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Abstract: The purpose of this paper is to give four new applications of the Quillen-Suslin theorem to
mathematical systems theory. Using a constructive version of the Quillen-Suslin theorem, also known
as Serre’s conjecture, we show how to e ectively compute at outputs and injective parametrizations
of at multidimensional linear systems. We prove that a at multidimensional linear system is alge-
braically equivalent to the controllable 1-D dimensional linear systems obtained by setting all but one
functional operator to zero in the polynomial matrix de ning the system. In particular, we show that a

at ordinary di erential time-delay linear system is algebraically equivalent to the corresponding ordi-
nary di erential system without delay, i.e., the controllable ordinary di erential linear system obtained
by setting all the delay amplitudes to zero. We also give a constructive proof of a generalization of
Serre’s conjecture known as Lin-Bose’s conjecture. Moreover, we show how to constructively compute
(weakly) left-/right-/doubly coprime factorizations of rational transfer matrices over a commutative
polynomial ring. The Quillen-Suslin theorem also plays a central part in the so-called decomposition
problem of linear functional systems studied in the literature of symbolic computation. In particular,
we show how the basis computation of certain free modules, coming from projectors of the endomor-
phism ring of the module associated with the system, allows us to obtain unimodular matrices which
transform the system matrix into an equivalent block-triangular or a block-diagonal form. Finally,
we demonstrate the package QuillenSuslin which, to our knowledge, contains the rst implemen-
tation of the Quillen-Suslin theorem in a computer algebra system as well as the di erent algorithms
developed in the paper.

Key-words: Constructive versions of the Quillen-Suslin theorem, Lin-Bose’s conjecture, multidi-
mensional linear systems, at systems, (weakly) doubly coprime factorizations of rational transfer
matrices, factorization and decomposition of linear functional systems, symbolic computation.
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Applications du theoreme de Quillen-Suslin a la theorie des
systemes multidimensionnels

Resume : Le but de ce papier est de donner quatre nouvelles applications du theoreme de Quillen-
Suslin a la theorie mathematique des systemes. A I'aide d’une version constructive du theoreme de
Quillen-Suslin, aussi connu sous le nom de conjecture de Serre, nous montrons comment calculer de
maniere e ective les sorties plates et les parametrisations injectives des systemes lineaires multidimen-
sionnels plats. Nous prouvons que tout systeme lineaire multidimensionnel plat est algebriqguement
equivalent aux systemes lineaires 1-D contr6lables obtenus par annulation de tous les operateurs fonc-
tionnels sauf un dans la matrice polyndmiale de nissant le systeme. En particulier, nous montrons que
tout systeme lineaire di erentiel a retard plat est algebriquement equivalent au systeme di erentiel
sans retard, c’est-a-dire, au systeme lineaire contr6lable d’equations di erentielles obtenu en annu-
lant les amplitudes des retards. Nous donnons aussi une preuve constructive d’une generalisation de
la conjecture de Serre appelee conjecture de Lin-Bose. De plus, nous montrons comment calculer
de maniere e ective des factorisations (faiblement) copremieres a gauche et a droite de matrices de
transfert rationnelles sur une algebre commutative de polynémes. Le theoreme de Quillen-Suslin joue
aussi un role important dans I'etude du probleme de decomposition des systemes lineaires fonction-
nels etudie dans la litterature du calcul formel. En particulier, nous montrons comment le calcul
de bases de certains modules libres, provenant de projecteurs de I’'anneau des endomorphismes du
module associe au systeme, nous permet de calculer des matrices unimodulaires qui transforment la
matrice du systeme en une matrice equivalente ayant une forme bloc-triangulaire ou bloc-diagonale.
Finalement, nous decrivons le logiciel QuillenSuslin qui, a notre connaissance, contient la premiere
implementation du theoreme de Quillen-Suslin dans un systeme de calcul formel, ainsi que les di erents
algorithmes obtenus dans le papier.

