this paper presents the first formal treatment that allows an exhaustive set
of key conjuring rules to be obtained.

Our second main contribution is to show decidability of the security of APIs (expressed
as a reachability property) for a class of APIs that includes for example the key manage-
ment API of IBM’s Common Cryptographic Architecture (CCA). In particular, it requires
consideration of the algebraic properties of the Exclusive Or operation. Our decidability
result holds for an unlimited number of sessions, though we do bound the number of times
key conjuring operations are used. Indeed, it would not be realistic to allow the intruder
to conjure as many keys as he wishes since it requires a significant amount of access to the
API. This class is related to the class proposed in [9], with two main differences. First, we
consider explicit decryption, since it was more appropriate for modelling key conjuring, and
it reflects better the implementation. Second, we have to consider key conjuring rules which
introduce fresh nonces.

INRIA



A Formal Theory of Key Conjuring 5

Some other decidability results have already been proposed for security protocols with
Exclusive Or. In [8] and [3], it is shown that secrecy is decidable, but only for a bounded
number of sessions. Decidable classes of protocols with Exclusive Or and an unbounded
number of sessions have been proposed in [6] and [15], but API rules do not fit the restrictions
made on the occurrences of variables in the protocol rules.

In the rest of the paper, we first explain the purpose and operation of security APIs, and
define our formalism for describing them (Section 2). We then propose a transformation for
key conjuring in Section 3. In Section 4, we explain the security problem we are interested
in, and define a restricted class of APIs, arguing that these restrictions are quite natural.
In Section 5 we show that certain classes of key conjuring operations are of no use to the
intruder, and need not be considered in a formal model. We then show (Section 6) that
security for our class of APIs is decidable in the presence of key conjuring operations. The
class includes our motivating example, the key management API of the IBM 4758 Hardware
Security Module, which was shown to be vulnerable to key conjuring attacks by Bond in [1].
We conclude, with a discussion of future work, in Section 7.

2 Background

In this section, we first explain what a security API is, before going on to define the concept
more formally.

2.1 Security APIs

The purpose of a security application program interface (API) is to allow untrusted code to
access sensitive resources in a secure way. Hardware security modules (HSMs), for example,
have security APIs which control access to the cryptoprocessor and memory inside the
module. This allows the API to manage access to cryptographic keys. HSMs are deployed
in security critical environments such as the cash machine network, where they are used to
protect customers PINs and other sensitive data. They typically consist of a cryptoprocessor
and a small amount of memory inside a tamper-proof enclosure. They are designed so that
should an intruder open the casing or insert probes, the memory will auto-erase in a matter
of nanoseconds. In a typical ATM network application, all encryption, decryption and
verification of PINs takes place inside the HSM. Many different cryptographic keys will be
used for these operations. IBM’s 4758 CCA1 API [2] partitions keys into various types,
such as data keys, PIN derivation keys, import keys and export keys. Each type has an
associated public control vector. The keys the HSM uses for its various operations, called
working keys, are stored outside the HSM encrypted under the security module’s master
key (which is stored inside the HSM) XORed against the appropriate control vector for the
key type. For example, a data key would be encrypted under km⊕data.2 Working keys can

1CCA stands for ‘Common Cryptographic Architecture’, while 4758 is the model number of the HSM.
See http://www-3.ibm.com/security/cryptocards/pcicc.shtml

2⊕ represents bitwise XOR.
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6 V. Cortier, S. Delaune & G. Steel

then only be used by sending them back into the HSM under an appropriate API command.
Only particular types of keys will be accepted by the HSM for particular operations. For
example, data keys can be used to encrypt arbitrary messages, but so-called PIN Derivation
Keys (PDKs, with control vector pin) cannot. This is critical for security: a customer’s PIN
is just his account number encrypted under a PIN derivation key. In 2001, Bond discovered
attacks in which the intruder uses API commands to change the type of a key, exploiting the
algebraic properties of XOR [1]. The attack allows a PIN derivation key to be converted into
a data key, which can then be used to encrypt data. Hence the attack allows the intruder
to generate a PIN for any account number.

Formal work on the CCA first concentrated on rediscovering the attacks on the original
version of the API [14, 16], and then on proving both Bond’s proposed fixes [10], and the
fixes IBM actually implemented [9], to be secure. However, these works made an informal
approximation of the ability of the intruder to ‘conjure’ keys, a trick used several times in
Bond’s attacks. To explain precisely what key conjuring is, we first need to define some
notation.

2.2 Definitions

We now define our (mostly standard) notation for reasoning about APIs, and then define
the class of APIs considered in this paper.

Cryptographic primitives are represented by functional symbols. More specifically, we
consider a signature Σ which consists of an infinite number of constants including a special
constant 0 and three non constant symbols { } (encryption), dec (decryption) and ⊕ (XOR-
ing) of arity 2. We also assume an infinite set of variables X . The set of terms, denoted by
T (Σ,X ), is defined inductively by

T ::= terms
x variable x

| f(T1, . . . , Tn) function application

where f ranges over the functions of Σ and n matches the arity of f . For instance, the
term {m}k is intended to represent the message m encrypted with the key k (using sym-
metric encryption) whereas the term m1 ⊕ m2 represents the message m1 XORed with the
message m2. The constants may represent control vectors or keys for example.

We rely on a sort system for terms. Terms which respect this sort-system are said to be
well-typed. It includes a set of base type Base and a set of ciphertext type Cipher. We have
variables and constants of both types. Moreover we assume that our function symbols have
the following type:

⊕ : Base × Base → Base

{ } : Base × Base → Cipher

dec : Cipher × Base → Base

A pure term t is a well-typed term whose only encryption symbol (when such a symbol
exists) is at its root position. We say that a term t is headed with f if its root symbol

INRIA



A Formal Theory of Key Conjuring 7

is f . The set of variables occurring in t is denoted vars(t). We denote by st(t) the set of
subterms of t. This notation is extended as expected to set of terms. A term is ground if
it has no variable. Substitutions are written σ = {x1 7→ t1, . . . , xn 7→ tn} with dom(σ) =
{x1, . . . , xn}. A substitution σ is ground if all of the ti are ground. The application of a
substitution σ to a term t is written tσ.

We equip the signature Σ with an equational theory EAPI that models the algebraic
properties of our operators:

EAPI :=







{dec(x, y)}y = x x ⊕ 0 = x
dec({x}y, y) = x x ⊕ x = 0

x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z x ⊕ y = y ⊕ x

It defines an equivalence relation that is closed under substitutions of terms for variables
and under application of contexts. In particular, we say that two terms t1 and t2 are equal,
denoted by t1 =EAPI

t2 if they are equal modulo the equational theory EAPI. If two terms
are equal using only the equations of the last line (resp. involving ⊕), we say that they are
equal modulo Associativity and Commutativity (AC) (resp. modulo Xor).

In the CCA API, as in many others, symmetric keys are subject to parity checking. The
4758 uses the DES (and 3DES) algorithm for symmetric key encryption. A (single length)
DES key consists of 64 bits in total, which is divided into eight groups, each consisting of
seven key bits and one associated parity bit. For an odd parity key, each parity bit must
be set so that the overall parity of its group is odd. For an even parity key, the parity bits
must be set so that all groups are of even parity. If the groups have mixed parities, then
the key is of undefined parity and considered invalid. The CCA API checks that all DES
keys are of odd parity, and all control vectors are even, so that a key XORed against a
control vector will give another odd parity key. These parity considerations are important
for our analysis of key conjuring, and are represented in our formalism by occurrences of
the predicate symbols chkEven and chkOdd, each having a term as argument. Intuitively,
chkOdd(t) means that t has an odd parity. Among the constants in Σ, some have a parity.
By default (no explicit parity given to a constant), we will assume that such a constant has
no parity. Moreover, we have some rules to infer parity from known facts, which are:

chkEven(x1), chkEven(x2) → chkEven(x1 ⊕ x2)
chkOdd(x1), chkOdd(x2) → chkEven(x1 ⊕ x2)
chkEven(x1), chkOdd(x2) → chkOdd(x1 ⊕ x2)

Intruder capabilities and the protocol behaviour are described using rules as defined
below.

Definition 1 (API rule) An API rule is a rule of the form

chk1(u1), . . . , chkk(uk), x1, . . . , xn → t

where

RR n
�

6134



8 V. Cortier, S. Delaune & G. Steel

Key Part Imp. 1 :
xk1, xtype → {xk1}km⊕kp⊕xtype

chkOdd(xk1), chkEven(xtype)

Key Part Imp. 2 :
chkEven(xtype), y, xk2, xtype → {dec(y, km ⊕ kp ⊕ xtype) ⊕ xk2}km⊕kp⊕xtype

chkOdd(dec(y, km ⊕ kp ⊕ xtype))
chkEven(xk2)

Key Part Imp. 3 :
chkEven(xtype), y, xk3, xtype → {dec(y, km ⊕ kp ⊕ xtype) ⊕ xk3}km⊕xtype

chkOdd(dec(y, km ⊕ kp ⊕ xtype))
chkEven(xk3)

Key Import :
chkEven(xtype), y, xtype, z → {dec(y, dec(z, km ⊕ imp) ⊕ xtype)}km⊕xtype

chkOdd(dec(z, km⊕ imp))
chkOdd(dec(y, dec(z, km ⊕ imp) ⊕ xtype))

Key Export :
chkOdd(dec(z, km⊕ exp)), y, xtype, z → {dec(y, km ⊕ xtype)}dec(z,km⊕exp)⊕xtype

chkOdd(dec(y, km ⊕ xtype))
chkEven(xtype)

Encrypt Data:
chkOdd(dec(y, km ⊕ data)), x, y → {x}dec(y,km⊕data)

Decrypt Data:
chkOdd(dec(y, km ⊕ data)), x, y → dec(x, dec(y, km ⊕ data))

Translate Key :
chkEven(xtype), x, xtype, y1, y2 → {dec(x, dec(y1, km ⊕ imp) ⊕ xtype)}dec(y2,km⊕exp)⊕xtype

chkOdd(dec(y1, km⊕ imp))
chkOdd(dec(y2, km⊕ exp))

chkOdd(dec(x, dec(y1, km ⊕ imp) ⊕ xtype))

Figure 1: IBM CCA Symmetric Key Management Transaction Set

INRIA



A Formal Theory of Key Conjuring 9

� x1, . . . , xn are variables,

� t is a term such that vars(t) ⊆ {x1, . . . , xn},

� u1, . . . , uk are terms of Base type not headed with ⊕,

� chki ∈ {chkOdd, chkEven}, 1 ≤ i ≤ k.

