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Strong Normalization as Safe Interaction

Colin Riba
INPL & LORIA} Nancy, France

E-mail: riba@]loria.fr

Abstract deterministic rewrite rules. A pathological case is tle
monic non-deterministic operator, defined such that the
When enriching the\-calculus with rewriting, union  term¢; + ¢, reduces either t¢; or tot,.
types may be needed to type all strongly normalizing terms.  Our starting point is the following observation. When
However, with rewriting, the elimination rulg/ E) of union enriching theA-calculus with such rewrite rules, intersec-
types may also allow to type non normalizing terms (in tion types are not always sufficient to characterize strong
which case we say thdtv E) is unsafe). This occurs in  normalization. Union types may be needed in order to type
particular with non-determinism, but also with some con- function symbols defined by rewrite rules having differ-

fluent systems. It appears that studying the safety &) ent interaction properties w.r.t. strong normalization. But
amounts to the characterization, in a term, of safe interac- it is possible that the rulév E) of elimination of union
tions between some of its subterms. allows to type non normalizing terms (in which case we

In this paper, we study the safety (of E) for an exten-  say that(Vv E) is unsafe). This happens with demonic
sion of theA-calculus with simple rewrite rules. We prove non-determinism, but also with some confluent systems,
that the union and intersection type discipline withQutE) whereagV E) is harmless with some non-confluent ones.
is complete w.r.t. strong normalization. This allows to show It has to be noted thdt/ E) breaks the subject reduction
that (v E) is safe if and only if an interpretation of types property, even for the purg-calculus P]. In our case, the
based on biorthogonals is sound for it. We also discuss twotype system is essentially a syntactic approximation of in-
sufficient conditions for the safety (of E), and study an al-  teraction properties of terms. It is therefore desirable that it
ternative biorthogonality relation, based on the observation gives as much information as possible, even if the approx-
of the least reducibility candidate. imation is too rough to be preserved by reduction. Hence,

it is interesting to understand what kind of properties are

given by (V E), and what does its safety mean. A similar
1. Introduction view is also' taken in4], where subject reduction fails be-
cause of existential types.

The properties we are interested in can be character-
ized by sets of terms satisfying some closure conditions
119, 18]. Biorthogonality can give interesting closure op-
erators, where a closed set is described by a set of contexts

Strong normalization is an important property of proof
systems such as natural deduction. Proofs of strong normal
ization based on realizability indicate that a crucial point is

to_tEnderﬁtatrt\Wd hO\r/:)_\I-terms ("‘.3' prtoof-trees) c?n |t_nteract with which all terms of the set interact safeli4 6]. This
with each other while preserving strong hormatization. gives very informative interpretations ¢¥ E), as shown

From a different perspective, strong normalization is re- ; [19, 18. However, in these works, biorthogonals are
lated tomustproperties of full5-reduction, that hold fora it on the observation of reduction without error, possi-

term when theyfhold for all of its reducts (se@ for adis- v inyolving infinite computations. Moreover, in its full
cussion and relerences on a notlonmst convergenge version, (V E) behaves well with call-by-value evaluation
Strong_ nor_mallzauon is the minimal must property of il [19], whereas must properties are more naturally manipu-
reduction in the sense that strongly normalizing terms sat-|ated via (weak) head reductions, that correspond to call-

isfy all must .propertlles of fuIB-.reductlon. This sugg_este by-name evaluation. Regarding strong normalization, it was
to study the interaction properties for strong normalization ynerefore unclear how to handle the biorthogonal interpre-
of the A-calculus extended with simple but possibly non- tation of the full rule(V E).

*UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP, Campus Scientifique, In this paper, we study a biorthogonal type interpretation
BP 239, 54506 Vandoeuvréd-Nancy Cedex, France which we show to be sound fdw E) if and only if (V E)




is safe, that is, if and only if it can be added to the type This makes sense in non-deterministic calculi even if the
system while preserving strong normalization. This meansconsidered relation is not the full reduction. [ty B] it is

that regarding strong normalization, biorthogonals provide remarked thafV E) makes the soundness of the type sys-
the best possible interpretation 0¥ E). This also gives  tem to fail w.r.t. the considered property. Because they are
a computational interpretation to biorthogonality, that were in a must setting, we think that problems caused in their
introduced in realizability to deal with classical logit4]. cases byV E) are in essence similar to ours.

The key point is that the membership of a term to a  Recent applications of union types are the XML process-
biorthogonal can be tested by observing the strong normal-ing languages XDucelp] and CDuce [L0].
ization of this term plugged in suitable contexts. Since in-  Concerning strong normalization, existential types are
tersection and union types (witho( E)) are sound and  extensively used in the type system di.[ These types
complete w.r.t. strong normalization, we can extract all the are interpreted using infinite unions, and this motivated our
information we need from the observation of strong normal- study of stability by union of Girard’s candidates.
ization. Our integration of rewriting with intersection types is in-

It appears that the safety ¢¥ E) is equivalent to aafe spired from p]. In comparison to this work, we use simpler
interactionprinciple wich says that if each one-step reduct rewrite rules and function symbols with a fixed arity. Thus,
of an elimination term can be safely duplicated in a capture- we get completeness of type assignement w.r.t. strong nor-
avoiding context, then this term can be safely duplicated in malization.

that context. Hence, itdifferentreducts have to interact Our presentation of biorthogonals is inspired fro@, [
safelywith each othein that context. Intuitively, such sys- see also 14, 19, 15]. For properties om\-calculus and
tems have a kind of uniform computational behavior. (union and intersection) types, we refer i3 11, 3, 7, 2].

Then we consider sufficient conditions for the safety of
(VE). Besides Girard’s reducibility candidates (whose sta- Qutline. We present the calculus in S&; with a discus-
bility by union is studied in1€]), we consider the interpre-  sion on(V E) and examples of its unsafety. Sectiénis
tation of types arising as the closure by union of a biorthog- devoted to the soundness and completeness of the type sys-
onality operator. In this case, types are interpreted by non-tems (without(\/ E)). Our main result on the biorthogonal
empty sets upward-closed w.r.t. the observational preorderinterpretation of(V E) is presented in Seé. We discuss
issued from the orthogonality relation. We show that these sufficient conditions for safe interaction in Sé&c.Finally,
sets are reducibility candidates if and only if each elimi- in Sec.6, we briefly discuss the orthogonality relation built
nation term is greater w.r.t. that preorder than one of its on the observation of the least reducibility candidate.
immediate reducts.

A natural question is whethgr E) is safe with rewrite o Ppreliminaries
systems for which intersection types are sufficient for the
completeness of type assignment w.r.t. strong normaliza-
tion (i.e. when unions are not needed). We show that this is
not the case. However, it is interesting to note that when re-
ducibility candidates are stable by union, intersection types
are sufficient to type strongly normalizing terms.

We conclude by a discussion on an alternative orthogo-
nality relation built on the observation of the least reducibil- ¢ o, ¢ A(S) == zeX | tu | Aot | f(ty,... 1)
ity candidate. It amounts to observing strongly normaliz-
ing reduction to an error term. This induces a biorthogonal wheref € S is a symbol of arityn. We write A for A(S)
type interpretation having a better adequacy with the typewhensS is clear from the context. As usual, terms are con-
system and would allow for a more natural subtyping rela- sidered modula-conversion. Let F¥#) be the set of vari-
tion. However, for the soundness ©f E), it is not clear  ables occurring free in By ¢ we mean a sequence of terms
whether these biorthogonals are equivalent to those issueaf length|#; we use the same notation for types, etc.
from strong normalization. We write R for any set of rewrite rules of the form

2.1. Types and Terms

Let X be a countable set of variables. We wrkgS) for
the set ofA-terms with constants in a sétof symbols of
fixed arity:

. : (&) —=r
Related Work. Intersection and union types are exten-
sively studied in7, 8, 9] as the logical intermediate to build wheref € S, Z is made of distinct variables, € A and
fully abstract filter models of non-deterministiccalculi. FV(r) C Z. We write f(Z) —x r for f(£) — r € R.
These works considenustnormalization of (weak) head Let R(f) such that € R(f) iff f(&¥) —x randS = Fu
reduction. Here, must normalization of a reduction rela- C wheref € C if R(f) = 0 andf € F otherwise. The
tion means convergence of any reduction with this relation. capture-avoiding substitution af for = in ¢ is denoted by
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Figure 1. Subtyping

t[u/x]. We generalize substitutions to functions ¥ — A
with to =get tlo(x)/z | © € dom(c)]. Define— to be

the smallest relation oA stable by context and substitution

which contains—x and(A\x.t)u —g t[u/z].