Mots-cles : Versions constructives du theoreme de Quillen-Suslin, conjecture de Lin-Bose, systemes
lineaires multidimensionnels, systemes plats, factorisations doublement (faiblement) copremieres de
matrices de transfert rationnelles, factorisation et decomposition des systemes lineaires fonctionnels,
calcul formel.
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1 Introduction

In 1784, Monge studied the integration of certain underdetermined non-linear systems of ordinary
di erential equations, namely, systems containing more unknown functions than di erential indepen-
dent equations ([310]). He showed how the solutions of these systems could be parametrized by means
of a certain number of arbitrary functions of the independent variable. This problem was called the
Monge problem and it was studied by famous mathematicians such as Hadamard, Hilbert, Cartan
and Goursat. In particular, motivated by problems coming from linear elasticity theory, Hadamard
considered the case of linear ordinary di erential equations and Goursat investigated underdetermined
systems of partial di erential equations. We refer the reader to [31] for a historical account on the
Monge problem and for the main references.

Within the algebraic analysis approach ([2, 21, [30, 35]), the Monge problem was recently studied
for underdetermined systems of linear partial di erential equations in [21), 35, 44, 45, 46] and for linear
functional systems in [5, 6] (e.g., di erential time-delay systems, discrete systems). Depending on the
algebraic properties of a certain module M de ned over a ring D of functional operators and intrinsi-
cally associated with the linear functional system, we can prove or disprove the existence of di erent
kinds of parametrizations of the system (i.e., minimal or injective parametrizations, non-minimal
parametrizations, chains of successive parametrizations). Constructive algorithms for checking these
algebraic properties (i.e., torsion, existence of torsion elements, torsion-free, re exive, projective, sta-
bly free, free) and computing the di erent parametrizations were recently developed in [B), 44, 45, 48],
implemented in the package OreModules ([5, B]) and illustrated on numerous examples coming from
mathematical physics and control theory ([5, 6]). Finally, we proved in [5, 44, 45, 46] how the Monge
problem gave answers for the search of potentials in mathematical physics and image representations
in control theory ([41, 42, 65, [66]).

The last results show that the Monge problem is constructively solved for certain classes of linear
functional systems up to a last but important point: we can check whether or not a linear functional
system admits injective parametrizations but we are generally not able to compute one even if some
heuristic methods were presented in [5], 44, 45]. Indeed, the existence of injective parametrizations for
a linear functional system was proved to be equivalent to the freeness of the corresponding module
M. In the case of a linear functional system with constant coe cients, the corresponding ring D of
functional operators is a commutative polynomial ring over a eld k of constants. Using the famous
Quillen-Suslin theorem ([586), 58])), also known as Serre’s conjecture ([24, 25]), we then know that free
D-modules are projective ones. Using Grobner or Janet bases ([5, [11), 44]), we can check whether or
not a module over a commutative polynomial ring is projective. See [3, [IT, Z0] and the references
therein for introductions to Janet and Grobner bases. Hence, we can constructively prove the existence
of an injective parametrization for a linear functional system. However, we need to use a constructive
version of the Quillen-Suslin theorem (15, [19, [Z3, 27, 29, 37, 61, 62]) to get injective parametrizations
of the corresponding system.

The main purpose of this paper is to recall a general algorithm for computing bases of a free
module over a commutative polynomial ring, give four new applications of the Quillen-Suslin theorem
to mathematical systems theory and demonstrate the implementation of the QuillenSuslin pack-
age ([13]) developed in the computer algebra system MAPLE. To our knowledge, the QuillenSuslin
package is the rst package available which performs basis computation of free modules over a commu-
tative polynomial ring with rational and integer coe cients and is dedicated to di erent applications
coming from mathematical systems theory.