We also assume that the rule only involves pure terms.

The third condition might seem restrictive. However, it merely requires that we check each
component of a sum rather than the entire sum. For example, if the sum v1 ⊕ · · · ⊕ vk has
some expected parity, each vi should also have some expected parity, and we ask that their
parity is checked separately.

Example 1 The intruder capabilities are represented by the following set of three API rules:

x, y → {x}y encryption
x, y → dec(x, y) decryption
x, y → x ⊕ y xoring

Example 2 Commands may include several parity checks. In Figure 1, we give the whole
of the symmetric key management subset of the IBM 4758 API, written in our notation.
The terms km, imp, exp, kp, data and pin denote constant of Base type whereas xtype, xk1,
. . . denote variables. Note that all the rules satisfies conditions stated in Definition 1. For
instance, Key Import is used to make a new working key for an HSM. The new key is sent
to the target HSM encrypted under a transport key. The command decrypts the imported
package, and returns the key encrypted under the local master key XOR the appropriate
control vector.

3 A Formal Theory of Key Conjuring

We first introduce key conjuring informally, giving an example of a key conjuring attack.
This will help to explain our transformation. We then formally define our transformation
that takes a set of API rules, and extends it with rules that permit key conjuring.

3.1 Key Conjuring

As we have seen, key management APIs like the CCA keep working keys outside the HSM,
safely encrypted, so that they can only be used by sending them back into the HSM under
the terms of the API. What happens when an intruder wants to use a particular command
in an attack, but does not have access to an appropriate key? For example, suppose he has
no data keys (terms of the form {d1}km⊕data), but wants to use the Encipher command. In
an implicit decryption formalism, the command is defined like this

x, {xkey}km⊕data → {x}xkey

RR n
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10 V. Cortier, S. Delaune & G. Steel

This suggests that the command cannot be used if the intruder does not have a data key.
However, in reality, an intruder could just guess a 64 bit value and use that in place of the
data key. The HSM will decrypt the guessed value under km ⊕ data, and check the parity of
the resulting 64 bit term to see if it is a valid key before, enciphering the data. Usually, the
check will fail and the HSM will refuse to process the command, but if the intruder guesses
randomly, he can expect that 1 in every 256 guessed values will result in a valid key. This
notion is captured by our formalism, in which we write the Encipher command like this:

chkOdd(dec(y, km ⊕ data)), x, y → {x}dec(y,km⊕data)

It may seem useless for the intruder to simply guess values, since the result is a term
he knows enciphered under an unknown key, but used cleverly, this technique can result in
serious attacks. For example, Bond’s so called import-export attack [1], uses key conjuring
to convert a PIN derivation key into an encryption key, allowing an intruder to generate the
PIN for any given account number.

Description of Bond’s attack. We give Bond’s attack in Figure 2, written in our for-
malism, with explicit decryption and parity checking. We assume that the attacker initial
knowledge contains {pdk}km⊕pin, i.e. a PIN key encrypted for transfer, the control vectors
pin, data, imp, exp, kp and the constant 0. Moreover, we model the fact that the parity of
all the control vectors are even and the parity of the secret keys km and pdk is odd by con-
sidering the corresponding facts (e.g. chkEven(pin)). We will show how the PIN derivation
key pdk can be converted into a data key, which then can be used to encrypt data. Hence
the attack allows a criminal to generate a PIN for any account number. For this, we show
that the attacker is able to derive {pdk}km⊕data.

Step 1 is a key conjuring step. The attacker is using the Key Part Import 3 command,
using the control vector imp (for xtype) and the key part 0 (for xk3) but without a term
of the form {m}km⊕kp⊕imp. Instead, he repeatedly tries random values until some value n1

decrypts under km ⊕ kp ⊕ imp to give a valid key, i.e. a term of odd parity. Note that we
have written this by labelling the arrow to show the conjuring of a new term n1, and the
odd parity check is now on the right hand side of the rule, indicating that the intruder has
learnt the fact chkOdd(dec(n1, km ⊕ kp ⊕ imp)). In the rest of the attack we write r in place
of dec(n1, km ⊕ kp ⊕ imp).

Having succeeded in finding a suitable value n1, he uses the command again with
imp ⊕ exp as the key part to be added to the key, in Step 2. This yields two unknown
key encrypting keys, r and r ⊕ imp ⊕ exp, with a known difference.

In Step 3, the intruder uses key conjuring again, this time with the Key Import command,
using random values in place of {xkey}xkek⊕xtype, and using {r}km⊕imp as the key encrypting
key. Again, we write this as the generation of a new term n2, and the intruder learns the fact
chkOdd(dec(n2, r ⊕ imp)). In the rest of the attack we write r′ in place of dec(n2, r ⊕ imp).
In Step 4, the intruder uses the conjured value again to obtain an export version of the key.

The partial keys obtained by these two operations can then be completed using Key Part
Import 3. The exporter is completed to give {r′}km⊕exp, in Step 5, whilst the importer is set
to change the type of a key from pin to data, in Step 6. A PIN derivation key {pdk}km⊕pin

INRIA



A Formal Theory of Key Conjuring 11

1. Key Part Imp. 3

?, 0, imp
new n1→ {dec(n1, km ⊕ kp ⊕ imp)}km⊕imp, n1

chkEven(0), chkEven(imp) chkOdd(dec(n1, km⊕ kp ⊕ imp))
Let r = dec(n1, km ⊕ kp ⊕ imp)

2. Key Part Imp. 3
n1, imp ⊕ exp, imp → {r ⊕ imp ⊕ exp}km⊕imp

chkEven(imp), chkEven(imp⊕ exp)
chkOdd(dec(n1, km⊕ kp ⊕ imp))

3. Key Import

?, imp ⊕ kp, {r}km⊕imp
new n2→ {dec(n2, r ⊕ imp ⊕ kp))}km⊕imp⊕kp, n2

chkOdd(r), chkEven(imp ⊕ kp) chkOdd(dec(n2, r ⊕ imp ⊕ kp))
Let r′ = dec(n2, r ⊕ imp ⊕ kp)

4. Key Import
n2, exp ⊕ kp, {r ⊕ imp ⊕ exp}km⊕imp → {r′}km⊕exp⊕kp

chkEven(exp ⊕ kp), chkOdd(r ⊕ imp ⊕ exp)
chkOdd(dec(n2, r ⊕ imp ⊕ kp))

5. Key Part Imp. 3
{r′}km⊕exp⊕kp, 0, exp → {r′}km⊕exp

chkEven(0), chkEven(exp), chkOdd(r′)

6. Key Part Imp. 3
{r′}km⊕imp⊕kp, pin ⊕ data, imp → {r′ ⊕ data ⊕ pin}km⊕imp

chkEven(data⊕ pin), chkEven(imp), chkOdd(r′)

7. Key Export
{pdk}km⊕pin, pin, {r′}km⊕exp, → {pdk}r′⊕pin

chkOdd(pdk), chkEven(pin)

8. Key Import
{pdk}r′⊕imp, data, {r′ ⊕ data ⊕ pin}km⊕imp → {pdk}km⊕data

chkOdd(pdk), chkOdd(r′ ⊕ data ⊕ pin), chkEven(data)

“?” represents inputs that are replaced by random values by the attacker.

Figure 2: Bond’s Import/Export Attack in our formalism
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12 V. Cortier, S. Delaune & G. Steel

can then be turned into a data key by first exporting it under {r′}km⊕exp using Key Export
in Step 7, and then changing the type by re-importing it using {r′ ⊕ data ⊕ pin}km⊕imp as
the importer, in Step 8. Having obtained a PIN derivation key as a data key, the intruder
can now encrypt account numbers to obtain customer PINs.

In 2003, as a result of work by Youn et. al [16], it came to light that this attack was
impossible in practice, as an undocumented check in the CCA’s implementation prevents
key parts being passed to Key Import. This would mean steps 3 and 4 of the attack couldn’t
be executed. However, further attacks using key conjuring had been discovered by then,
[4, 5], on both the CCA API and other APIs. Clulow notes in [5] that key conjuring can
be prevented by using a hash or MAC to test the authenticity of keys, but many designs do
not include such measures, which increase the key management overhead.

Our example attack shows the potential of key conjuring to mount attacks. It also
demonstrates the features of our formalism which allow us to detect realistic key conjuring
operations. A simple ‘explicit decryption’ model is not sufficient for a key conjuring analysis,
since though this allows an attack like Bond’s be discovered, it doesn’t take into account
parity checks. This means that the model cannot distinguish between feasible and non-
feasible key conjuring steps, leading to false attacks. For example, for a command like Key
Import (see Example 2), an explicit decryption model without parity checking would allow
an intruder to conjure values for both y and z, which in practice is highly unlikely: only 1
in every 216 pairs of values will pass. Our transform ensures that the intruder has to guess
values for at most one parity check.

3.2 Transformation on the API rules

We propose a transformation allowing us to model key conjuring. This transformation is
generic enough to deal with any API made up of rules satisfying the conditions given in
Definition 1.

We first introduce a set of nonces, denoted by N , a subset of the set of constants that
does not contain the special constant 0. We assume an infinite number of nonces of both
types. A nonce represents a fresh value that has been never used before. Rules obtained
after transformation are called key conjuring rules and have the following form:

x1, . . . , xn
new n
→ t, n

chk1(u1), . . . , chkk(uk) chk′1(v1), [chk′2(n)]

The notation [chk′2(n)] is used to express the fact that chk′2(n) is optional.

Let Rl → Rr = chk1(u1), . . . , chkk(uk), x1, . . . , xn → t be an API rule. For each i such
that 1 ≤ i ≤ k, since ui is a term of Base type not headed with ⊕ and which contains no
encryption symbol, we have that ui is either a constant, a variable or a term of the form
dec(z, t). In this last case, we compute the key conjuring rules associated to Rl → Rr as
follows:
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A Formal Theory of Key Conjuring 13

1. Let σ = {z 7→ n}, we consider the new rule

(Rl r {z, chkj(uj)}
new n
→ Rr ∪ {z, chkj(uj)})σ

2. Moreover, we have that

t =

p
⊕

i=1

yi ⊕
⊕̀

i=1

ci ⊕

q
⊕

i=1

dec(zi, ti).

for some variables yi, zi, some constants ci and some terms ti. For each j such that
1 ≤ j ≤ p, we let σ = {yj 7→ n} and we consider the new rule

(Rl r {yj , chkj(uj)}
new n
→ Rr ∪ {yj , chkj(uj)})σ

Moreover, we push also on the right hand-side the check performed on yj if such a
check exists.