We assume that is finitely branching, hence tha(f)
is finite for eachf € F. Define(t)_, =qef {u |t — u} and
let —* be the reflexive transitive closure ef. We write
(t1,. . tn) — (th,...,t,) iff there isi such that; — t;
andt; = t; for all j # i. A termt is strongly normalizing
(t € SN) iff every reduction sequence issued froris fi-
nite. Note that € SN iff either ¢ is not reducible or all its

reducts are iISN. HenceSN is the smallest set such that

for all ¢,
Vu(t—u = ueSN)) = teSN.
Types are the following, whereis the base type:

TWUeT == o|T=U|TANU|TVU.

Subtyping rules are in Fig.. They axiomatize the fact that
(T,<,A,V) is a preorder with all finite non-empty g.l.b.'s

and lL.u.b.’s. Note that contrary t@,[8], (7, <, A, V) is not
distributive.

Typing contexts are functions : X — 7. We write
(x:T) e I'whenI'(z) = T andx € I whenz € dom(T").
GivenT'y andI';, we letl’y A T'; be the context such that

Lo(x) AT ()

ifxelToNTy,
].—‘()/\].—‘1(1') =def { F(Jﬁ) “ 0 !

ifxEFi\Fl_i.

Typing rules are given in Figz. We writel' F, ¢t : T
for typing judgments in the system withoutand7, for the
corresponding set of types. Note that fpre {A, AV}, if
I' by t - T, then for alll” we havel' ATV -y t : T and
moreovel ATV Fpy t: T VT foral T € T.

The rule (FuN), which is not usual, is inspired from
[5]. Let us explain it with an example. Consider a sym-

bol f € S defined with rewrite rule$(z;) —x r; for all

i€ {l,...,n} and some: > 0. Assume that’ Fr, ¢: T
and that for alli € {1,...,n}, there is a typé/; such that
I,# : T bay i : Us. Then, usingSus) and (FUN) we
can conclude thaf v f(£) : V<<, Ui;. Note that if
f € C, then for all typel/ we havel -, f(f) : U.

2.2. The Elimination Rule of Union Types(v E)

In this section, we discuss the rule E). In the pro-
cess, we may anticipate on some results presented later in
the paper. The elimination rule of union is the following:

Tx:TikFce:C
F'Ft: Ty VT Tax:Totc:C
(\/E) 1 2 Tl C
Tkcft/z]: C

We denote by-,v the type syster . in which we added
the rule(Vv E).

The rule can be read as follows:tif: 77 VvV T, and for
alli € {1,2} (w : T; = c[v/z] : C) thenc[t/x] : C.
Intuitively, this can be problematic if is not a union, i.e. if
there ist such that : 77 v T5 but neithert : Ty nort : Ts.
Such a situation can occur with non-determinism. Indeed,
consider the rewrite system:

t1 +ty —pr 11 t1 +to —pr ty.
Assume that =qet t1 + t2, Wheret; can be given the type
T, but notT5, and vice-versa fot,. Then,¢ is not in the
union of 77 andT5, since it is neither irY; nor in75.

Example 2.1. We now give an example of unsoundness
of (VE). Lett; =get Az.2y0 andty =gef Az.0 Where
0 =get Az.zzx. Itis clear thatt;t; andtyty are strongly
normalizing. Howevert,t, —* 66 ¢ SN™.

By completeness of type assignmentin(see [L3, 11]),
fori = 1,2 there arel;, U;, V; suchthaty : V; b4 t; - T;
andy : V;,x : T; A xx : U;. Hence we have:

ylVlA‘/Q l_/\\/ t1—|—t2 : Tl\/TQ
y:ViAVo, x:T7 Fay xzx : Uy vVUy
y:ViAVo, x: T Fay zx : U VU,

VE
( )y:Vl/\Vgl—/\y(tl-l—ﬁg)(tl—f—tg)tUl\/Ug

but (t1 + t2)(t1 + t2) —* t1ta —* 60 ¢ SN.

Example 2.2. This can also occur with confluent systems,
such as the following one:
f —gr A\zy.g(zrad)

f—r Axy.glyy) glx)—ra.

Let uy =gef A\xy.g(zad) andus =ger Axy.g(yy). Since
we haveu;u; € SN andusus € SN, by Completeness

1We thank Philippe de Groote for this example.
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(Thm. 3.11) and Interpolation (Pro3.8), there arely, T
andU such that:

z:T) Fay 2z U
l_/\\/fZTl\/TQ {EITQ l_/\\/ zx U

(VE) Fav ff U

butff —* ujus —* \y.g(g(d8)) ¢ SN.

The examples above suggest thatE) asks for call-by-

value evaluation. Intuitively, before performing the substi-

tution c[t/x], one should normalizein order to determine
if it belongs toT; ortoTs.

3. Soundness and Completeness

In this section, we prove soundness and completeness of

typing int,y (i.e. without(V E)) w.r.t. strong normaliza-

Note thatHN C SN.

Definition 3.2 (Reducibility Candidates)The seCR of re-
ducibility candidatess the set of allC’ C SN such that
(CRO) ift € C andt — wuthenu € C,

(CR1) ift e N andVu(t — v = u € C)thent € C.

The property(CR1) is also called theeutral term prop-
erty. It is easy to define a function : P(SN) — P(SN)
such thatd is the smallest reducibility candidate containing
A. This is a closure operator @ (SN), C).

Proposition 3.3 (Candidates Lattice) The partial order
(CR, C) is a complete lattice with least elemétit\/, great-
est elemenS A and whose g.l.b’s are given Ify.

We turn to the interpretation of arrow types.

Proposition 3.4(Arrow Type Constructor) Thearrow type

tion. This is the occasion to introduce basic notions on re- constructor=s: P(A) x P(A) — P(A), defined as

ducibility, that are used for biorthogonality-based reducibil-
ity in Sec.4.3. We also prove a few consequences of com-

pleteness, which are important for our analysi$\wE).

3.1. Reducibility

We introduce well-known basic tools for reducibility.

This presentation is consistent withg, where more de-
tails can be found.

As advocated in19, 18], it is convenient to see type in-
terpretations aslosure operatorsRecall that a closure op-
erator on a partial ordeiD, <) is a function~ : D — D
which is idempotentt = z; extensivexx < ¥; and mono-
tone:z < y = T < y. Itis well-known that the greatest
lower bound of a family of closed elements is closed.

Definition 3.1 (Neutral terms) Terms which are not an ab-
straction are calledneutral Let A/ be the set of neutral
terms.

LetHN, the set ohereditary neutral termbe the small-
est set such that for all € N, if Vu(t — u = u € HN)
thent € HN.

A= B =4 {t | Vu(ue A = tuc B)}
mapsA, B € CR to a reducibility candidate.

We interpretl” € 7 by [T] € CR as follows:

[o] =det SN
[T = U] =t [T] = [U]
[T AU] =qet [T]N[U]
[TVU] =get [T]U[U] -

There are many choices possible fofl. In our case, an-
other interesting one if] = HA (see Sec6 and Theo-
rems3.12and6.1).

3.2. Soundness

We show thal' -, t : T impliest € SN.

Proposition 3.5(Soundness of Subtyping)f 7' < U then
[T1 < [U].



Given a substitutior : X — A and a context’, we
write o |=1.7 I' wheno(x) € [T] forall (x : T) € T.
Recall that the rul¢V E) is not present iffr 5.

Theorem 3.6(Soundness of Typing)If T -,y ¢ : T and
o 'Z[[]] T thento € [[T]]

Proof. By induction onI" -\ ¢ : T, using Prop3.5 for
(SuB). We detail the case ¢FuN).