More precisely, the plan of the paper is the following one. In the second section, we recall how the
structural properties of linear functional systems can be constructively studied within the algebraic
analysis approach as well as di erent results on the Monge problem. A constructive version of the
Quillen-Suslin theorem, which is the main tool we use in the paper, is presented in the third section

RR n 6126



4 A. Fabianska & A. Quadrat

and the implementation is illustrated on many examples in the Appendix of the paper. We also
describe some heuristic methods that highly simplify the computation of a basis of a free module over
polynomial ring in certain special cases. The constructive version of the Quillen-Suslin theorem and,
in particular the patching procedure, gives us the opportunity to make a new observation concerning
linear functional systems which admit injective parametrizations also called at multidimensional
systems in mathematical systems theory. In the fourth section, we prove that a at multidimensional
system is algebraically equivalent to a 1-D at linear system obtained by setting all but one functional
operator to zero in the system matrix. This result gives an answer to a natural question on at
multidimensional systems. In particular, we prove that every at di erential time-delay system is
algebraically equivalent to the di erential system without delays, namely, the system obtained by
setting to zero all the time-delay amplitudes. In the fth section, we consider a generalization of
Serre’s conjecture. We recall that Serre’s conjecture conjecture, also known as the Quillen-Suslin
theorem, can be expressed in the language of matrices as follows: every matrix R over a commutative

completed to a square invertible matrix over D (i.e., its determinant is a non-zero element of the

eld k). The generalization, stated by Lin and Bose in [26] and rst proved by Pommaret in [43]
by means of algebraic analysis, can be formulated as the possibility of completing a matrix R whose
maximal minors divided by their greatest common divisor d generate D to a square polynomial
matrix whose determinant equals d. Serre’s conjecture is then the special case where d = 1. Using the
Quillen-Suslin theorem, we give a constructive algorithm for computing such a completion. Using the
possibility of computing basis of a free module in our implementation QuillenSuslin, this algorithm
has been implemented in this package. In the sixth section, we study the existence of (weakly) left-
/right-coprime factorizations of rational transfer matrices using recent results developed in [G0]. We
give algorithms for computing such factorizations using the constructive version of the Quillen-Suslin
theorem. These results constructively solve open questions in the literature of multidimensional linear
systems (see [63, [64] and the references therein). Finally, we show that the constructive Quillen-Suslin
theorem also plays an important role in the decomposition problem of linear functional systems studied
in the literature of symbolic computation. See [9] and the references therein for more details. The
main idea is to transform the system matrix into an equivalent block-triangular or a block-diagonal
form (]9, [ZOD).

The di erent algorithms presented in the paper have been implemented in the package Quillen-
Suslin based on the library Involutive ([3]) (an OreModules ([6]) version will be soon available).
The Appendix illustrates the main procedures of the QuillenSuslin package on di erent examples
taken from the literature ([19, 23, 38, &1]). The package QuillenSuslin also contains a completion
algorithm for unimodular matrices over Laurent polynomial rings described in [36, 38]. See also [I] for
a recent algorithm. In [38], Park explains the importance and the meaning of the completion problem
of unimodular matrices over Laurent polynomial rings to signal processing and gives an algorithm
for translating this problem to a polynomial case. Park’s results can also be used for computing at
outputs of - at multidimensional linear systems ([32, 33])). See [5] for another constructive algorithm
and [B] for illustrations on di erent explicit examples.

Notation. In what follows, we shall denote by k a eld, D = k[X1;:::;Xn] @ commutative polynomial
ring with coe cients in k, D! P the D-module formed by the row vectors of length p with entries
in D and DY P the set of ¢ p-matrices with entries in D. F will always denote a D-module. We
denote by RT the transpose of the matrix R and by I, the p  p identity matrix. Finally, the symbol
, means \by de nition".

INRIA
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2 A module-theoretic approach to systems theory

a matrix R is said to have full row rank if the rst syzygy module of the D-module D! 9R formed by
the D-linear combinations of the rows of R, namely,

kerp((R) , f 2D! Pj R=0g;

is reduced to 0. In other words, R =0 implies =0, i.e., the rows of R are D-linearly independent.