Given an API rule R, we denote by KeyCj(R) the set of rules obtained after applying the
transformation described above. This notation is extended as expected to sets of API rules.

Example 3 Consider the rule R, namely Key Part Import 3 described below.

y, xk3, xtype → {dec(y, km ⊕ kp ⊕ xtype) ⊕ xk3}km⊕xtype

chkEven(xtype)
chkEven(xk3)
chkOdd(dec(y, km ⊕ kp ⊕ xtype))

The purpose of this rule is to allow a user to add a final key part xk3 to a partial key y

with control vector xtype. After applying our transformation, the set KeyCj(R) contains the
two rules described below:

xk3, xtype
new n
→ {dec(n, km ⊕ kp ⊕ xtype) ⊕ xk3}km⊕xtype

chkEven(xtype) chkOdd(dec(n, km ⊕ kp ⊕ xtype))
chkEven(xk3)

y, xk3
new n
→ {dec(y, km ⊕ kp ⊕ n) ⊕ xk3}km⊕n

chkEven(xk3) chkOdd(dec(y, km ⊕ kp ⊕ n))
chkEven(n)

This represents the two ways the intruder can use the rule for key conjuring. In the first,
he conjures a partially completed key (this is the rule used in step 1 of the Bond attack in
Figure 2). In the second, for a fixed constant y, he conjures a control vector that will allow
y to be decrypted to form a valid partial key. Note that the conjured control vector is of even
parity, so the intruder learns two parity facts in this case. Our transform allows this kind
of conjuring because it is assumed the intruder can set the parity of the terms he uses as
guesses. The value that is checked for even parity is under his control. Hence the probability
of success is the same as for the first conjuring variant.
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The rules obtained by applying our key conjuring transformation on the IBM CCA Sym-
metric Key Management Transaction Set is fully described in Appendix (Figure 3).

Note that our transformation will sometimes produce rules which the intruder cannot
use. This happens when the fresh nonce appears in a parity check on the left, as in the first
rule for Key Import in Figure 3. The intruder cannot use this rule, since he does not know
any parity information about the new nonce before the command is used. This corresponds
to a case where the intruder would have to guess a value that decrypts to give a valid key,
k, such that k also decrypts some other value to give a valid key. For single length DES
keys, this gives the intruder a 1 in 216 chance of success, which we consider unrealistic.
However, if the intruder has extended access to a live HSM running the API, we believe
our transformation could be quite naturally extended to these more costly operations (see
Section 7).

3.3 Intruder rules

We denote by I the three API rules representing the capabilities of the intruder (see Ex-
ample 1). We observe that the intruder does not have to follow any parity checks when
encrypting or decrypting, but that he can also check the parity of terms he produces. Recall
that parity is defined only on terms of Base type. If an intruder makes a new term by
XORing, he can already predict the parity of the outcome following the rules in Section 2.2.
However, when decrypting, the intruder may learn new parity information by decrypting
a known constant with a random key, or by decrypting a random constant with a known
key. We refer to this as offline key conjuring. The rules corresponding to this are described
below:

� by decrypting a random constant with a known key

y
new n
→ dec(n, y), n

with X ∈ {Odd, Even}
chkX(dec(n, y))

Let I+
1 be the set of these two rules.

� decrypting a known constant with a random key

x
new n
→ dec(x, n), n, chkX(n)

with X, Y ∈ {Odd, Even}
chkY(dec(x, n))

Let I+
2 be the set of these four rules.

In Section 5, we will see that for a certain class of APIs, the class considered in this
paper, the offline key conjuring rules can be safely ignored. Our final set of intruder rules,
including offline key conjuring, is denoted by I+ = I ∪ I+

1 ∪ I+
2 .

4 A New Decidable Class

In this section, we define the semantics of our API-rules and we introduce the class of rules
for which we prove our decidability result.
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A Formal Theory of Key Conjuring 15

4.1 Security Problem

The problem we consider is the problem of deciding whether a particular term, for example
a PIN derivation key, can be learnt by an attacker. The intruder starts with a fixed set of
terms that constitute his initial knowledge. He can then use the rules of the API and also
the key conjuring variants of the rules in any order to extend his knowledge.

We first need to make sure that parity checks are performed consistently.

Definition 2 (consistent) Let S = {chk1(u1), . . . , chki(ui)}∪T where u1, . . . , ui are ground
terms of Base type and T is a set of terms. We denote by SatChk(S) the smallest set which
contains S and that is closed by application of the following rules modulo Xor.

chkEven(x1), chkEven(x2) → chkEven(x1 ⊕ x2)
chkOdd(x1), chkOdd(x2) → chkEven(x1 ⊕ x2)
chkEven(x1), chkOdd(x2) → chkOdd(x1 ⊕ x2)

We say that S is consistent if for any term t, chkOdd(t) and chkEven(t) are not both in
SatChk(S).

A fact is either a term t or a parity check, i.e. chkX(t). A fact is ground if the term t is
ground and it is said pure if the term t is pure and of Base type inside a parity check.

Example 4 Let S be the following set:

S = {chkEven(a ⊕ b), chkEven(b ⊕ c), chkOdd(a ⊕ c)}

S is not consistent. Indeed, since (a⊕ b)⊕ (b⊕ c) =Xor a⊕ c, we have that chkEven(a⊕ c) ∈
SatChk(S) and also that chkOdd(a ⊕ c) ∈ SatChk(S).

Definition 3 (one-step deducible, deducible) Let A be a set of rules of the form Rl
[new n]
→

Rr and E be an equational theory. Let S be a set of pure ground facts that is consistent.

The set of facts F is one-step deducible from S if there exists a rule Rl
[new n]
→ Rr ∈ A and a

ground substitution θ such that

� Rlθ ⊆ SatChk(S) (modulo E),

� F = Rrθ (modulo E), and

� n is fresh, i.e. n does not occur in S.

A term u is deducible from S by using the set of rules A modulo the equational theory E,
denoted by S `A,E u if u ∈ S (modulo E) or there exists some sets of facts F1, . . . , Fn such
that u ∈ Fn and Fi is one-step deducible from S ∪ F1 ∪ . . . ∪ Fi−1. The sequence F1, . . . , Fn

is a proof that S `A,E u.
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16 V. Cortier, S. Delaune & G. Steel

Of course, at each step of the proof the set of ground facts obtained has to be consistent
with respect to the parity checking predicates. However, this will be the case by construction,
since the only rules which add parity facts are the key conjuring ones, which always introduce
something fresh in the parity facts.

Example 5 Let S = {{s}a, a ⊕ b, b}. We have that s is deducible from S by using the
rules I modulo EAPI. Indeed, we have that S, {a}, {s} is a proof of S `I,EAPI

s.

Example 6 (Bond’s Import/Export attack) Let A be the rules described in Figure 1,
V = {pin, data, exp, imp, kp}. Let S be a set which contains:

� {pdk}km⊕pin, chkOdd(pdk), chkOdd(km),

� t and chkEven(t) for any t ∈ V.

We have that {pdk}km⊕data is deducible from S by using the rules in A∪KeyCj(A)∪I modulo
EAPI. The proof witnessing this fact can be easily extracted from Figure 2.

Note that this attack involves two online key conjuring steps. Each key conjuring attempt
has a 1 in 256 chance of success, due to the parity checks. Each time the adversary wants
to conjure a key, it requires a significant amount of access to the API. We assume in what
follows that the use of these rules by the adversary is limited. This is modelled by introducing
a parameter k that bounds the maximum number of applications of the key conjuring rules
induced by the protocol. The value of k could be set based on the amount of time an attacker
may have access to a live HSM, based on physical security measures, auditing procedures in
place, etc. Note however that we do not bound the number of offline key conjuring since it
is much easier for an adversary to try numerous values off-line.

Formally, we write S `A2 ≤k
A1,EAPI

u if u is deducible from S by using the rules in A1 and at
most k instances of the rule in A2 (modulo EAPI). In this paper we rely on a fixed equational
theory, denoted by EAPI (see Section 2.2) and a fixed set of intruder rules denoted by I+.
Hence our problem is the following one:

Security Problem

Entries: A finite set A of API rules, a set S of pure ground facts that is consistent (the
initial knowledge of the attacker), a pure ground term s (the secret) and a bound
k ∈ N (number of key conjuring steps).

Question: Is the secret s deducible from S by using the rules in A ∪ I+ and at most k

instances of rules in KeyCj(A) (modulo EAPI), i.e. does S `
KeyCj(A) ≤k

A∪I+,EAPI
s?

4.2 Well-formed API

API-rules as defined in Definition 1 are slightly too general for our decidability result. Hence
we introduce further assumptions, that we believe are very reasonable in practice. Note
that these hypotheses are checked on the API rules before performing the key conjuring
transformation.
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A Formal Theory of Key Conjuring 17

Definition 4 Let S0 be a set of pure ground fact that is consistent. Let R = Rl
new n
→ Rr be

a rule and t be a term of Base type. We say that t is checked in R w.r.t. S0 if chkX(t) ∈
SatChk(S0 ∪ Rl ∪ Rr).

Definition 5 Let R be a rule. KeyTerm(R) are the subterms of R which appear at a key posi-
tion. More formally, KeyTerm(R) = {KeyTerm(t) | t ∈ R or chkX(t) ∈ R} where KeyTerm(t)
is defined as follows:

KeyTerm(t) = {u2 | dec(u1, u2) ∈ st(t) for some u1}
∪ {u2 | {u1}u2 ∈ st(t) for some u1}.

We will restrict our attention to APIs such that a term which appears at a key position
has to be parity checked. This hypothesis is natural, since it corresponds to the API designer
being consistent about checking the parity of keys before they are used.

Example 7 Let V = {imp, kp, exp, pin, data}. and S0 be a set that is consistent and which
contains at least chkEven(t) for any t ∈ V and chkOdd(km). The rules given in Figure 1 are
such that each term which appears at a key position is checked w.r.t. S0.

Definition 6 (dec-property) Let T be a set of terms. We say that T has the dec-property
if

dec(x, v1), dec(x, v2) ∈ st(T ) ⇒ v1 = v2.

We say that a rule R has the dec-property if the set of terms T = {t | t ∈ R or chkX(t) ∈ R}
satisfies the dec-property.