Leto |=p.; T and?’ =gef to. By induction hypothesis,

# € [T]. We have to show that =4 f(#) € [T]. Since
this term is neutral, it suffices to show th@t) _ C [T7].
We reason by induction off € SN. Letv € (t/)_. If

v = f(@) with # — 4, then by(CRO0), @ € [T] and we

conclude by induction hypothesis @i Otherwise, there is

arulef(Z) —x r such that = [’ /7] and since’ € [T7],
by induction hypothesis oh, Z : T Fnv r : T we have
r[t /i) € [T]. O

Corollary 3.7. If ' -,y t : T thent € SN.

3.3. Completeness

The main result of this section is the completeness of in-

Theorem 3.11(Completeness)if ¢t € SN, then there are
T'andT suchthafl' Fay ¢ : T.

Proof. The proof is by induction o and uses Len3.9.
We only detail the case af= f(f)7 with f € F.

First, note that” < t. For all f(&) —x =, we have
r[t/Z]7 < t and by induction hypothesis there dfg, T’
andV, such thafl, -,y & : T andl, by r[E/Z]7 : V.
Now, takingT" =ger A,z () Irs T =def Averes) T. and
V =det Vyerer Ver We havel' Fay & : T and for all
f(Z) —r 7, T kv r[t/Z)7 : V. We conclude that
T Fay f(£)7: V thanks to Lem3.9.(ii). O

Note that without further assumptions &) union types
are required for Thm3.11 The next result says that it
would have been complete to interpteby HN, the least
element oCR.

Theorem 3.12(HN -Completeness)If t € HN then for
all T € 7T thereisI' such thafl’ -,y ¢ : T

Proof. Similar to Thm.3.11 We reason by induction oA,
using Thm3.11and Lem.3.9. O

tersection and union types with respect to strong normal-3.4. Two Interesting Consequences

ization: if t € SN, then there ard® and T such that

' Fav t:T. The result is proved inl3, 11] for the pure
A-calculus with intersection types.

We begin by two important properties, that are charac-
teristic of intersection types. They are the key properties for

completeness.

Proposition 3.8 (Interpolation) If T F,y ¢[u/z] : T and
I Fav u: Uwithz ¢ T, then there is a typ& such that
Tx:VEayt:Tandl'Fpy u: V.

Proof. By induction ont. O

Lemma 3.9(Weak Head Expansion)
(i) Assume that' F,y w : U andT bFay tlu/z]0 : T.
ThenI' oy (Az.t)ud : T.

(iy Forallfe F,if D Fay i: T andl Fny r[t/Z]7: T
for all f(Z) —x r, thenl -, f(£)7: T.

We now prove two consequences of soundness and com-

pleteness of . They play an important role in our anal-
ysis of (V E). The first one says thét-reduction leads to
uniform computations.

Theorem 3.13.If (Az.t)u € SN andv[tju/z]/y] € SN
thenv[(Az.t)u/y] € SN.

Proof. Since(A\z.t)u € SN, we have alsa: € SN and
tlu/x] € SN. It follows from Thm.3.11that there ard”,
T andU such thafl” Fay w: U andl” -,y tu/z] : T.
On the other hand, still thanks to ThB111, there ar&”’,
V such thaf™ F,y v[tlu/z]/y] : V. LetT =gt TV AT
Sincel’ F,y t[u/z] : T, we can use LenB.9.(i) to obtain
' Fav (Ay)(tfu/z]) : V. It follows that there iSI” such
thatl' oy Ay.v: T = V andl Fuy tlu/z] : T,
Furthermore, sinc€ .y u : U, using Lem.3.9.(i) we
havel’ oy (Az.t)u : T'. Then,I' oy (Ay.o)(Az.t)u) :

Proof. The two points are similar: the property is proved V. and it follows that[(Az.t)u/y] € SN by Cor.3.7. O

by induction on|v|, and the base case is obtained using

Prop.3.8.

For the proof of completeness itself, we use an induc-

The analogous of this property fes will be shown to
be equivalent to the safety ¢¥ E) in Sec.4.

Note that the capture-avoiding substitution is essential

tion on a preorder that combine reduction and subterm andhere. Indeed, the property fails if we replacby a context

which is well-founded oSN .

C[ ] able to capture variables. For example (SE8)[ with
C[ ] =det (Ay.[ ])9, and(Az.t)u =get (Az.2)(yy), We have

Definition 3.10. We let< be the smallest preorder suchthat ~ C[t[u/xz]] = (A\y.z)d which is in SN, but C[(\z.t)u] =

t < uif eitheru — t or t is a strict subterm of:.

Ay.(Az.2)(yy))d — (Az.2)(86) ¢ SN.



Now, we show that hereditary neutral terms are really Proposition 4.1. For all n > 1, the rule
neutral in the sense that they can be safely substituted in
any strongly normalizing term. Ihavt: Algign(Ui =1T)

T'Eav Axtx (vlgz’gn U) =T (x ¢ FV(t))

Theorem 3.14.1f t € HN andv € SN thenu[t/x] € SN.

: , is derivable in-,v.
Proof. First, assume that ¢ FV(t). Sincev € SN, by

Thm. 3.11, there ard™”’, T'andV such thal™’,z : T F,v Theorem 4.2. If (v E) is safe, ther{IP) holds.
v : V. Moreover, sincé € HN, by Thm.3.12 there is[”’

such thafl” .y ¢ : T. Hence, takind® =gt IV A T we e . .
havel',z : T IA—\;V v:Vandl Fay t: T. rtfollows that 7 0lr[t/Z]/y] € SN. We reason as in Thng.13 using

T Fry (Az.0)t : V, hences[t/z] € SA by Cor.3.7. Thm.3.11and Lem.3.9: there arel’, V and (U,),cr(f)

Now, assume that € FV(f). Lety ¢ FV(t,v) and  Suchthatl ny (Z) : V/,cp () Ur and for allr € f(R),
t' =get tly/x]. Thenwe have’ € HA hencev[t’/z] € SN I'hav Ayv: Up = V.
ando[t/z] = (v[t' /2])[z/y] € SN. By Prop.4.1, we havel' F,v (Ay.v)f(f) : V, hence
v[f(t)/y] € SN since(V E) is safe by assumption.  [J

Proof. Let f(f) € SN andv such that for allf(#) —x

4. Safe Interaction 4.2. Orthogonality

We now address the problem of the safety of the elimi-  \yje will show that the maximal method for the soundness

nation rule of union: of (v E) is given by biorthogonals. We introduce the main
Tz:TiFe:C nothns below. . . - |
ChHt:T, VT Tz:Tykec:C Given two sets4 andIl, and a relationl. C A x II, let

E
(VE) Lk clt/a]:C VACA, Al =4{rell|Va(ac A = al m)};

Recall that-,v is the type systerft ., in which we added ~ VP CII, P* =gi{a € A|Vr(r€P = al m)}.
the rule(V E). Since we have proved in Seg8.2 that ty- . ) o
pability in .., implies strong normalization, proving the Let us discuss a few properties ©f) . First, it is easy
safety of(V E) reduces to proving strong normalization of 10 see that -)= is anti-monotonic:X’ C Y impliesY* €
terms typable if-v. X4, It follows that X = XM iff there isY such that
In this section, we use biorthogonality to define an inter- X = V£ Moreover,(- ) is a closure operator 6R(A)

pretation(-) : 7 — CR such that the following points are  (résp-P(ID)). _ . o
equivalent (see Thna.9): For the interpretation dfv E), the important point is the

De Morgan laws:
(VE)issafe: If ' v t: T thent € SN.
Xtnydt = (Xuy)t,
(IP) If f € F, f(t) € SN andv[r[t/Z]/y] € SN for all XLuyt ¢ (xny)L.
f(Z) —x r, thenv[f(1)/y] € SN.
. Note that in general X N Y)+ ¢ X4 UYL, Indeed,
(-)issound: If I'ny t: T'ando |=(.) I' thento € (T). if « is orthogonal to every element &f NY, then there is

This means that biorthogonality gives the best possible no reason for: to be orthogonal to every element8fUY".

interpretation of(V E) w.r.t. strong normalization: if typa-
bility in F,v implies strong normalization, then the inter-
pretation(-)) is sound. This also gives a purely computa-
tional interpretation of biorthogonality.