The following de nitions of primeness are classical in systems theory.

full row rank matrix, J the ideal generated by the ¢ g minors of R and V (J) the algebraic variety
de ned by:
V@)=f 2C"jP()=0; 8P 2Jg:

1. R is called minor left-prime if dimcV (J) n  2;i.e., the greatest common divisor of the q ¢
minors of R is 1.

2. R is called weakly zero left-prime if dimcV (J) 0;i.e., the g g minors of R may only vanish
simultaneously in a nite number of points of C".

3. Riis called zero left-prime if dim¢V (J) = 1;i.e, theq g minors of R do not vanish simulta-
neously in C".

The previous classi cation plays an important role in multidimensional systems theory. See [34,
621, 66] and the references therein for more details.

The purpose of this section is twofold. We rst recall how we can generalize the previous clas-
si cation for general multidimensional linear systems, i.e., systems which are not necessarily de ned
by full row rank matrices. We also explain the duality existing between the behavioural approach to
multidimensional systems ([34, 4T, 65, 66]) and the module-theoretic one ([44) 45, 46]). See also [65]
for a nice introduction.

In what follows, D will denote a commutative polynomial ring with coe cients in a eld k. In
particular, we shall be interested in commutative polynomial rings of functional operators such as
partial di erential operators, di erential time-delay operators or shift operators. Let us consider a
matrix R 2 D% P and a D-module F, namely:

8f;;f,2F; 8a;;a,2D: afi+af,2F:
If we de ne the following D-morphism, namely, D-linear map,
R:D! ¢ T p!op
=(1:10 ¢ 70 (R()= R

where D! P denotes the D-module of row vectors of length p with entries in D, then the cokernel of
the D-morphism :R is de ned by:
M = D?! Px(D! 9R):

The D-module M is said to be presented by R or simply nitely presented ([5, 57]). Moreover, we can
also de ne the system or behaviour as follows:

kere(R) , f 2FPjR =0g:

RR n 6126
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As it was noticed by Malgrange in [30], the D-module M and the system kerg (R:) are closely related.
As this relation will play an important role in what follows, we shall explain it in details. In order to
do that, let us rst introduce a few classical de nitions of homological algebra. We refer the reader
to [57] for more details.

De nition 2. 1. A sequence (Mj;d; : Mj ¥ M; 1)i2z of D-modules M; and D-morphisms
di: M; T M; 1 isa complex if we have:

8i227;, imd; kerd; 1:
We denote the previous complex by:

Y M, M oMy, B @)

2. The defect of exactness of the complex (@) at M; is de ned by:
H(M;) = kerdj=imdj+1:
3. The complex (@) is said to be exact at M; if we have:
HM;))=0 O kerdij =imdj+1:

4. The complex (@) is exact if:
8i2Z; kerdj =imdj+1:

5. The complex (@) said to be a split exact sequence if ([@) is exact and if there exist D-morphisms
si: M; 1 ¥ M; satisfying the following conditions:

Si+1 Si=0;

8i227 .
Si di +di+1 Siv1 = |dMi:

6. A nite free resolution of a D-module M is an exact sequence of the form
0 sptPm Ry ... Raplem Replrygnm 1o )
where pi 2 Z, =10;1;2;:::9, Rj 2 DP Pi 1 and the D-morphism :R; is de ned by:
‘R;: D! pi I Dl pis
71 (R)()= R

The next classical result of homological algebra will play a crucial role in what follows.

Theorem 1 ([&7]). Let F be a D-module, M a D-module and ) a nite free resolution of M. Then,
the defects of exactness of the following complex

o R pee Retpe Ritppe @)
where the D-morphism R;:: FPi + ¥ FPi js de ned by
8 2FPF Y (Ri)()=Ri ;
only depend on M and F. Up to an isomorphism, the defects of exactness are denoted by:
exty (M; F) = kerg (Ry2);
exty (M; F) = kere (Ri+1)=(Ri FP¥); i 1L

Finally, we have ext2(M;F) = homp(M;F); where homp(M;F) denotes the D-module of D-
morphisms from M to F.