In the API we consider, we will assume that all the rules satisfy the dec-property. This
hypothesis is natural, since it only forbids the API from decrypting the same input under two
different keys. Note that the dec-property is clearly satisfied by the rules given in Figure 1.

Definition 7 (well-formed API rule) Let S0 be a set of pure ground fact that is consis-
tent. Let R be an API rule.

chk1(u1), . . . , chkk(uk), x1, . . . , xn → t

We say that R is well-formed w.r.t. S0 if:
� for all i such that 1 ≤ i ≤ k, we have that ui ∈ st(t),

� R satisfies the dec-property,

� for all v ∈ KeyTerm(R), v is checked in R w.r.t. S0.

An API rule satisfying only the two first points is said to be weakly well-formed.

The first point requires that the API only checks the parity of objects that are to be
used in generating the output. Since the form of our rules has only variables on the left,
and all decryption explicitly stated on the right, this is quite natural. We would not expect
an API to check the parity of a term that is subsequently discarded. For instance, the API
rules given in Figure 1 are well-formed. However, the rules describing the capabilities of the
attacker (see Example 1) are not well-formed, but only weakly well-formed.
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4.3 Decidability

Theorem 1 (Main result) Let P be an instance of the security problem (as stated at the
end of Section 4.1) where

� the set A of API rules is well-formed w.r.t. the set S

� 0 ∈ S,

� the terms in S ∪ {s} do not contain any symbol dec.

We can decide whether P is a positive or a negative instance of the security problem.

The remainder of the paper is devoted to the proof of this result. We proceed in several
steps:

1. From I+ to I. In Section 5, we establish some reduction results allowing us to get rid
of the offline key conjuring rules. These results are obtained for any set of API rules as
defined in Definition 1, and not only the well-formed ones introduced in Definition 7.

2. From EAPI to AC. In Section 6.1, we show that we can get rid of some axioms of
the equational theory by using the fact that EAPI satisfies the finite variant property
introduced in [7]. This can be done safely by considering some new rules, namely the
variants denoted Var (A), which are obtained from the rules A we have at the beginning
by instantiating them.

3. Controlling the form of the rules. In Section 6.2, we show that the variants computed
at the previous step satisfy some properties. Given a set A of (weakly) well-formed API
rules, we have that Var (A∪KeyCj(A)), rules obtained after our both transformations,
are (weakly) well-adapted (see Definition 9).

4. Existence of a pure attack. In Section 6.3, we show that for a set of weakly well-adapted
rules, if there exists an attack then there is one which only involves pure terms (see
Proposition 5).

5. Bounded the number of subterms headed with dec. Now, to obtain our decidability
result it is sufficient to bound the number of terms headed with dec in an attack (see
Section 6.4). This allows us to consider only a finite number of terms.

5 Off-line key conjuring is useless

The adversary can perform as many off-line key conjuring as he wishes, since it is very easy
for him to try numerous values off-line, until the decryption algorithm yields a bitstring of
the desired parity. We show now that in fact, off-line key conjuring does not provide any
extra possibilities for the adversary to mount an attack. Thus there is no need to consider
these rules.
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We first show that the rules of I+
1 are useless as soon as the adversary knows a fixed

constant of each parity.

Proposition 1 Let A be a set of API rules and S be a set of pure ground facts. We have
that

S `
KeyCj(A)≤k

A∪I+,EAPI
u ⇔ S′ `

KeyCj(A)≤k

A∪I∪I+
2 ,EAPI

u

where S′ = S ∪ {c1, c2, chkOdd(c1), chkEven(c2)} and c1, c2 are constants of Base type that
do not appear in A, S and u.

Then, we show that there is no need to consider rules of I+
2 if the intruder already knows

terms of the form dec(1, ci) of each parity. Intuitively, the intruder knows an instance of
each of the four rules.

Proposition 2 Let A be a set of API rules and S be a set of pure ground facts. We have
that

S `
KeyCj(A)≤k

A∪I∪I+
2 ,EAPI

u ⇔ S′ `
KeyCj(A)≤k

A∪I,EAPI
u

where S′ is the set obtained from S by adding

� the constants 1 (Cipher) and c1, c2, c3, c4 (Base),

� chkOdd(dec(1, c1)), chkOdd(c1)

� chkOdd(dec(1, c2)), chkEven(c2)

� chkEven(dec(1, c3)), chkOdd(c3)

� chkEven(dec(1, c4)), chkEven(c4)

and c1, c2, c3, c4 do not appear in A, S and u.

The idea of the proof is to replace each application of a rule

x
new n
→ dec(n, x), chkX(dec(x, n)), chkY(n)

in I+
2 by its corresponding instance. In particular, x is always replaced by the same constant

1. We can show that we still obtain a proof. Intuitively, if it was not the case, it would
mean that it was important for x to be an encryption or a decryption. This would be the
case only if there was nested encryption on the right hand side of the rule, which is not the
case for API rules.

6 Decidability for Well-Formed APIs

In the remainder of this section we describe a decision procedure to deal with any set of
well-formed API rules.
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6.1 Getting rid of some equations

The goal of this section is to get rid of all the axioms of the equational theory but associativity
and commutativity, decomposing the theory into a convergent rewriting system modulo AC
equations. The idea is to pre-compute variants of the rules so that there is no need to apply
the full equational theory anymore.

Let R be a term rewriting system (TRS) and E′ be an equational theory, we write
u →R,E′ v when v can be written into v modulo E′. A decomposition of an equational
theory E is a pair (R, E′) such that R is an E′-convergent system for E, i.e. u =EAPI

v if and
only if u↓ = v↓ where u↓ denotes the normalized form of u w.r.t. →R,E′ .

For instance, for the equational theory EAPI, we can show that (R⊕, AC) is a decompo-
sition of EAPI where

R⊕ =







dec({x}y, y) → x x ⊕ x → 0
{dec(x, y)}y → x x ⊕ 0 → 0

x ⊕ (x ⊕ y) → y

Definition 8 (finite variant property) A decomposition (R, E′) of a given theory E has
the finite variant property if for every term t, there is a finite set of subtitutions Σ(t) such
that

∀σ∃θ ∈ Σ(t), ∃τ such that σ↓ =E′ θτ ∧ (tσ)↓ =E′ (tθ)↓τ.

In other words, all possible reductions in an instance of t can be computed in advance.
Given a term t, we denote by Var (t) the set of its variants, i.e. Var (t) = {(tθ)↓ | θ ∈ Σ(t)}.
In [7], the authors give sufficient condition to establish that a given presentation satisfies the
finite variant property. Moreover they give an algorithm allowing us to compute the variants
associated to a given term. By using their result, it is easy to establish that (R⊕, AC) is a
decomposition of EAPI which satisfies the finite variant property. The so-called variants of a
rule R are obtained by performing narrowing with R⊕ modulo AC.

Narrowing. The subterm of t at position p ∈ O(t) is written t|p. The term obtained by
replacing t|p with u is denoted t[u]p. We denote by Ō(t) the set of non-variable position of t.
Given a TRS R, we say that a term t narrows to t′ with the substitution σ, at p ∈ Ō(t), by
l → r ∈ R if there exists a renaming l′ → r′ of l → r ∈ R such that σ is a unifier of t|p

and l′ and t′ = (t[r]p)σ. In this case, we write t  σ t′. We write t
∗
 σ t′ if there exists a

narrowing derivation t = t1  σ1 t2 . . . σn−1 tn = t′ such that σ = σ1 . . . σn−1. If E′ is a set
of equations such that an E′-unification algorithm exists, we define E′-narrowing as expected
(σ is an E′-unifier of t|p and l). In particular, this allows us to define AC-narrowing.

Computation of the variants. Let R be an API rule and k be the number of occurrences
of { } , dec and ⊕. According to [7], we have that

Var (R) = {R′ | R
∗
 σR′ by a derivation of length at most k}
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Now the proposition below is an easy consequence of the fact that EAPI satisfies the finite
variant property.

Proposition 3 Let A1, A2 be two sets of rules, S be a set of ground facts and s be a ground
term (in normal form).

S `
KeyCj(A1) ≤k

A1∪A2,EAPI
u if and only if S `

Var (KeyCj(A1)) ≤k

Var (A1∪A2),AC
u

Moreover, we only need to consider instances of the rules which involve terms in normal
form.

Example 8 For instance, consider the following rule R = x, y → dec(x, y). We have that
Var (R) = {R, R′} where R′ = {z}y, y → z. Note that R′ is a normalized instance of R. Indeed
R′ = Rθ↓ where θ = {x 7→ {z}y}.

6.2 Controlling the form of the rules

We need to control the form of the rules after computation of the key conjuring transforma-
tion and computation of the variants. We show that the set Var (A∪KeyCj(A)) obtained from
a set A which only contains (weakly) well-formed rules w.r.t. S is (weakly) well-adapted
w.r.t. S.

Definition 9 (well-adapted) Let S0 be a set of pure ground fact that is consistent. Let

R = Rl
[new n]
→ Rr. We say that R is well-adapted w.r.t. S0 if

1. R is well-typed and vars(Rr) ⊆ vars(Rl) ,

2. a term of type Cipher appearing as a strict subterm position in R is either a nonce or
a variable,

3. for all t ∈ KeyTerm(R), t is checked in R w.r.t. S0,

4. there is at most one term u in a check in Rr not equal to n and we are in one of the
following cases:

� u = dec(y, n ⊕ u′),
� u = dec(n, u′), or
� n occurs in Rl and hence the rule R is useless.

A set of rules which satisfies the two first points is said to be weakly well-adapted.

Proposition 4 Let S0 be a set of pure ground fact that is consistent. Let A be a set of
(weakly) well-formed API rules w.r.t. S0. Let A′ = Var (A∪KeyCj(A)). We have that A′ is
a set of (weakly) well-adapted rules w.r.t. S0.
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The notion of well-adapted relies on four conditions (see Definition 9). The conditions 1, 3
and 4 are established by using the fact that a variant R′ is just a nomalized instance of well-
formed API rule R, that is R′ = Rθ↓ for some θ. Proving condition 2 is more involved. As
shown in the example below, Condition 2 is not stable by AC-narrowing, i.e. by computation
of the variants thus we had to first enforce it.