4.3. Biorthogonal Reducibility

We now introduce a family of biorthogonals that arises
from the observation a$.\/, the top element ofR.

For the interpretation ofv E), we use extended evalua-
tion contextsE[ | € £ that allow call-by-value evaluation
[19]. It is useful to see them both as terms and contexts.
Therefore, we lef | € X be a distinguished variable and
define€ as follows:

4.1. The Interaction Principle

The interaction principle (IP) says that if each one-
step reduct of a neutral term can be safely duplicated in a
capture-avoiding context, then this term can be safely du-

plicated in that context. Hence, itifferentreducts have to E[le& == []]|E[]t]|tE[].
interact safelyith each othein that context.
We now show that the safety 6 E) implies(IP). We let E[t] =qet (E[ ])[t/] ]]-



Definition 4.3. Lett T E[ | iff E[t] € SN.

Note that since& Z SN, we have) " T = (. It is easy
to see thaSA = {[ ]}, henceSN' T " = SN Therefore,
by monotonicity of(- )T T, A C SN impliesAT T C SN.

Since we allow call-by-value in evaluation contexts, it

needs some work to prove that-biorthogonals are re-

ducibility candidates. The main point is to prove the neutral
term property, for which we use completeness of type as-

signment and the axiorfip).

Proposition 4.4 (Neutral Term Property)Let E[ | € SN
andt € N. If (IP) holds andvu(t — v = Efu] € SN)
thenE[t] € SN.

Proof. SinceE| | € SN, if t € HN then by Thm3.14we
haveE[t] € SN.

Otherwise,t reduces to an abstraction, and since it is a

neutral term, it has an head redex. Thers either of the
form (\x.t1)t2¢ and we conclude by Thn8.13 or of the
form ()7 with f € F and the result follows froniip). [

Then, we obtain that biorthogonals of non-empty subsets

of SA are reducibility candidates.

Lemma 4.5. If A C SN is not empty, therflP) implies
ATT €CR.

Proof. SinceA C SN, we haveA' T C SN. Stability by
reduction is trivial. Sincel # () we haved " C SN/, hence
the neutral term property is insured by Prdp4. applied
using(IP). O

Hence, the sefAT" | ) # A C SN} is a subset ofR.
Moreover, thanks to the idempotencegef ' T, it is exactly
the set{ A" | A € CR}. Therefore, we can consistently
denote itbycR " .

On the other hand, it is interesting to note that the re-

ducibility candidates involved in the interpretationBfe

4.4. Completeness of Biorthogonals

Biorthogonals are not stable by union because the De
Morgan lawAL U BL = (AN B)1 is in general not sat-
isfied. However, sincel’- N B+ = (AU B)* we have

(AuB)*t = (ALt nBLHHL .

Therefore, the closure of union is quite informative:aif
belongs to( A U B)-- thena UL 7 for all 7 € AL N B,

We take advantage of this fact for the interpretation of
(VE), and from now on, the interpretation of types with
biorthogonals will differ from that of Se@.1

GivenT e T, we defineg(T) as follows:

(o) =aer {[]}T (= _SN)
U =V) =gt (U)-(V)")"
(UAV) =gt (U)TUVDT)T
(

Lemma 4.7. If (IP) then for allT € 7, (T) € CR.

Proof. By induction onT’, using Lem4.5for T' = T1 V T5.
Note that we cannot avoid the induction Ghand di-
rectly use Lem4.5, since it requireg # (T) CSN. O

It is directly in the soundness proof that we use the pos-
sibility of call-by-value evaluation witls'.

Theorem 4.8. LetI' -nv ¢ : T. If (IP) ando =¢.) I' then
to € (7).

Proof. By induction onI" F,v t : T. Thanks to Lem4.7,
using (Ip), we have(U)) € CR for all U € 7. Then, the
proof is identical to that of ThnB.6, except for the case of
the rule(V E). We only detail this case:

Fx:TikFave:C
TFhavit: Ty VT, Fx:Tobave:C

(VE) T v clt/z]: C

Leto [=(.) I, t' =gef to andc’ =qes co. Recall that we can

T, are biorthogonals. This observation seems to originate@ssumer ¢ FV(c). Hence, we show that[t’/z] € (C).

from [14], and to be the starting point of the utilization of
biorthogonals in reducibility. 1fA € A andB C & let
A-B=4{F[[]a]|a € A& E] ] € B}.

Proposition 4.6(Types as Biorthogonals¥or all T' € 7,,
[T]=[1]"".

Proof. Indeed, we have

[ = SN ={[]}T
[U=Vv] = (W-IvlI")!
[UAvl = (UITulvl")T™.

Let E[ ] € (C) . By induction hypothesis, for at €
(T1) U (Tz) we havec'[v/z] T E[]. Moreover, since) €
SN, we have \z.c')v T E[ | by Thm.3.13 It follows that
El(Ae.c)[ 1] € (T)T N (T2

On the other hand, by induction hypothesis we have
t'e ()" N(T) ") T. Thereforet’ T E[(A\z.c')] ]], hence
(Az.c)t' T E[]. We deduce that'[t'/z] T E[ ].

Theorem 4.9(Main Theorem) The following are equiva-
lent:

(i) T Fav t: T thent € SN.

(i) If f € F,f(t) € SN andv[r[t/i]/y] € SN for all
f(Z) g r, themv[f(£) /y] € SN.



(ili) The interpretatior(-) is sound for(Vv E). assignment may have a form of uniformity in their compu-
o . ) tational behavior. We show that this is not sufficient for the
Proof. The implication(i) = (ii) is proved in Thm4.2 safety of(\V E). Itis interesting to note that, however, stabil-

and it follows from Thm.4.8 that (i7) = (ii). We have i by unjon of reducibility candidates implies completeness
(ii1) = (i) sincex CHN C (T) CSNforallT. 0 o1 \wrt. strong normalization.

4.5. Comparison with Reducibility Candidates 5.1. Stability by Union

We have shown that the biorthogonal interpretation is  Ope possibility is to use a family of reducibility candi-

sound and complete w.r.t. the safety ofE). We now com-  gates that is stable by union. We address this question in
pare it to the impredicative interpretation ©f E) defined general terms.

inCR. GivenA, B € CR,let AV B be
Theorem 5.1. Letd C CR be a collection of sets such that

{t | VCeCR,Vce (A= C)N(B=C), cte C}. SN e UandA, B € U impliesA = B,ANB,AUB € U.
GivenT € T, define[T]y € U as
In general, itis unclear whethel, B € CR impliesAV B €

CR. Indeed, givert € N, C € CR and knowing that for all lo]u =det SN

we (t)_,cu e C,itis not clear whyt € C. On the other [T = Ulu =det [TTu = [Ulu
hand, a subtle modification td V B makes it much easier [T ANUJu =det [T]ee N [Uu
to handle: letd v+ B be [TV Uy =det [TTee U [U]es -

{t|VC’€CRTT, Ve € (A:>C’)ﬁ(B:>C), CtEC} ) L Eovt:Tando ':H]]M I' thento € [[T]]u

o . ) i n— The next point is to build suchid C CR. We can gain
The pointis that in observing € C'with C'€ CR ", in gome insight by looking at collections of sets arising as the
fagt we observes\ sincect € C' holds iff for all E ] € closure by union of some closure operator. This motivates
¢, Elct] € SN Thanks to soundness of completeness of ¢ following proposition, whose proof is not difficult and
Fav, we are able to extract the information we need from .o pe found inf6]. If = : P(D) — P(D) is a closure

the observation of.V. operator, writez for {2} andP* (D) for {X | ) # X C D}.
Lemma 4.10. For all A, B € SN, Proposition 5.2. Given a closure operatof : P(D) —
T T P(D), let Q be the set of non-empty¥ C D such that

(A'NB") =AvrB. X = U{z |z € X}. ThenQ is the smallest set such that

Proof. If c € (A= C)N (B = C)andE[] € CT, then P*(D) € Qandd #C € QimpliesJC,C € 2.