INRIA
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We refer the reader to Example [I3 for explicit computations of ext,(N; D), i 0.

Coming back to the D-module M, we have the following beginning of a nite free resolution of M:

pDta & plp ¥ M 1O

71 R @

where  denotes the D-morphism which sends elements of D! P to their residue classes in M. If
we \apply the left-exact contravariant functor" homp(;F) to @) (see [57] for more details), by
Theorem [0, we obtain the following exact sequence:

Fa R:

R [

FP homp (M; F) 0:

This implies the following important isomorphism ([30]):
kere(R))=f 2FPjR =0g=homp(M;F): (5)

For more details, see [5, 30, [34, 46, 5] and the references therein. In particular, (B) gives an intrinsic
characterization of the F-solutions of the system kerg(R:). It only depends on two mathematical
objects:

1. The nitely presented D-module M which algebraically represents the linear functional system.

2. The D-module F which represents the \functional space™ where we seek the solutions of the
system.

If D is now a ring of functional operators (e.g., di erential operators, time-delay operators, dif-
ference operators), then the issue of understanding which F is suitable for a particular linear system
has long been studied in functional analysis and is still nowadays a very active subject of research.
It does not seem that constructive algebra and symbolic computation can propose new methods to
handle this functional analysis problem. However, they are very useful for classifying homp(M; F) by
means of the algebraic properties of the D-module M. Indeed, a large classi cation of the properties
of modules is developed in module theory and homological algebra. See [57] for more information.
Let us recall a few of them.

De nition 3 ([57]). Let D be a commutative polynomial ring with coe cientsina eld k and M a
nitely presented D-module. Then, we have:

1. M is said to be free if it is isomorphic to D' ' for a non-negative integer r, i.e.:
M=D!", r2z,=10;12::q:
2. M is said to be stably free if there exist two non-negative integers r and s such that:
M D!'s=D'":
3. M is said to be projective if there exist a D-module P and non-negative integer r such that:

M P=D!":

RR n 6126



8 A. Fabianska & A. Quadrat

4. M is said to be re exive if the canonical map
"M : M ¥ homp(homp(M; D); D);

de ned by
8m2M; 8f 2homp(M;D): "Mm(m)(F) =f(m);

is an isomorphism, where homp (M; D) denotes the D-module of D-morphisms from M to D.
5. M is said to be torsion-free if the submodule of M de ned by
t(M)=fm2M j90&P2D: Pm=0g

is reduced to the zero module. t(M) is called the torsion submodule of M and the elements of
t(M) are the torsion elements of M.

6. M is said to be torsion if t(M) = M, i.e., every element of M is a torsion element.
module. We call the rank of M over D, denoted by rankp (M), the dimension of the K-vector space
K p M obtained by extending the scalars of M from D to K, i.e.:
rankp(M) =dimx (K p M):

We can check that if M is a torsion D-module, we then have K p M =0, a fact which implies that
rankp (M) = 0. See [57] for more details.

Let us recall a few results about the notions previously introduced in De nition

eld k. We have the following results:

1. We have the implications among the previous concepts:

free =) stably free =) projective =) re exive =) torsion-free:

2. If D = K[x3], then D is a principal ideal domain  namely, every ideal of D is principal, i.e.,
it can be generated by one element of D  and every nitely generated torsion-free D-module is
free.

3. (Serre theorem [II]) Every projective module over D is stably free.

4. (Quillen-Suslin theorem [56], 58]) Every projective module over D is free.

The famous Quillen-Suslin theorem will play an important role in what follows. We refer to [24, 25]
for the best introductions nowadays available on this subject.