Example 9 Let R = x → {dec(x, k1)}dec(x,k2). The condition 2 is satisfied by R. Now,
consider the rule

R′ = {y}k1 → {y}dec({y}k1
,k2)

We have that R′ ∈ Var (R). However, R′ does not satisfy the condition. This problem comes
from the fact that there is a variable of type Cipher which involved in two differents subterms
headed with dec. Here we have that x is involved in dec(x, k1) and also in dec(x, k2). Since
k1 6= k2, the rule R does not satisfy the dec-property and hence is not a well-formed rule.

6.3 Existence of a pure attack

We show in this section that we can restrict our attention to proofs which only involve pure
terms. The following result holds for any set of weakly well-adapted rules. The conditions 3
and 4 of Definition 9 are only used for the last part of our decision procedure (see Section 6.4).

A position in a term is impure if the subterm at that position is not of the expected
type and form. By convention the root position is always an impure position. Note that in
a pure term t the only impure position is Λ.

Example 10 Let t = dec(a ⊕ b, c) where a, b and c are constant of Base type. The position
p in t such that t|p = a ⊕ b is impure. Let t = dec({a}b, c) where a, b and c are constant of
Base type. The position p in t such that t|p = {a}b is impure.

We first prove that whenever an impure term occurs in a deducible term t at a position
p, the term t|p is itself deducible.

Lemma 1 Let A be a set of weakly well-adapted rules and S be a set of pure ground
facts that is consistent and which contains 0. Let u be a ground term deducible from S
and F1, . . . , Fn be a proof that S `A,AC u. Let p be an impure position of u. We have that
u|p ∈ S ∪ F1 ∪ . . . ∪ Fn.

We are now ready to state our result which says that only pure terms need to be consid-
ered when checking for deducibility.

Proposition 5 Let A be a set of weakly well-adapted rules and S be a set of pure ground
facts that is consistent and which contains 0. Let u be a pure ground term. If S `A,AC u
then there is a proof of S `A,AC u which only involve pure terms.

To establish this result, we assume given a proof P of S `A,AC u and we show how to
compute a proof P ′ from P which only involves pure term. The proof P ′ uses exactly the
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same rule at each step but not the same instance. In particular any term appearing at an
impure position will be replaced to obtain a pure term. From this, we easily deduce the
following corollary.

Corollary 1 Let A1, A2 be two set of weakly well-adapted rules and S be a set of pure
ground facts that is consistent and which contains 0. Let u be a pure ground term. If
S `A1 ≤k

A2,AC u then there is a proof witnessing this fact which only involves pure terms.

6.4 A bound on the number of dec terms

From Corollary 1 we know that if there is an attack, there is an attack that involves only pure
terms. Pure terms are well-typed and contain at most one encryption symbol. However,
the dec symbols might be arbitrarily nested. Our goal is to bound the size of an attack by
limiting the use of dec symbols.

A dec-term is a term of the form dec(u, v). Given a proof F1, . . . , Fn of some deduction
fact S `R,AC w, we say that a dec-term t is legal if it is checked in S, that is chkX(t) ∈
SatChk(S) or it has been produced by a key-conjuring rule, that is chkX(t) ∈ Fj for some
1 ≤ j ≤ n. The term t is said illegal otherwise. Let k′ be the number of legal dec
terms occurring in S. Since there are at most k applications of the key-conjuring rules
and since each key-conjuring rule introduces at most one term that is not a name, there are
at most k + k′ legal dec term occurring as subterm in a proof F1, . . . , Fn. We wish to show
that, besides the legal dec-terms, no decryption symbol can occur under a key position. This
ensures that illegal dec-terms can only occur as plaintext thus can not be nested.
We first show that illegal dec-term cannot occur in checks.

Lemma 2 (No illegal dec-term in checks) Let A be a set of well-adapted rules and S
be a set of pure ground facts such that no dec terms occurs in KeyTerm(S). Let w be a pure
ground term deducible from S and F1, . . . , Fn be a proof that S `A∪Var (I),AC w that involves
only pure facts. We assume that there is no dec-term subterm of w. For any term t such
that chk(t) ∈ SatChk(S∪F1∪ . . .∪Fn), for any dec(u, v) subterm of t, the dec-term dec(u, v)
is legal.

The intuitive idea for proving this lemma is that new checks can only be introduced by the
key-conjuring rules, which are limited. In addition, when a chkX(t) is introduced, illegal
dec-terms cannot occur since the rules are well-adapted.

We then prove that illegal dec-terms cannot occur in key position or they can be replaced
by 0. Let N and N ′ be two terms. For any term M , we denote by MδN,N ′ the term M
where any occurence of N in key position is replaced by N ′.
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Lemma 3 (Replacement of dec-terms in key position) Let A be a set of well-adapted
rules and S be a set of pure ground facts such that no dec terms occurs in KeyTerm(S). Let
w be a pure ground term deducible from S and F1, . . . , Fn be a proof that S `A∪Var (I),AC w
that involves only pure facts. We assume that there is no dec-term subterm of w. Let t be
a term such that t ∈ Fj for some 1 ≤ j ≤ n and let p be some key position of t such that
t|p = dec(u, v) ⊕ t′ (t′ being possibly empty in which case by convention, t|p = dec(u, v)).

� Either the term dec(u, v) is legal.

� Or F1δ(dec(u,v)⊕t′,0), . . . , Fjδ(dec(u,v)⊕t′,0) is a pure proof of S `R∪Var(I),AC tδ(dec(u,v)⊕t′,0).

The lemma is proved by induction.

Now, we are able to prove our main result (Theorem 1).
Proof. Let P be an instance of the security problem where the set A of API rules is well-
formed w.r.t. S and 0 ∈ S. Let S ′ be the set of facts obtained from S by adding

� 1 (constant of type Cipher),

� c1, c2, c′1, c′2, c′3, c′4 constants of Base type,

� chkOdd(c1), chkOdd(c′1), chkOdd(c′3),

� chkEven(c2), chkEven(c′2), chkEven(c′4),

� chkOdd(dec(1, c′1)), chkOdd(dec(1, c′2)),

� chkOdd(dec(1, c′3)), chkOdd(dec(1, c′4)).

Note that no dec terms occurs in KeyTerm(S ′).
Thanks to Propositions 1 and 2, we easily deduce that

S `
KeyCj(A) ≤k

A∪I+, EAPI
u ⇔ S′ `

KeyCj(A) ≤k

A∪I, EAPI
u

Proposition 3 gives us

S′ `
KeyCj(A) ≤k

A∪I, EAPI
u ⇔ S′ `

Var(KeyCj(A)) ≤k

Var(A∪I), AC
u

Thanks to the well-formedness of the rules in A, we deduce (Proposition 4) that

� the rules in Var (KeyCj(A)) are well-adapted,

� the rules in Var (A) are well-adapted,

� the rules in Var (I) are weakly well-adapted.
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Note also that Var (A ∪ I) = Var (A) ∪ Var (I).

Now, we apply Corollary 1 and we deduce that if S′ `
Var (KeyCj(A)) ≤k

Var (A∪I), AC
u then there exists

a proof witnessing this fact which involves only pure terms. Lastly, Lemmas 2 and 3 allow
us to bound the number of dec-terms which can appear in such a proof. This allows us to
consider only a finite number of terms: we have a finite number of constants and nonces
which can only be combined to produce pure terms involving some precise dec-terms. �

Complexity. Our decision procedure works as follows. We first guess the k legal terms
that are produced by key conjuring rules and then saturate the set S ′ with all deducible
terms that are pure terms with no illegal dec terms under key position. Let n by the number
of constants occurring in S ′ plus k. Illegal dec terms cannot occur nested thus it is easy
to see that there are at most n × 2n illegal dec terms. These dec terms can be arbitrarily
XORed in plaintext position but cannot occur under key position. Thus we have to consider

at most 22O(n)

terms. Thus our procedure terminates after at most 22O(n)

steps. Altogether,
we can show that our algorithm is non-deterministic 2-EXPTIME.

7 Conclusion

We have presented a formalism for key conjuring, obtained by applying a transformation
to a model of a security API with explicit parity checks. We have shown that the security
problem is decidable for a general class of APIs (well-formed).

In this paper, we have concentrated on the example of the IBM CCA API, with its
XOR-based scheme for key management. However, we believe our approach can be applied
in general to security API analysis. In particular, our language for defining API commands,
with variables on the left hand side and all decryption made explicit on the right, seems
more natural than the use of an Alice-Bob style implicit decryption formalism. Our de-
cidability suggests that analysis can still be tractable in this kind of explicit decryption
formalism. The use of predicates to specify input checks could be extended beyond parity
checking, to predicates that depend on state. Our transformation could then be used to
identify operations that allow the intruder to learn state information. We could also extend
our transformation to allow more computationally expensive key conjuring operations, by
allowing multiple fresh terms to be generated in a single rule.

We plan to extend our results to a larger class of APIs, incorporating pairing and further
cryptographic primitives, and to implement our model in an analysis tool. There remains
a significant class of known API attacks that has not been dealt with formally: so-called
parallel key search attacks. Formalising key conjuring is an important first step towards
this, since many of these attacks rely on building up a set of conjured keys.
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A Off-line key conjuring is useless

Proposition 1 Let A be a set of API rules and S be a set of pure ground facts. We have
that

S `
KeyCj(A)≤k

A∪I+,EAPI
u ⇔ S′ `

KeyCj(A)≤k

A∪I∪I+
2 ,EAPI

u

where S′ = S ∪ {c1, c2, chkOdd(c1), chkEven(c2)} and c1, c2 are constants of Base type that
do not appear in A, S and u.

Proof. Let F1, . . . , Fn be a proof of S `A1 ≤k

A2∪I+,EAPI
u such that the number p of applications

of rules in I+
1 is minimal. Assume p ≥ 1 and consider the first occurrence j in the proof

where a rule of I+
1 is used. We assume w.l.o.g. that the rule is

z
new n
→ dec(n, z), chkOdd(dec(n, z))

There exists a substitution θ such that

� zθ ∈ SatChk(S ∪ F1 ∪ · · · ∪ Fj−1), and

� Fj = {dec(n, zθ), chkOdd(dec(n, zθ))}.

Let δ be the substitution that replaces the name n by {c1}zθ. We show that F1δ, . . . , Fnδ be

a proof of S `A1,≤k

A2∪I+,EAPI
u. Note that uδ = u.

1. For i < j, Fiδ = Fi thus Fi is deducible from S.

2. Fj = {c1, chkOdd(c1)} ⊆ S thus Fj is deducible from S.

3. Since API rules only contain variables on the left-hand side, it is easy to see that we
have that t1, . . . , tn → t′1, . . . , t

′
k is an instance of a rule then t1δ, . . . , tnδ → t′1δ, . . . , t

′
kδ

is an instance of the same rule. We deduce that Fi is deducible from S for any j < i ≤ n.