Elc[]]€ ATNnBT. Thisimplies(ATNnBT)T C Avt B.
Conversely, ifE[ ] € AT N BT then\z.E[z] € (A =
SN)N (B = SN). 0

5.2. The Principal Reduct Property

We begin by the closure by union 6R (see [L6] for
In conclusion, the interest and strength of biorthogonals details).
: ; ; ; TT
is that they bring observation at an arbitraty € CR Definition 5.3. Lett Csy u iff t,u € SA and for all
back to the observation &fV, that we can manage thanks v @ N, ift —* vthenu —* v
to the completeness of type assignment. ' q . . .
Note that ift Csar w andtt, ut € SN, thentt Cgpr ut.
In [16], it is shown that = {u | u Cspr ¢t} forallt € SN
(where™ is the closure operator 6iR defined in Sec3.1).
. . . . . Then, it follows from Prop5.2, that the closure by union
_ In this s_e_ctlon, we address the question of finding suffi- of CR, denoted byCR, is the set of non-emptg C SA’
cient conditions for the safety ¢f/ E). : :
. ; . . which are downward closed w.ri.s . We now discuss a
We begin by studying two conditions, arising when o o=
. . . - . condition forCR = CR.
closing by union respectively reducibility candidates and
biorthogonals (involving applicative contexts only). These Definition 5.4 (Principal Reduct PropertyWe say that
conditions follow a common scheme that we present first. N N SN has theprincipal reduct propertgp.r.p.) when
On the other hand, it is natural to ask whether typability there isu € (¢)_, such thatu = supc . (¢)_, (modulo the
in a subsystem of ., can imply safe interaction (i.e. the equivalence induced bBysu/).
safety of(Vv E)). In particular, rewrite systems for which in- We say thatR has the principal reduct property when
tersection types are sufficient for the completeness of typeeveryf () € SN withf € F has the p.r.p.

5. Sufficient Conditions for Safe Interaction



Note thatR has the p.r.p. iff for evenf(t) € SN
with f € F, there isf(Z) —x d such thatd[t/]
supe . {r[t/Z] | (&) —x r}. We have shown in[f] that
CR = CR (i.e. CR is stable by union) if and only if every
non-normalt € N N SN has the p.r.p. This property is
satisfyed for terms with heag-redexes 16].

Proposition 5.5. Every non-normat € A" N SA has the
p.r.p. if and only ifR has the p.r.p.

Proof. Easy, using Weak Standardization (stglff]):

If t —g u andti’ — v with v # ut, thenv = 't
with (¢,£) — (¢',') and there i3/’ such that’ 5 ' and
ut —* W't O

To the best of our knowledge, the notion of Weak Stan-
dardization appeared first id]] To summarize, we obtain
that the p.r.p. ofR implies that for allT’,U € 7 we have
[TTU U] = [T] Y [U]. Then, the safety ofv E) follows
from Thm.5.1

Theorem 5.6. Assume thatR has the principal reduct
property. Ifl' =,v ¢ : T ando |=p.j I' thento € [T7.

Example 5.7. Consider the non-confluent system

f(x) »r oz f(z)—ra f(r)—rb.

Since the terms andb are neutral and in normal from,
every non-neutral reduct 6{¢) is a reduct of. Therefore,

t = supc, {r[t/z] | f(t) —r r} and the system has the
p.r.p.

5.3. Closure by Union of Biorthogonals

We now turn to the closure by union of a family of
biorthogonals. Letll C A x IT anda < biff a'- C bt
For alla € A, we havea- = {b| a < b}. Hence, by
Prop.5.2 the closure by union ofl -biorthogonals is the
collection of non-empty subsets gf (resp.II) that are up-
ward closed w.r.t<.

Definition 5.8. LettA ¢ iff tt € SN andt < wiff t* C u™.
Let O be the set of all non-empty C SN such that if
t € C'andt < u, thenu € C.

Hence,© is the closure by union afR**. Note that
t Csn uimpliesu < t. Moreover,t < u impliestt < ut
for all £, and the next proposition easily follows.

Proposition 5.9(Type Constructions i). LetA, B C O.
Then, A= B,ANB,AUB € O.

Definition 5.10 (Weak Principal Reduct PropertyyVe say
that R has theweak principal reduct propertgw.p.r.p.)
when for eveny(t) € SN with f € F there isf(%) —x d
such thatd[t/i] = inf<{r[t/7] | f(f) —= r} (modulo the
equivalence induced by).

Note that ifR has the p.r.p. then it has the w.p.r.p. The
w.p.r.p. is a necessary and sufficient condition@of CR.

Lemma 5.11. O C CR if and only ifR has the w.p.r.p.

Proof. Using Weak Standardization (see Pr6h). O

Theorem 5.12. Assume thatR has the weak principal
reduct property. IfT' - v ¢t : T'ando F=p.p, T, then
to € [[Tﬂ@

Example 5.13. The confluent system

p—R AT.C p—R AT.Co c;i—rd

does not have the p.r.p. singe.c; andz.c, are two dif-
ferent non-neutral terms. But it has the w.p.r.p. since for all
twe have(\z.c;)t € SN iff (A\z.co)t € SN.

5.4. Saturated Sets

The w.p.r.p. corresponds to the ability to define sound
Tait's saturated sets. The s8tl7 of saturated setss the
set of allHN C S C SN such that
(SAT?2) if h—p Uz b/ with »’ < handh't € S then

hte S.

It is easy to see thaA7T is stable by=, | and("). More-
over, it is sound w.r.t- v whenR has the w.p.r.p.:

Theorem 5.14. Assume thatR has the weak principal
reduct property. Ifl’ F v ¢ : T ando )5, I then
to € [[THSAT-

Proof. As for Thm.3.6, the proof is by induction on typing

derivations” v t : T. The critical cases are that 6& 1)
and(Fun).

Tx:Ubpavt: T

|
GO i UoT

Leto Esar T, u € [U]sar andt’ =g to. We can
assume that [u/x] = t(o[u/z]).

We have to show thagt\z.t')u € [T]sa7. By induction
hypothesis we hav&[u/z] € [T]sar and we are done if
t'lu/x] < (Az.t')u. But sinceu € SN, this follows from

~

Weak Standardization (see Pr&p5and [1, 16]).

V(@) —rr, I,8:Thavr:T
Do f(E): T

Tt T
(FUN) — 22

Leto = .jeur [ @nd?’ =ger to. By induction hypothesis,
# € [T]saz- We have to show thdt?') € [T]saz-

Since by induction hypothesig|i/#] € [T]sar € SN
for all f(£) —x r, we havef(f) € SN. Therefore
by assumption there i§(Z) —x d such thatd[t/z] €
inf < {r[t/] | f(Z) —x r}. Hencef(t) 2 d[t/7] € [T]sar
andf(t_) S [THS.AT- O]



Hence, the w.p.r.p. allows to define saturated sets thatThis agrees witH - J».nr, since[o]xan C [T for all
are stable by union and sound w.it,v. Since the p.r.p. T € 7, but contradictdo] = SN. It is moreover not clear
strictly implies the w.p.r.p., this shows that stability by whether the least -biorthogonal isSH A (note that the least
union of sound saturated sets is strictly more general thand-biorthogonal is noHN).

stability by union of Girard’s reducibility candidates. A development similar to that of Sed. goes through
with [- Jsar. First, we obtain the analogous of Th113
5.5. Typability in +, and Thm.3.14for HN.

A natural question is whethék E) is safe with rewrite ;Zi%r[e(;nxi')i' /If](é‘af};fj)\;‘ € SN andoft[u/z]/y] € HN
systems for which intersection types are sufficient for the A '
completeness of typing w.r.t. strong normalization. Proof. As in Thm.3.13 from (\z.t)u € SN/, thanks to
Indeed, one could expect to have that if forfalf SA Thm. 3.11we getI”, T and U such thatl” Fy w : U
there ard’, T'such that - ¢ : 7', then(V E) is safe. This  and1’ -, tfu/z] : T. On the other hand, thanks to
is not the case, as shown by the following example. Thm. 3.12 there isI"” such thatl”’ k. ot[u/z]/y] :
o. Now, reasoning as in Thn8.13 we obtain thaf™ A
I Fav (Ayv)(Az.t)u) : o, hencev[(Az.t)u/y] € HN
by Thm.6.1 O

Example 5.15.Consider the system of ER.2. LetTs =gt
oA (o= o0),hencel -, t: Tg impliesT 4 ¢t : 0. Then,
using(FuN) we can derive:

p Azy.g(zad): (0= (Ts = 0) = 0) = Ts = 0 Theorem 6.3.If t € HN andv € HN thenv[t/z] € HN.