The next theorem gives some characterizations of the de nitions given in De nition

R 2 D% P and the nitely presented D-modules:
M =D?! Px(D! 9R); N =D?! (D! PRT):

We then have the equivalences between the rst two columns of Figure [

INRIA



Applications of the Quillen-Suslin theorem to multidimensional systems theory 9

Combining the results of Theorem B and the Quillen-Suslin theorem (see 4 of Theorem B), we then
obtain a way to check whether or not a nitely presented D-module M has some torsion elements or
is torsion-free, re exive, projective, stably free or free. We point out that the explicit computation
of ext (N; D) can always be done using Grobner or Janet bases. See [5, 44, @5] for more details and
for the description of the corresponding algorithms. We also refer the reader to [4), 6] for the library
OreModules in which the di erent algorithms were implemented as well as to the large library of
examples of OreModules which illustrates them. Finally, see also [3, [IT, [20] and the references
therein for an introduction to Grobner and Janet bases.

Remark 1. The D-module
N =D?! (D! PRT)

is called the transposed module of M = D! P=(D?! 9R)even if N depends on M only up to a projective
equivalence ([&7]), namely, if M = D! "=(D! SR") and N’ = D! s=(D! "R'), then there exist two
projective D-modules P and P” such that N P = N° P’ ([57]). However, for every D-module
F, we have ext5(N  P;F) = exty(N;F) exti(P;F) and, fori 1, exti(P;F) =0asP isa
projective D-module ([57]). Hence, we then get ext (N; F) = ext,(N% F), for i 1. Hence, the
results of Theorem B do not depend on the choice of a presentation of M, i.e., on R. In what follows,
we shall sometimes denote N by T (M).

In order to explain why the de nitions given in De nition B extend the concepts of primeness
de ned in De nition [0, we rst need to introduce some more de nitions.

De nition 4 ([2]). 1. If M is a non-zero nitely presented D-module, then the grade jo(M) of
M is de ned by: )
jo(M)=minfi 0jexty(M;D) & 0g:

2. If M is a non-zero nitely presented D-module, the dimension dimp(M) of M is de ned by
dimp(M) = Kdim(D:pW(M));
where Kdim denotes the Krull dimension ([57]) and:
annp(M) =fa2DjaM =0g; pW(M)zfaZ Dj912Z,: a M =0g:
We are now in position to state an important result.
eld containing Q, we then have:
Jo(M) +dimp(M) = n:

Let us suppose that R has full row rank and let us consider the nitely presented D-module
M = D! P=(D! 9R). Using the notations of De nition [0 and the fact that

dimp(N) = dimcV (3);

where N = T(M) = D! 9=(D! PRT) is then a torsion D-module, i.e., it satis es exty(M;D) =
homp(M; D) = 0, by Theorem i, we then obtain:

jo(N)=n dimcv(QJ) L

Hence, by Theorems B and B we obtain that R is minor left-prime (resp., zero left-prime) i the
D-module M is torsion-free (resp., projective, i.e., free by the Quillen-Suslin theorem stated in 4 of
Theorem[P). See [46] for more details and the extension of these results to the case of non-commutative
rings of di erential operators.

RR n 6126



10 A. Fabianska & A. Quadrat

Module M exth (N; D) dimp(N) Primeness
With torsion | t(M) = exty (N; D) n 1 ;
Torsion-free extL,(N; D) =0 n 2 Minor left-prime

Re exive ext,(N; D) =0; n 3

i=1;2
exth(N; D) =0; 0 Weakly zero
1 i n 1 left-prime
Projective exth(N; D) =0; -1 Zero left-prime
1 i n

Figure 1: Classi cation of some module properties

We nally obtain the table given in Figure@which sums up the di erent results previously obtained.
We note that the last two columns of this table only hold when the matrix R has full row rank.