We obtain a proof of S `A1 ≤k

A2∪I+,EAPI
u with k − 1 applications of rules in I+

1 , contradiction.

We deduce that there exists a proof F1, . . . , Fn of S `A1 ≤k

A2∪I+,EAPI
u that makes no use of rules

in I+
1 . Thus F1, . . . , Fn is a proof of S `A1 ≤k

A2∪(I+∪I+
2 ),EAPI

u. �

B Getting rid of some equations

Rewriting. A term s rewrites to t by a TRS R, denoted s →R t, if there is l → r in R,
p ∈ O(s) and a substitution σ such that s|p = lσ and t = s[rσ]p. A TRS R is terminating
if there are no infinite chains t1 →R t2 →R . . ..

As in [11], given a set of rewrite rules R and a set of equations E′, rewriting modulo E′,
is the relation →E′\R (others have used →R,E′) defined as follows: s →E′\R t iff there
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exists a position p ∈ O(s) such that s|p =E′ lσ and t = s[rσ]p for some substitution σ and
rule l → r ∈ R. A rewrite system R is E′-confluent if and only if for every s, t such that
s =R∪R−1∪E′ t, there exists s′, t′ such that s

∗
−→E′\R s′, t

∗
−→E′\R t′, and s′ =E′ t′. It said to

be E′-convergent if, in addition, =E′ ◦ →R ◦ =E′ is well founded.
A term t is in normal form (w.r.t. →E′\R) if there is no term s such that t →E′\R s.

If t
∗
−→E′\R s and s is in normal form then we say that s is a normal form of t. When this

normal form is unique, we write s = t↓E′\R or shortly s = t↓ when E′\R is clear from the
context. A substitution σ is called normalized if for every x ∈ dom(σ), xσ is in normal form.

Finite Variant Property In [7], the authors give sufficient condition to establish that
a given presentation satisfies the finite variant property. Moreover they give an algorithm
allowing us to compute the variants associated to a given term. By using their result, to
establish the fact that (R⊕, AC) is a decomposition of EAPI which satisfies the finite variant
property, it is sufficient to establish what they have called the boundedness property. For
this, we can easily show that:

Lemma 4 Let t1 and t2 be irreducible terms (w.r.t. R⊕/AC), dec(t1, t2), {t1}t2 and t1 ⊕ t2
can be reduced to its normal form using at most 1 reduction step.

Lemma 4 given in [7], allows us to conclude that (R⊕, AC) is a decomposition of EAPI

which satisfies the boundedness proeprty and hence the finite variant property. Proposition 3
is an easy consequence of the fact that (R⊕, AC) is a decomposition of EAPI which satisfies
the finite variant property.

C Controlling the form of the rules

We need to ensure some conditions after computation of the Key conjuring transformation
and computation of the variants. The proofs of this section are devoted to establishing the
following proposition:

Proposition 4 Let S0 be a set of pure ground fact that is consistent. Let A be a set of
(weakly) well-formed API rules w.r.t. S0. Let A′ = Var (A∪KeyCj(A)). We have that A′ is
a set of (weakly) well-adapted rules w.r.t. S0.

We prove this Proposition by establishing each condition separately.

C.1 Condition 1

Lemma 5 Let R be a weakly well-formed API rule. Let R′ = R′
l

[new n]
→ R′

r ∈ Var (R ∪
KeyCj(R)). We have that R′ is well-typed and vars(R′

r) ⊆ vars(R′
l).

Proof. Let R = Rl → Rr be a weakly well-formed API rule and consider a rule R′ ∈ Var (R).
We have that there exists a substitution θ such that R′ =AC Rθ↓. We can assume w.l.o.g.
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that θ is normalized. Moreover, by using narrowing and rewriting, we obtain a rule R′ = Rθ↓
that is well-typed. Since vars(Rr) ⊆ vars(Rl), we have that vars(Rrθ) ⊆ vars(Rlθ). Now,
since for all x ∈ vars(Rr) we have that x ∈ Rl and θ is normalized, we easily deduce that
vars(Rrθ) = vars(Rrθ↓) and hence vars(Rrθ↓) ⊆ vars(Rlθ↓). The same kind of reasoning
allows us to conlude for a rule R′ ∈ Var (KeyCj(R)). �

C.2 Condition 2

Note that Condition 2 of Definition 9 (well-adapted) is not stable by AC-narrowing, i.e. by
computation of the variants (see Example 9). To establish this condition, we have to rely
on the fact that weakly well-formed rules satisfy the dec-property.

Definition 10 (dec-property modulo AC) Let T be a set of terms. We say that T has
the dec-property modulo AC if

dec(x, v1), dec(x, v2) ∈ st(T ) =⇒ v1 =AC v2.

Then by inspecting the algorithm allowing us to compute AC-unifier, we can establish
the following lemma.

Lemma 6 Let T be a set of pure terms having the dec property. Let t1, t2 ∈ st(T ) of base
type and σ = mguAC(t1, t2). Then Tσ↓ has the dec property and contains only pure terms.

We are now ready to prove the following lemma.

Lemma 7 Let R be a weakly well-formed API rule. Let R′ ∈ Var (R ∪ KeyCj(R)). Let t be
a term of type Cipher appearing as a strict subterm position in R, then t is not headed with
{ } (t is either a nonce, a variable or constant).

Proof. Let R be a well-typed rule such that:

� if dec(x, t1) and dec(x, t2) are in st(R) then t1↓ =AC t2↓. Given a variable x of type
Cipher, we denote by tx the unique term modulo AC (when it exists) such that
dec(x, tx) ∈ st(R).

� a term t of type Cipher appearing as a strict subterm position in R↓ is not headed with
{ } .

Let R be a weakly well-formed API rule. Note that the two conditions are satisfied by
R and also by the rules in KeyCj(R). Let R′ be such that R σR′. We have to show that R′

satisfies the two conditions above. We have to consider several cases:

Narrowing with dec({y1}y2 , y2) → y1. By definition, we know that there exists t ∈ R,
p ∈ Ō(t) and σ = mguAC(t|p, dec({y1}y2 , y2)). We have that t = dec(t1, t2). Note that if t1 is
not a variable, then either t1 is a nonce and unification would be not possible or t1 = {t′1}t′2

with dec({t′1}t′2
, t2). Either t′2 =AC t2 and we have that R′↓ =AC R↓ (in such a case we easily
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conclude). Otherwise this would contradict our second hypothesis. Hence we know that t1
is a variable say that x. We have that σ = {y2 7→ t2, x 7→ {y1}t2}. Let R′′ = Rσ, we have
that R′′↓ =AC R′↓ and the two conditions are satisfied.

Narrowing with {dec(y1, y2)}y2 → y1. There exists t ∈ R and σ = mguAC(t, {dec(y1, y2)}y2).
Moreover, we have that t = {t1}t2 . We distinguish two cases: either t1 = dec(t′1, t

′
2) or t1 is

a variable. Indeed, otherwise unification would not be possible.

� t1 = dec(t′1, t
′
2). If t2 =AC t′2, we have that R′↓ = R↓ and we easily conclude. Otherwise,

we have that σ ∈ mguAC(t2, t
′
2). Let R′′ = Rσ, we have that R′′↓ =AC R′↓. The fact

that R′′ satisfies the two conditions is an easy consequence of Lemma 6.

� t1 is a variable, say that x. We have that σ = {x 7→ dec(y1, t2)}. Let R′′ = Rσ, we
have that R′′↓ =AC R′↓ and R′′ satisfies the two conditions.

Narrowing with y1 ⊕ y1 → 0.
By definition, we know that there exists t ∈ R, p ∈ Ō(t) and σ ∈ mguAC(t|p, y1 ⊕y1). Hence,
we have that t =AC t1 ⊕ t2 and σ ∈ mguAC(t1, t2). Let R′′ = Rσ, we have that R′′↓ =AC R′↓
and we easily conclude by using Lemma 6.

The other cases, i.e. narrowing with y1 ⊕ (y1 ⊕ y2) → y2 or y1 ⊕ 0 → y1 can be done
similarly. Lastly the case of a key conjuring rule can be done similarly. �

C.3 Condition 3

Lemma 8 Let S0 be a set of pure ground facts that is consistent. Let R be a well-formed
API rule w.r.t. S0. Let R′ ∈ Var (R ∪ KeyCj(R)). Let v′ ∈ KeyTerm(R′) we have that v′ is
checked in R′ w.r.t. S0.

Proof. Let R be a well-formed API rule. We have that R′ =AC Rθ↓ and we can assume
w.l.o.g. that θ is a normalized substitution. We have that

KeyTerm(Rθ↓) ⊆ KeyTerm(R)θ↓ ∪ KeyTerm(θ)
= KeyTerm(R)θ↓

The last equality is due to the fact that for all x ∈ vars(R), we have that x ∈ R. Now, let
v′ ∈ KeyTerm(R′). We have to show that v′ is checked in R′ w.r.t. S0. We know that there
exists v ∈ KeyTerm(R) such that vθ↓ =AC v′. Moreover, by hypothesis, we know that v is
checked in R. Hence there exists v1, . . . , v` such that v =Xor v1 ⊕ . . . ⊕ v` and for each i,
1 ≤ i ≤ ` we have that chkOdd(vi) ∈ S0 ∪ R or chkEven(vi) ∈ S0 ∪ R. For each i such
that 1 ≤ i ≤ `, let v′

i = viθ↓. For each i, 1 ≤ i ≤ ` we have that chkOdd(v′
i) ∈ S0 ∪ R′ or

chkEven(v′
i) ∈ S0 ∪ R′ and v′ =Xor v′1 ⊕ . . . ⊕ v′`, i.e. v′ is checked in R′ w.r.t. S0.

A similar reasoning allows us to deal with the case of a rule in KeyCj(R). �
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C.4 Condition 4

Lemma 9 Let R be a well-formed API rule and Rkc ∈ KeyCj(R). Let R′ ∈ Var (Rkc). We

have that R′ = R′
l

new n
→ R′

r and {t | chkX(t) ∈ R′
r} r {n} = {u}. Moreover, we are in one of

the following three cases:

� u = dec(y, n ⊕ u′),

� u = dec(n, u′),

� n occurs in R′
l (and hence the rule R′ is useless).