Fa Azy.g(yy) (0= (Ts = 0) = 0) = Ts = o Proof. As for Thm. 3.14 using Thm.3.12 instead of
Faf:i(o=>Ts=0)=0)=>Ts=0 Thm.3.11and Thm6.linstead of Cor3.7. O
Moreover, it is easy to see that with this systent, & SA In the same way that -biorthogonals were defined in

then there ar@ andT such thatl' +, ¢ : T. Since by  correspondence with: ], we can definel-biorthogonals in
Ex. 2.2 this system breaks the safety ©f E), it follows correspondence with- [ -
that completeness of typability in, does not imply safe

interaction. Definition 6.4. Lett L E[ | iff E[t] € HN.

However, it is interesting to note that the p.r.p. implies !N fact, reduction to an hereditary neutral term corre-

completeness of,. Thatis, ifR has the p.r.p. antle SA’ sponds to reduction to error irl9, 18]. Since in these
then there ar& andT such thaf -, ¢ : T. papers biorthogonals are based on the observation of non-

reduction to error, they are in some sense dual toHaM-
Theorem 5.16 (Completeness) Assume thatR has the biorthogonals.
p.rp. Ift € SN, then there arel' and T such that Note thatt* C u' impliest” C ', but the converse
Lhat:T. is false: Az.z' C A\yz.yz', but (A\z.z)z € HN while
(Ayz.yz)z ¢ HN. Asin Prop 4.6, if U,V € 7, we have

6. HN -Biorthogonality

[o]rn HN = {] ]}LL .
In this section, we briefly discuss an orthogonality rela- [[?[]U:;\ g%ﬁx ; E%g%iﬂv U[E[g]?]{f/ ))L .
tion based on the observation &\ (the bottom element m N N
of CR) rather tharS (its top element). This semantics in- In order to get an interesting interpretation (©of E),
_duces a better adeq_ur_;lcy with the type system. However, ity define(- ).y analogously ag-). Note that the only
is not clear whether it is complete w.r.t. the safetywE).  change in the definition is the orthogonality relation: we

We interpretT” € 7T by [T]nn € CR as in Sec3.1, deduceo)rn = HA from (o) sn =aer {[ ]}, Again, the
except thaflo]y - =dert HN. The properties of Se@®.2 important case is that ¢f/ E):
holds also for[T]x. This way we get the soundness of

o-typability w.r.t. HN . (T1 V To)rn =der ((T1)3ar N (T2)3nr) - -
Theorem 6.1. If I' -, t : o thent € HN. With the same method as in Sdc4, we obtain the dual

Since Thm.3.12 says that any hereditary neutral term of Thm.4.9

is typable by anyl” € 7T, it follows that a term is typable
by o if and only if it can be given any type (in different
contexts), suggesting thatmay be the least element . (i) T Fav t:othent € HN.

Theorem 6.5. The following are equivalent:

10



@iy (IPyp): If f € F,f(1) € SN andw[r[t/Z]/y] € HN [2] F. Barbanera, M. Dezani-Ciancaglini, and U. de’Liguoro.

for all f(Z) —x r, thenu[f(f)/y] € HN. Intersection and Union Types: Syntax and Semantics.
_ formation and Computatiqri19:202—-230, 19941, 2, 11
(iii) (D is sound for(V E). [3] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A
. . . Filter Lambda Model and the Completeness of Type Assign-
_ _We concl_u_de by showing that we indeed obtained a suf- ment. Journal of Symbolic Logic48(4):931-940, 19832,
ficient condition for the safety afv E). 12 13
[4] F. Blanqui and C. Riba. Combining Typing and Size Con-
Lemma 6.6. (IPry) = (IP). straints for Checking the Termination of Higher-Order Con-
Proof. Let f({) € SN, such thatq)[r[{/f]/y] c SN for ditional Rewrite Systems. IhPAR'06 volume 4246 of
eachf(z) —x r. SinceR(f) is finite, there isi such that LNAI, 2006.1, 2 , _
for all () —r T, v[r[z?/a?]/y]a' € HN. By (IPyy) we [5] T. Coquand and A. Spiwack. A Proof of Strong Normali-

obtain that[f()/y]@ € HA” hences[f(i)/y] € SN. D ;gtcl)%r.wzlyj:sglng Domain Theory. IniCS’06, pages 307-316,

The converse is unclear because we do not have subject [6] V. Dar_los _and J.-L. Krivine. Disjunctive Tautologies as Syn-
reduction in-,v. It would require, at least, to add the sub- chronisation Schemes. IBSL'0Q volume 1862 oLNCS
typingruleU = (1 VTy) < (U = T1) V(U = Ty), pages 292-301, 2000, 2

. . . . .. [7] M. Dezani-Ciancaglini, U. de’ Liguoro, and P. Piperno.
which may be unsound in our setting. Subject reduction in Filter Models for Conjunctive-Disjunctive Lambda-Calculi.

presence ofV E) is extensively studied irg]. Theoretical Computer Scienc70(1-2):83-128, 19962,
3,12, 13
7. Conclusion [8] M. Dezani-Ciancaglini, U. de’ Liguoro, and P. Piperno. A

Filter Model for Concurrent Lambda-CalculuSiam Jour-
nal on Computing27(5):1376-1419, 1998, 2, 3, 12, 13

V_Ve have ShOW_n that the rule’ E) can break SUOF‘Q nor- [9] M. Dezani-Ciancaglini, J. Tiuryn, and P. Urzyczyn. Dis-
malization, even in the presence of confluent rewriting, and crimination by Parallel Observers. IHCS'97, 1997.2
have given sufficient conditions for its safety. [10] A. Frisch, G. Castagna, and V. Benzaken. Semantic Subtyp-
Our main result is that for strong normalization, the best ing. InLICS’02, 2002.2
possible interpretation of union types is given by biorthogo- [11] J. Gallier. Typing Untyped Lambda-Terms, or Reducibility
nals. This gives a computational interpretation of biorthog- Strikes Again! Annals of Pure and Applied Logi®1:231—
onality. We conjecture that the result depends onntist 270,1998.2, 3, 5,12

[12] H. Hosoya, J. Vouillon, and B. Pierce. Regular Expression
Types for XML. InICFP’00, 2000.2
[13] J.-L. Krivine. Lambda-Calcul, Types et Metks Masson,

nature of strong normalization, and that it extends to must
(weak) head reductions.

We considered a very simple form of rewriting, with the 1990.2 3.5 12
objective of concentrating ourselves on the very problem of [14] . Parigot. Proofs of Strong Normalization for Second Or-
(VE). As future work, it is important to study the case of der Classical Natural Deductiodournal of Symbolic Logic
rewrite rules with pattern matching. 62(4):1461-1479, 1997, 2, 7

Our results can be summarized in the following diagram: [15] A. M. Pitts. Parametric Polymorphism and Operational
EquivalenceMathematical Structures in Computer Science

_ (seca) 10:321-350, 2002
(VE) is safes—= (IP) <= w.p..p. (Sec5.3) [16] C. Riba. On the Stability by Union of Reducibility Candi-

ﬂ ﬂ dates. INF0OSSaCS’0Aolume 4423 o NCS 2007.2, 4, 8,

Ip. Sec6 r.p. (Secs. 9
(IPrv) ( ) p-rp- ( 2 [17] F. von Raamsdonk and P. Severi. On Normalisation. Tech-

) ) nical Report CS-R9545, CWI, 1995.
Acknowledgments. The author thanks Ecéric Blanqui [18] J. Vouillon. Subtyping Union Types. I€SL'04 volume

and Claude Kirchner for advices, support and comments. 3210 ofLNCS pages 415-429. Springer Verlag, 20044,
Thanks also to Philippe de Groote for his example (see 10

Ex. 2.1) and to Arnaud Spiwack and Dan Dougherty for [19] J. Vouillon and P.-A. Mels. Semantic Types: A Fresh
some interesting discussions. Anonymous referees gave in-  -00k at the Ideal Model for Types. IROPL'04 ACM,
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A. Derivability in +,, and -,

In this appendix, we present results on derivability in the andI’ Fy u :

type systems , andt,.