To nish, we explain what the system interpretations of the de nitions given in De nition [ are.
In particular, these interpretations solve the Monge problem stated in the introduction of the paper.
In order to do that, we also need to introduce a few more de nitions.

De nition 5 ([57]). 1. A D-module F is called injective if, for every D-module M, and, for all
i 1, we have ext(M;F) = 0.

2. A D-module F is called cogenerator if, for every D-module M, we have:

homp(M;F) =0 =) M =0:

Roughly speaking, an injective cogenerator is a space rich enough for seeking solutions of linear
systems of the form Ry = 0, where R 2 D% P is any matrix and y 2 FP. In particular, using &),
if F is a cogenerator D-module and M & 0, then homp(M; F) & 0, meaning that the corresponding
system kerg (R:) is not empty. Finally, if F is an injective cogenerator D-module, then we can prove
that any complex of the form @) is exact at FPi, i 1, if and only if the corresponding complex (@)
is exact. See [34, 41}, 65] and the references therein for more details.

The following result proves that there always exists an injective cogenerator.
Theorem 5 (J57]). An injective cogenerator D-module F exists for every ring D.

Let us give important examples of injective cogenerator modules.

INRIA



Applications of the Quillen-Suslin theorem to multidimensional systems theory 11

Example 1. If is an open convex subset of R", then the space C1( ) (resp., D°( )) of smooth real
functions (resp., real distributions) on is an injective cogenerator module over the ring R[@1;:::; @n]

where =( 1;:::; n)22Z%and +1;=( 1;:::; i 15 i+1 i+1;:::; n). Then, F is an injective
D-module (34, [65]).

We have the following important corollary of Theorem [3 which solves the Monge problem in the
case of linear functional systems with constant coe cients. See [6/] and the references therein and
the introduction of the paper.

M = D! P=(D! 9R). Then, we have the following results:

1. There exists Q; 2 D9 9% where p = q;, such that we have the exact sequence
Fo R pa Qu: Foz:
i.e., kere(R:) = Q1 F%, i the D-module M is torsion-free.

2. There exist Q; 2 D% % and Q, 2 D% % such that we have the exact sequence
FO R pa Y pe 92 g
i.e., kere(R:) = Q1 F% and kerg(Q1:) = Q2 F%, i the D-module M is re exive.

3. There exists a chain of n successive parametrizations, namely, for i = 1;:::;n, there exist
Qi 2 DY 4+ gych that we have the following exact sequence

Fo Ropa Q... @0t pgn Qnt pana,

i.e., kere(R:) = Q1 F% and kere(Qi:) = Qi+ F%*2, i =1;:::;n 1,1 the D-module M is
projective.

4. There exist Q2 DP M and T 2 D™ P such that T Q = I, and the sequence
Fe Rpp @ pm (6)
is exact, i.e., kere(R:)) = QF™, and i the D-module M is free.

We refer the reader to [B, 44, 45, 46, 53, 54] for the solutions of the Monge problem for di erent
classes of linear functional systems with variables coe cients such as partial di erential, di erential
time-delay or di erence equations.

The matrices Q; de ned in Corollary [ are called parametrizations ([5, 44, 45, 46]). Indeed, from

1 of Corollary [ if M is torsion-free, then there exists a matrix of operators Q; 2 D% 9% which
satis es kere(R:) = Q1 F%. This means that any solution 2 FP satisfying R = 0 is of the form
= Q; foracertain 2 F%. In the behaviour approach ([d2]), the parametrization is called an image
representation of kerg (R:) ([41, 65, [66]). We point out that the parametrizations Q; are obtained by
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12 A. Fabianska & A. Quadrat

computing extl; (N; D) (see Theorem [B). Hence, checking whether or not a D-module is torsion-free,
re exive or projective gives the corresponding successive parametrizations. We refer to [5, 44, 45, [46]
for more details, the extension of the previous results to non-commutative algebras of functional
operators and the implementation of the corresponding algorithms in the library OreModules.
Finally, the matrix Q de ned in 4 of Corollary [ is called an injective parametrization of kerg (R:) as
every F-solution of kerg (R:) has the form =Q for acertain 2 F™ and we have

=(TQ =T

i.e., isuniquely de ned by 2 kere(R:). At this stage, it is important to point out that no general
algorithm has been developed to get injective parametrizations when the D-module M is free. It is
the main purpose of this paper to constructively study this question and to apply the computation of
injective parametrizations to some open questions appearing in mathematical systems theory.