Proof. Let R be a well-formed API rule and Rkc = Rl
kc

new n
→ Rr

kc ∈ KeyCj(R). First of all note
that Rkc satisfies one of the two first conditions. Now, let R′ ∈ Var (Rkc), we have that there
exists θ (we can assume w.l.o.g. that θ is normalized) such that R′ = Rkcθ↓. It is easy to
see that there is at most one chkX(u) ∈ R′

r with u 6= n. Let {u} = {t | chkX(t) ∈ Rr
kc}r {n}.

Now it remains to show that we are in one of the three cases:

� Either u = dec(n, u′). In such a case, we have that uθ↓ = dec(n, u′θ↓) and we easily
conclude.

� Or u = dec(y, n ⊕ u′). We have already shown that R′ contains only pure terms
(Lemmas 5 and 7). Hence, if uθ↓ is headed with dec, either we are in one of the two
first cases or n ∈ img(θ). Since for all x ∈ Rkc, we have that x ∈ Rl

kc, we deduce
that n ∈ Rl

kcθ↓. Now, assume that uθ↓ is not headed with dec. This means that
yθ = {t}(n⊕(u′θ))↓ for some term t. Hence we have that uθ↓ = t. In such a case, we
have also that n ∈ img(θ) and for the same reason as before we easily deduce that
n ∈ Rl

kcθ↓. �

D Existence of a pure attack

Lemma 1 Let A be a set of weakly well-adapted rules and S be a set of pure ground
facts that is consistent and which contains 0. Let u be a ground term deducible from S
and F1, . . . , Fn be a proof that S `A,AC u. Let p be an impure position of u. We have that
u|p ∈ S ∪ F1 ∪ . . . ∪ Fn.

Proof. The proof is by induction on the number of steps needed to obtain u. Note that u|p
must be ground since u is ground.
Base case: u ∈ S. Since S only contains pure terms, we must have p = Λ, thus u|p ∈ S.

Induction step: Otherwise, we have that there exists a weakly well-adapted rule Rl
new n
→ Rr

and a ground substitution θ such that Rlθ ⊆ SatChk(S ∪ F1 ∪ . . . ∪ Fn−1) and u ∈ Fn = Rrθ
(modulo AC). Let p be an impure position in u.

� either p = Λ and in such a case we have that u|p ∈ S ∪ F1 ∪ . . . ∪ Fn,
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� or u|p is a strict subterm of u. Since Rl
new n
→ Rr is a weakly well-adapted rule, u|p must

be a subterm of xθ for some variable x ∈ Rr. Since vars(Rr) ⊆ vars(Rl), we have that
there exists t ∈ Rl such that tθ ∈ S ∪ F1 ∪ . . . ∪ Fn−1 and u|p ∈ st(tθ). Moreover, we
can easily check that u|p appears at an impure position in tθ. By induction hypothesis,
we deduce that u|p ∈ S ∪ F1 ∪ . . . ∪ Fn−1 and thus u|p ∈ S ∪ F1 ∪ . . . ∪ Fn. �

Proposition 5 Let A be a set of weakly well-adapted rules and S be a set of pure ground
facts that is consistent and which contains 0. Let u be a pure ground term. If S `A,AC u
then there is a proof of S `A,AC u which only involve pure terms.

We define the function · over ground terms that replaces any term at an impure
position by 0 (neutral element of ⊕) or 1 (constant of type Cipher). More formally · is
inductively defined as follows:

u = u if u is a variable or a constant
u1 ⊕ u2 = u1

0 ⊕ u2
0

dec(u1, u2) = dec(u1, u2
0) if u1 ∈ N of type Cipher

dec(u1, u2) = dec(1, u2
0) otherwise

{u1}u2 = {u1
0}u2

0

where · 0 are defined by:

u0 = u if u is a variable or a constant
of base type

u1 ⊕ u2
0

= u1
0 ⊕ u2

0

dec(u1, u2)
0

= dec(u1, u2
0) if u1 ∈ N of type Cipher

dec(u1, u2)
0

= dec(1, u2
0) otherwise

u0 = 0 otherwise

The functions · 0 and · are extended to sets of facts as expected. Moreover, the function
· 0 is also defined on checks as follows:

chkX(t)
0

= chkX(t
0
).

Proof. Consider a proof F1, . . . , Fn of S ` u. We show by induction on n that we can
construct sets G1, . . . , Gp which only involve pure facts such that

� G1, . . . , Gp is a proof of S ` t for any t ∈ S ∪ F1 ∪ . . . ∪ Fn,

� chkX(t)
0
∈ SatChk(S ∪ G1 . . . ∪ Gp) for any chkX(t) ∈ SatChk(S ∪ F1 ∪ . . . ∪ Fn).
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This would conclude the proof since u ∈ Fn and u = u.

Base Case: The base case u ∈ S is trivial. Indeed, we have that t = t for all t ∈ S and

chkX(t)
0

= chkX(t) for all chkX(t) ∈ SatChk(S). This last point is due to the fact that S
contains only checks on pure terms of type Base.

Induction Step: Assume now that there are sets of pure ground facts G1, . . .Gp such that

� G1, . . . , Gp is a proof of S ` t for any t ∈ S ∪ F1 ∪ . . . ∪ Fi,

� chkX(t)
0
∈ SatChk(S∪G1∪ . . .∪Gp) for any check chkX(t) ∈ SatChk(S∪F1∪ . . .∪Fi).

Let us show that we can construct a set of pure ground facts Gp+1 such that

� G1, . . . , Gp+1 is a proof of S ` t for any t ∈ S ∪ F1 ∪ . . . ∪ Fi+1,

� chkX(t)
0
∈ SatChk(S ∪G1 ∪ . . .∪Gp+1) for any chkX(t) ∈ SatChk(S ∪F1 ∪ . . .∪Fi+1).

The set of ground facts Fi+1 is one-step deducible from S ∪ F1 ∪ . . . Fi, thus there

exists a weakly well-adapted rule Rl
new n
→ Rr ∈ A and a ground substitution θ such that

Rlθ ⊆ SatChk(S ∪ F1 ∪ . . . ∪ Fi) and Fi+1 = Rrθ (modulo AC). Let θ′ be the substitution
defined by

� xθ′ = xθ
0

for any x ∈ dom(θ) of type Base,

� xθ′ = xθ when xθ is a constant or a nonce of type Cipher and 1 otherwise.

It is easy to verify that:

� for any pure term v of type Base, vθ′ ∈ {vθ, 0} and we have that vθ′ = vθ
0
,

� for any pure term v of type Cipher, vθ′ ∈ {vθ, 1}.

Moreover, note that in each case, we have that vθ′ is a pure ground term of the same type
as v.

Let t ∈ Rl. We know that t is a pure term and we have that tθ = u for some u ∈
S ∪ F1 ∪ . . . ∪ Fi. Hence, we have that tθ′ ∈ {u, 0, 1} and we easily deduce that for all
term t ∈ Rl, we have that

tθ′ ∈ S ∪ {v | v ∈ F1 ∪ . . . ∪ Fi} ⊆ S ∪ G1 ∪ . . . ∪ Gp.

Let chkX(t) ∈ Rl. We know that t is a pure term of type Base and we have that chkX(tθ) =
chkX(u) for some chkX(u) ∈ SatChk(S ∪ F1 ∪ . . .∪ Fi). Thanks to our induction hypothesis,

we deduce that chkX(u)
0
∈ SatChk(S ∪ G1 ∪ . . . ∪ Gp) and since chkX(tθ′) = chkX(u0), we

easily deduce that chkX(tθ′) ∈ SatChk(S ∪ G1 ∪ . . . ∪ Gp).

Let Gp+1 = Rrθ
′. Note that Gp+1 is a set containing only pure ground facts and we have

shown that Rrθ
′ is one step deducible from S ∪ G1 ∪ . . . ∪ Gp.
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Let v ∈ Fi+1, we have to show that G1, . . . Gp+1 is a proof of S ` v. We know that v is
such that v = tθ for some t ∈ Rr. In the case where tθ′ = v, we easily conclude. Otherwise,
this means that t is a variable, say that x and xθ has not the same type as x. Since
vars(Rr) ⊆ vars(Rl), we know that there exists t′ ∈ Rr such that xθ ∈ st(t′θ). Moreover, xθ
appears at an impure position in tθ. By using our previous proposition, we easily deduce
that xθ ∈ S ∪ F1 ∪ . . . ∪ Fi and thus xθ ∈ S ∪ {w | w ∈ F1 ∪ . . . ∪ Fi} ⊆ S ∪ G1 . . . ∪ Gp.
This allows us to conclude for the first point.

Let chkX(v) ∈ SatChk(S ∪ F1 ∪ . . . ∪ Fi+1), we show chkX(v)
0
∈ SatChk(S ∪ G1 ∪ . . . ∪ Gp+1).

To establish this result, it is sufficient to show that chkX(v)
0
∈ Gp+1 for any chkX(v) ∈ Fi+1.

Let chkX(v) ∈ Fi+1, we know that chkX(v) = chkX(tθ) for some chkX(t) ∈ Rr. Since tθ′ = v0

and chkX(tθ′) ∈ Gp+1, we easily deduce that chkX(v)
0
∈ Gp+1. �

E A bound on the number of dec terms

Lemma 2 (No illegal dec-term in checks) Let A be a set of well-adapted rules and S
be a set of pure ground facts such that no dec terms occurs in KeyTerm(S). Let w be a pure
ground term deducible from S and F1, . . . , Fn be a proof that S `A∪Var (I),AC w that involves
only pure facts. We assume that there is no dec-term subterm of w. For any term t such
that chk(t) ∈ SatChk(S∪F1∪ . . .∪Fn), for any dec(u, v) subterm of t, the dec-term dec(u, v)
is legal.

Assume by contradiction that there exists a dec term dec(u, v) subterm of some term t
such that chk(t) ∈ SatChk(S ∪F1 ∪ . . .∪Fj) with j ≤ n and dec(u, v) is illegal. We consider
the minimal index j that satisfies this property. Let R be the rule that has been applied to
obtain Fj . Since R produces a check, R /∈ Var (I) thus R is well-adapted. R is of the form

Rl
(new n)
→ Rr. We must have Rlθ ⊆ SatChk(S ∪ F1 ∪ · · · ∪ Fj−1) and Fj = Rrθ. Assume that

dec(u, v) is not a subterm of some check in Fj while chk(t) ∈ SatChk(S ∪ F1 ∪ · · · ∪ Fj).
It means that dec(u, v) is a subterm of t′ with chk(t′) ∈ SatChk(S ∪ F1 ∪ · · · ∪ Fj−1),
which contradicts the minimality of j. Thus there exists a term t′ such that t = wθ and
chk(w) ∈ Rr.