We begin by some fundamental properties of the type f(i) : 7.

system. They are well-known in the case of the pire
calculus with intersection typed 3, 11, 3]. Concerning
union types, they have been proved i §] when (7, <

, A\, V) is a distributive lattice. Proving them in our frame-
work does not bring any difficulty.

We then detail the proof of completeness of type assign- (i) If T’ Fy w :

ment ink 4y W.I.t. strong normalization.
Excepted ThmA.5, all the properties presented in this
section are common te, andt,y. Letty € {A, AV}.

Proposition A.1 (Inversion)
() Thyz:Tiff (2 :U) eTwithU <T.

(i) T by tu : Tiff there isU such thatl’ -y ¢ : U = T
andI' Fy u: U.

(i) T Fy Azt : T iff there existsy > 1 and Uy, ..., U,,
Vi,...,V, such thatA,(U; = Vi) < T and for all
ie{l,...,n},F,x:Ui FtytZV%.

(iv) T by f(£) : V iff there areT such thafl -, ¢ : T and
forall f(&) —g 7, 0, @ : T Fyr: V.
Proof. All cases are proved by trivial inductions on the typ-

ing derivations. Note that for the case (iii), thanksdto
equivalence we can assume thiatg dom(T"). O

such that for ali € {1,...,[#]}, T,z : V; Fy t; : T; and
T by u: Vi TakingV =ger \, Vi we getl,z : V by £: T
V. Moreover, we have for all(Z) —xr r
[,Z: T,z :V kyr:Tand it follows thatl, z : V Fy
O

Note that if[" Fy ¢t : T andy ¢ T, thenD'[y/z] Fy
tly/z]: T.

Lemma A.4 (Weak Head Expansion)

UandTl' Fy tlu/z|v : T thenD Fy
Ax.t)ud: T.

(i) Forall f e F,if I' by £: T, and for allf(z) —g r,
T by r[t/Z)0 : T, thenl by f(£)7: T

Proof. We only detail (ii): (i) is similar and simpler.

First, assume that is disjoint from donfl"). We reason
by induction on/#].

In the cased| = 0, we havel' i, i : T and for all
f(Z) g r, T Fy r[t/7] : T. By Prop.A.3, for all
f(Z) —r r there arel’, andT" such thatl’, ty & : T"
andl,, 7 : T" by r : T. Hence, taking” =qer A\, 7" and
T =get A\, [ we havel -y ': T/ and for allf(z) —x
0,2 : T by r: T. Thusl b f(i) : T.

Now, assume the property forand letl” £:T and
for all f(Z) —x r, T by r[t/Z]dv : T. By Prop.A.L.(ii),
for all f(¥) +—x r there isV, such thatl' Fy r[t/7]v
V., = T andT Fy v : V... SinceR(f) is finite, taking
V =ANA,V., wegetl' -y v : V and for allf(z) —xr 7,

The next property is fundamental for type systems. It I Fy 7[(/Z]7 : V = T. By induction hypothesis we have

corresponds to cut-elimination.

Lemma A.2 (Substitution) If ',z : U by ¢ : T and T ky
u: U thenD Fy t{u/z] : T.
Proof. By a trivial induction onl’, z : U by t : 7. O

In particular, ifx ¢ FV(t) thenl',z : U by ¢ : T implies
I' Fy t : T. This property is called Contraction.

We now turn to the key properties for completeness of 5,4 we hava’. # : {7 Fy ()7 T.

T by f(£)7: V = T and we conclude thdt by f(£)dv : T.

It remains to consider the case whetand dontl") are
not disjoints. Lett’ =get {z; | ¢ € {1,...,|Z|} & z; € T'}.
Hence I is of the formI’, & : U. Considery disjoint from
dom(I") such thatjg] = ||, and lett’ =g /2] and
7' =det 017/ ). Therefore, we have’, 7 : U by # : T and
forall f(Z) g r,I7,7: U by r[t /2] : T. Hencel”, § :
U by £(#)7 - T, sincef is disjoint from donil”, ¢ : U) ;
O

type assignment. They are characteristic properties of inter-
section types (recall that in our case, union types are needed We finish by the full proof of Thm3.11(Completeness).

to type function symbols, not for the-calculus itself).

Proposition A.3 (Interpolation) Letz ¢ I'. If I' ky
tlu/z] : T andT ty w : U, then there isV such that
Fao:VEyt:Tandl'Fyu: V.

Proof. Givenv € A, we letv’ =gt v[u/x]. We reason by
induction ont. We only detail the case of= f(#).

By inversion (PropA.1.(iv)), there arel’ such thaf’ Fiy
# : T and forallf(¥) —g v, [,& : T Fy r: T. We
can assume that ¢ Z. By induction hypothesis, there 1%
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Theorem A.5(Completeness)lf t € SN, then there ard®
andT suchthafl' -,y t: T.

Proof. The proof is by induction on<. Recall thatt =
A;E_Shﬁ whereh is either a variable, &-redex or a symbol
f(t).

If |Z] # 0, then by induction hypothesis there dtend
T such thatl’, ¥ : T Fav AU : T, and thereford® +,.,
AZhT: T = T.

Now we assume that| = 0 and reason by cases bn



h=x € X. Sincev < t, by induction hypothesis there are
I;, Ut andT; such thatl;, 7 : U' Fay v; : T;. Hence,
with T =ger A\, (T, 7 : U*), we have for alt thatT” +,.,
v; : T;. LetT € T andTl =get IV A (2 : T = T). We
havel' b,y av: T.

h = (Az.u)v. We havev < ¢ andufv/z]v < t, hence
by induction hypothesis there afg 7" and V' such that
T Fayv ufv/z]0: T andT b,y v : V. By Lem. A.4.(i),
we havel' -y (A\z.u)ov : T.

h = f(t). First, note that < .

If f € C, sinced < t, there arel’, T and V' such that
Thay i:Tandl buy 7: V. Hencel Fpy f(8)7: T
forall T € 7.
The interesting case is whére F. For allf(Z) —x r
we haver[t/#] < t and by induction hypothesis there
arel,, T" andV, such that, -,y £: 7" andl, Fay
r[t/#)5 : Ve Now, takingT =det A,cropy Trr T =ef
Avery T" andV =get V,cn (s Ve We havel' ,y
t': T and for allf(Z) —x r, T Fay r[t/Z]7 : V. We
conclude thal® -, f(£)7 : V thanks to LemA.4.(ii).
O

B. Typability in , (Sec5.5)
In this appendix, we give the proofs of S&ch.
B.1. Proofs of Example5.15

In this section, we prove the claim of EX.15 for the
system of Ex.2.2, intersection types are complete w.r.t.
strong normalization.

Since by Ex2.2this system breaks the safety (of E),
it follows that completeness of type assignmentjndoes
not imply safe interaction. We use the preordedefined
in Def.3.10

Proposition B.1. LetR be the system of E2.2andfv €
SN be such that every < {7 is typable in~,. Thenf7 is
typable int-4.

Proof. We reason by cases 0#. Letu; =qet Azy.g(zad),
uz =def Azy.g(yy) and recall thal's = o A (0 = o).

|t] = 0. This case is dealt with in EX.15

|0] = 1. Let v =ger U. Sincevad < fv, we havel' and
T such thatl' 5 wvad : T. Thanks to PropA.1.(ii)
there arel/1, U; such thatl' v : Uy = Uy = T,
T'kpa:Uyandl Fp 6 : Us.

It follows that for alli € {1,2} we have
Phau: (U =>Uy=T)=Ts=o0.

Hencel' Fx w;v : Tg = oandl’ kA fv : T — o.
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|o] > 2. In this case, we show by induction ¢# that for
all T € 7, there existd" such that for ali € {1,2} we
havel' b, u;v : T. ThisimpliesI' -, f: T.
The induction step easily follows from the induction hy-
pothesis and Prog\.1.(ii). We only detail the base case
7= V1V2.