Since dec(u, v) is a subterm of t′, we have t′ 6= n. In addition, dec(u, v) must be a strict
subterm of t′ otherwise dec(u, v) would be legal. Since R is well-adapted, there is two cases
for w.

1. w = dec(n, w′). In that case we must have that dec(u, v) is a subterm of w′θ. In
addition w′ ∈ KeyTerm(w) thus w′ is checked in R. Since w′ 6= n and since there is at
most one term (w in our case) in a check in Rr, we must have chk(w′) ∈ SatChk(Rl)
thus dec(u, v) is a subterm of chk(w′θ) ∈ SatChk(S∪F1∪· · ·∪Fj−1), which contradicts
the minimality of j.
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2. w = dec(y, w′). Since wθ = t′ is a pure term, dec(u, v) is not a subterm of yθ thus
dec(u, v) is a subterm of w′θ. We conclude the proof like for the first case. �

Lemma 3 (Replacement of dec-terms in key position) Let A be a set of well-adapted
rules and S be a set of pure ground facts such that no dec terms occurs in KeyTerm(S). Let
w be a pure ground term deducible from S and F1, . . . , Fn be a proof that S `A∪Var (I),AC w
that involves only pure facts. We assume that there is no dec-term subterm of w. Let t be
a term such that t ∈ Fj for some 1 ≤ j ≤ n and let p be some key position of t such that
t|p = dec(u, v) ⊕ t′ (t′ being possibly empty in which case by convention, t|p = dec(u, v)).

� Either the term dec(u, v) is legal.

� Or F1δ(dec(u,v)⊕t′,0), . . . , Fjδ(dec(u,v)⊕t′,0) is a pure proof of S `R∪Var(I),AC tδ(dec(u,v)⊕t′,0).

This is proved by induction on j. The base case is straightforward since there is no dec
terms occurring in KeyTerm(S). Thus any dec term subterm of S is legal.

Let dec(u, v) be an illegal term for F1, . . . , Fn. Let t be a term in Fj such that there is
a key position p of t such that t|p = dec(u, v) ⊕ t′. Let R be the rule that produces Fj . R is

of the form Rl
(new n)
→ Rr, with Rlθ ⊆ SatChk(S ∪ F1 ∪ · · · ∪ Fj−1) and Fj = Rrθ with t = wθ

and w ∈ Rr .
Either R ∈ Var (I). Assume for example that R = x, y → {x}y. Thus Fj = {t}. The

other cases are similar or simpler. There are two cases.

� Either yθ = dec(u, v)⊕t′. By induction hypothesis F1δ(dec(u,v)⊕t′,0), . . . , Fj−1δ(dec(u,v)⊕t′,0)

is a pure proof of S `A∪Var(I),AC xθδ(dec(u,v)⊕t′,0). Since tδ(dec(u,v)⊕t′,0) = {xθδ(dec(u,v)⊕t′,0)}0,
we conclude that F1δ(dec(u,v)⊕t′,0), . . . , Fjδ(dec(u,v)⊕t′,0) is a pure proof of S `A∪Var (I),AC

tδ(dec(u,v)⊕t′,0).

� Or dec(u, v)⊕t′ only occurs in key position in xθ or yθ. Since xθ, yθ ∈ S∪F1∪· · ·∪Fj−1

we deduce by induction hypothesis F1δ(dec(u,v)⊕t′,0), . . . , Fj−1δ(dec(u,v)⊕t′,0) is a pure
proof of S `A∪Var (I),AC xθδ(dec(u,v)⊕t′,0) and S `A∪Var (I),AC yθδ(dec(u,v)⊕t′,0). Since we
have the equality tδ(dec(u,v)⊕t′,0) = {xθδ(dec(u,v)⊕t′,0)}yθδ(dec(u,v)⊕t′ ,0)

, we conclude that
F1δ(dec(u,v)⊕t′,0), . . . , Fjδ(dec(u,v)⊕t′,0) is a pure proof of S `A∪Var (I),AC tδ(dec(u,v)⊕t′,0).

Or R ∈ R is a well-adapted rule.

� Either p is a (key) position of w. Since R is well-adapted, w|p is checked in R which
means that chk(t|p) ∈ SatChk(S ∪ F1 ∪ · · · ∪ Fj−1), which contradicts Lemma 2 that
ensures that no illegal dec term can occur in a check.

� Or for any p such that t|p = dec(u, v) ⊕ t′, p is not a position of w. This means that
there is a variable x in w and a key position p′ of xθ such that xθ|p′ = dec(u, v) ⊕ t′.
Since R is well-adapted, x must occur in Rl.

By induction hypothesis F1δ(dec(u,v)⊕t′,0), . . . , Fj−1δ(dec(u,v)⊕t′,0) is a pure proof of
S `A∪Var (I),AC t′ for any term t′ ∈ Rlθδ(dec(u,v)⊕t′,0).
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In addition, for any term w′ in R, for any key position p′ such that w′|p′ = dec(u, v)⊕t′,
p′ is not a position of w′, otherwise dec(u, v) would be checked (same argument than
previous case). Thus each time dec(u, v) ⊕ t′ occurs in key position, it occurs in key
position under a variable. Let θ′ = θδ(dec(u,v)⊕t′,0), that is xθ′ = xθδ(dec(u,v)⊕t′,0) for
any variable x ∈ dom(θ). We have that (Rθ)δ(dec(u,v)⊕t′,0) = Rθ′.

Thus F1δ(dec(u,v)⊕t′,0), . . . , Fjδ(dec(u,v)⊕t′,0) is a pure proof of S `A∪Var (I),AC Rrθ
′.

In particular, F1δ(dec(u,v)⊕t′,0), . . . , Fjδ(dec(u,v)⊕t′,0) is a pure proof of S `A∪Var (I),AC

tδ(dec(u,v)⊕t′,0). �
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Key Part Import 2:

xk2, xtype
new n
→ {dec(n, km ⊕ kp ⊕ xtype) ⊕ xk2}km⊕kp⊕xtype, n

chkEven(xk2), chkEven(xtype) chkOdd(dec(n, km⊕ kp ⊕ xtype))

y, xk2
new n
→ {dec(y, km ⊕ kp ⊕ n) ⊕ xk2}km⊕kp⊕n, n

chkEven(xk2) chkEven(n), chkOdd(dec(y, km ⊕ kp ⊕ n))
Key Part Import 3:

xk3, xtype
new n
→ {dec(n, km ⊕ kp ⊕ xtype) ⊕ xk3}km⊕xtype, n

chkEven(xk3), chkEven(xtype) chkOdd(dec(n, km⊕ kp ⊕ xtype))

y, xk3
new n
→ {dec(y, km ⊕ kp ⊕ n) ⊕ xk3}km⊕n, n

chkEven(xk3) chkEven(n), chkOdd(dec(y, km ⊕ kp ⊕ n))
Key Import:

y, xtype
new n
→ {dec(y, dec(n, km ⊕ imp) ⊕ xtype)}km⊕xtype, n

chkEven(xtype) chkOdd(dec(n, km⊕ imp))
chkOdd(dec(y, dec(n, km⊕ imp) ⊕ xtype))

xtype, z
new n
→ {dec(n, dec(z, km ⊕ imp) ⊕ xtype)}km⊕xtype, n

chkEven(xtype), chkOdd(dec(z, km⊕ imp)) chkOdd(dec(n, dec(z, km⊕ imp) ⊕ xtype))

y, z
new n
→ {dec(y, dec(z, km ⊕ imp) ⊕ n)}km⊕n, n

chkOdd(dec(z, km⊕ imp)) chkOdd(dec(y, dec(z, km ⊕ imp) ⊕ n))
chkEven(n)

Key Export:

y, xtype
new n
→ {dec(y, km ⊕ xtype)}dec(n,km⊕exp)⊕xtype , n

chkEven(xtype) chkOdd(dec(n, km⊕ exp))
chkOdd(dec(y, km ⊕ xtype))

xtype, z
new n
→ {dec(n, km ⊕ xtype)}dec(z,km⊕exp)⊕xtype , n

chkEven(xtype), chkOdd(dec(z, km⊕ exp)) chkOdd(dec(n, km⊕ xtype))

y, z
new n
→ {dec(y, km ⊕ n)}dec(z,km⊕exp)⊕n, n

chkOdd(dec(z, km⊕ exp)) chkEven(n)
chkOdd(dec(y, km ⊕ n))

Encrypt Data: x
new n
→ {x}dec(n,km⊕data), n, chkOdd(dec(n, km⊕ data))

Decrypt Data: x
new n
→ dec(x, dec(n, km ⊕ data)), n, chkOdd(dec(n, km ⊕ data))

Translate Key:

x, xtype, y2
new n
→ {dec(x, dec(n, km ⊕ imp) ⊕ xtype)}dec(y2,km⊕exp)⊕xtype , n

chkOdd(dec(y2, km⊕ exp)), chkEven(xtype) chkOdd(dec(n, km⊕ imp))
chkOdd(dec(x, dec(n, km ⊕ imp) ⊕ xtype))

x, xtype, y1
new n
→ {dec(x, dec(y1, km ⊕ imp) ⊕ xtype)}dec(n,km⊕exp)⊕xtype , n

chkEven(xtype), chkOdd(dec(y1, km⊕ imp)) chkOdd(dec(n, km⊕ exp))
chkOdd(dec(x, dec(y1, km ⊕ imp) ⊕ xtype))

chkOdd(dec(y2, km⊕ exp)), xtype, y1, y2
new n
→ {dec(n, dec(y1, km ⊕ imp) ⊕ xtype)}dec(y2,km⊕exp)⊕xtype , n

chkEven(xtype), chkOdd(dec(y1, km⊕ imp)) chkOdd(dec(n, dec(y1, km ⊕ imp) ⊕ xtype))

x, y1, y2
new n
→ {dec(x, dec(y1, km ⊕ imp) ⊕ n)}dec(y2,km⊕exp)⊕n, n

chkOdd(dec(y2, km⊕ exp)) chkEven(n), chkOdd(dec(x, dec(y1, km ⊕ imp) ⊕ n))
chkOdd(dec(y1, km⊕ imp))

Figure 3: Key Conjuring rules of the IBM CCA Key Management Transaction Set
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