Sinceviad < fuvjuy, as in the cas¢rs| = 1, we have
'y, Uy, Uy Us such thatF1 Faov U = Uy = Us,
Fl }_/\ a: U1 andF1 l_/\ d: UQ.

On the other hand, sincgv, < fvivs, there arel’s,
Vl, V2 such thafg F/\ Vg - Vl A\ (Vl = ‘/2)

It follows that for all'T" € 7, we have

Dy,2:U; =>Uy=Us b, g(zad) : T
and To,y:ViA(Vi=Va) ba glyy) = T.

Hencel'1 AT's Fa u;vqv9 : T foralli e {1, 2} O

Theorem B.2 (Completeness)Let R be the system of
Ex.2.2 If t € SN thent is typable in-,.

Proof. We reason by induction or as for Thm.A.5, ex-
cept whert is an applied symbol.

The result is trivial if eithet = av ort = g(u)v. Oth-
erwise, we have = f# and since by induction hypothesis
everyu < tistypable in-,, we conclude by Pro8.1. O

B.2. The Systent-, and the P.R.P.

Now, we show that ifR has the p.r.p., then every strongly
normalizable term is typable iAx.

In addition to the properties proved in Appendixwe
have the following.

Proposition B.3. If A,.,(U; = T;) < U = T, then
there is a non-empty C I such thatU < /\jeJ U; and
/\jEJ Tj <T.
Proof. See B]. O

With intersection and union types, Prdp.3 is proved
in [7, 8] assuming the distributivity of7", <, A, V). We can

not assume it in our case, since it would break the soundness

of the biorthogonal type interpretation. Now we can prove:

Proposition B.4 (Subject Reduction)If T" -, ¢ : T and
t—uthenl'k o uw:T.

Proof. By induction onI" -, ¢ : T, using PropA.1.(iii)
and PropB.3whent —g w. O

The important technical property is following lemma.
Recall that< is defined in Def3.1Q

Lemma B.5. Letv € SN such that every’ < v is typable
inkA. Then, forallt,u < v, ifu Cgyr tandl’ Fo ¢t : T
then there id” such thafl” -, v : T.



Proof. Lett < v suchthaf’ -, ¢ : T. We show by induc-
tion on < that for allu, if © Egar t andu < v then there
existsI such thafl” F, w : T.

If w ¢ N, then by definition we have —* « , thus
I' FA uw : T by Subject Reduction (Prop.4). Otherwiseu
is of the formhil whereh is either a variable, an abstraction
or a function.

h = z. Inthis caseyu E_"HN’. Sinceu < v, by assumption
there are are?’qandU such thafl” -, @ : U. Hence we
havel' A (z: U = T)bpau: T.

h = (Az.up)uz. Inthis case, since;[us/x]d Csyr t, and
upfug/x] < w, by induction hypothesis there i3,
such thatl'y kA wifug/z]d : T. Moreover, since
us < v, by assumption there adé, and U such that
I's A ug : U. Therefore, by LemA.4.(i) we have
Fl A FQ l_/\ ()\I’U,l)UQU :T.

h = f(t). Since for allf(Z) —r r we haver[t/Z|i < u
andr[t/Z]d Csy t, by induction hypothesis there Iy
such that for alf (%) —x r we havel'; F, r[i/Z)d : T.
On the other hand, singe< v, by assumption there are
', T such thafy F, : T. Hence by LemA.4.(ii) we
havel'; ATy b f(£)i : T. O

Theorem B.6 (Completeness) Assume thatR has the
p.rp.. Ift € SN, then there arel’ and T such that
F }_/\ t: T

Proof. The proof is by induction ok. Itis the same as the
proof of Thm.A.5, except for the case= f(£)7. We only
detail this case.

First, note that we havé < ¢. Since moreover for all
f(Z) —r r we haver[t/Z]# < t by induction hypothesis
there ardl’,,, 7" andV, such thaf, -, £ : 77 andT, .
[t/ 2] : V.

Now, by assumption, thereféz) —x d such that for all
f(Z) g 7, 7[t/T)T Cspr d[t/T)0. Sinced[t/Z]v < t and
for all f(%) —x r, r[t/Z]¥ < t, and moreover by induction
hypothesis every < ¢ is typable in-, by Lem.B.5for all
f(Z) 5 r, there isT. such that”. -, r[t/]7 : Ty.

LetI' =gef /\,reR(f)(Fr AT/ ) andT =gef /\,,eR(f) Tr.
We havel' -, t': T and for allf (%) g 7, T A r[t/Z]7 :
T,. We getl’ -, f(£)7 : T, thanks to LemA.4.(ii). O

C. HN -Biorthogonality (Sec.6)

This appendix is devoted to the proofs of S&éconcern-

ing HA/ -biorthogonality. The development is similar to that

of Sec4.
We show that the following properties are equivalents:

(VE)isHN-safe: If T' -,y t: othent € HN.
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(IPyw) If f € F, f(1) € SN andv[r[t/7]/y] € HN for
all () —x r, thenv[f(t)/y] € HN.

(-Dxarissound: If T' Fav ¢ 2 T ando (., I then
to € (]TD'HN

Theorem C.1. If (V E) is HN -safe, ther(IP; ) holds.

Proof. The proof is similar to that of Thmt.2.

Let f(f) € SN andwv such that for allf(¥) +—x 7,
v[r[t/Z]/y] € HN. Reasoning as in Thn6.2, there are
T, (Ur)rer(s such thafl Fay f(£) : V,er Ur and for
allr e f(R), T Fav Ayv: U, = o.

By Prop.4.1, we havel' v (\y.v)f(f) : o, hence
v[f(t)/y] € HN since(V E) is HN -safe. O

Proposition C.2 (Neutral Term Property)Let E[ | € SN
andt € N. If (IPyy) holds andvu(t — v = Elu] €
HN) thenE[t] € HN.

Proof. First, if t € HN/, sinceE| | € SN, by Thm.6.3we
haveE[t] € HN.

Otherwise, since € N, we have(t) , # () and there are
two cases. In the first one= (\z.t;)t2¢ and we conclude
by Thm.6.2 In the second one = f()7 with f € F and
the result follows from(IPyar). O

Then, as in Seel.3 we obtain that biorthogonals of non-
empty subsets o\ are reducibility candidates.

Lemma C.3. If A C SN is not empty, thefl Pyx7) implies
A+t e CR.

Proof. As for Lem.4.5, using PropC.2instead of Prop4.4
and(1Py.y) instead of(1P). O

We deduce that types are interpreted as biorthogonals,
and the main result easily follows.

Lemma C.4. If (IPyn) thenforallT € T, (T)nn € CR.

Proof. Reason by induction off’, using Lem.C.3 in the
cas€l’ =T, VTs. O

Theorem C.5. LetI' Fav ¢ : T, If (IPyn) @ando =),
I thento € (T)pnr-

Proof. By induction onI" v ¢ : T. Thanks to LemC.4,
using (IPxn), we have(U)un € CR forall U € T.
Then, once we have noted thét 1 E[(Az.c')[]] im-
pliesc'[t'/x] L E[], the proof is exactly the same as for
Thm. 4.8, using Thm6.2instead of Thm3.13 O



	1 . Introduction
	2 . Preliminaries
	2.1 . Types and Terms
	2.2 . The Elimination Rule of Union Types ( E)

	3 . Soundness and Completeness
	3.1 . Reducibility
	3.2 . Soundness
	3.3 . Completeness
	3.4 . Two Interesting Consequences

	4 . Safe Interaction
	4.1 . The Interaction Principle
	4.2 . Orthogonality
	4.3 . Biorthogonal Reducibility
	4.4 . Completeness of Biorthogonals
	4.5 . Comparison with Reducibility Candidates

	5 . Sufficient Conditions for Safe Interaction
	5.1 . Stability by Union
	5.2 . The Principal Reduct Property
	5.3 . Closure by Union of Biorthogonals
	5.4 . Saturated Sets
	5.5 . Typability in 

	6 . HN-Biorthogonality
	7 . Conclusion
	A . Derivability in  and 
	B . Typability in  (Sec 5.5)
	B.1 . Proofs of Example 5.15
	B.2 . The System  and the P.R.P.

	C . HN-Biorthogonality (Sec. 6)