Finally, we point out that, if M is a free D-module, then there always exist Q 2 DP ™ and
T 2 D™ P such that, for every D-module F, we have the exact sequence (B). Indeed, let us recall two
standard arguments of homological algebra.

Proposition 1 ([57]). 1. Let us consider the following short exact sequence:
M TEM MY ro;

If MY is a projective D-module, then the previous exact sequence splits (see 5 of De nition ).

2. Let F be a D-module. The functor homp( ; F) transforms split exact sequences of D-modules
into split exact sequences of D-modules.

By 1 of Proposition[I we obtain that D! ¢ ¥ D1 P ‘¥ D! ™ ¥ (s a splitting exact sequence
and applying the functor homp ( ; F) to it, by 2 of Proposition[Il we obtain the splitting exact sequence
@). Hence, the assumption that F is an injective cogenerator D-module is only important for the
converse implication of 6 of Corollary [l

Explicit examples of computation of parametrizations can be found in [5, |6l 44, 45, 46] as well
in the OreModules large library of examples ([4]). We refer the reader to these references and to
Section H for the computation of injective parametrizations. However, let us give a simple example in
order to illustrate the previous results.

Example 3. Let us consider the ring D = Q[@1; @2; @3] of di erential operators with rational coe -
cients (@; = @=0@x;), the matrix R = (@1 @, @3) de ning the so-called divergent operator in R® and the
nitely presented D-module M = D! 3=(DR). Let us check whether or not the D-module M has
some torsion elements or is torsion-free, re exive or projective, i.e., free by the Quillen-Suslin theorem.
In order to do that, we de ne the D-module N = D=(D! 3RT). A nite free resolution of N can
easily be computed by means of Grobner or Janet bases. We obtain the following exact sequence

o spPapt3Papl3sReip 1N 1O

where  denotes the canonical projection onto N and:

© 0 @ @2 1
P,=8 6 0 @K P=R
@2 @ 0
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Applications of the Quillen-Suslin theorem to multidimensional systems theory 13

We note that P, corresponds to the so-called curl operator whereas R is the gradient operator. Then,
the defects of exactness of the following complex

PJ PJ ‘R

0 D Dt 3 D3 "D 0 @)

are de ned by: s
% ext® (N; D) = kerp (:R);
exth (N; D) = kerp (:P )=(D R);
= exti(N; D) = kerp(:P3)=(D* *PJ);
© ext}(N; D) = D=(D* 3PJ):
Using the fact that R has full row rank, we obtain that ext® (N; D) = kerp (:R) = 0, which is equivalent

to say that N is a torsion D-module. Now computing the syzygy modules kerp (:PJ ) and kerp (:P3 )
by means of Grobner or Janet bases, we obtain that

kerpo(:P/)=DR; kerp(:PJ)=D?* 3P];
which shows that ext} (N; D) = ext? (N; D) = 0. Finally, we can easily check that 1 does not belong
to the ideal | = D@; + D@, + D @3 of D, and thus, we have:
extd (N; D) = D=1 & 0:

Using Theorem B, we obtain that M is a re exive but not a projective, i.e., not a free D-module.
This last fact can also be checked as R has full row rank and the dimension dimp(N) is 0 as the
corresponding system is de ned by the gradient operator, namely,

8

= 0y=0;
02y =0;

=

- @3y =0;

whose solution is a constant, i.e., the solution of the system only depends on \a function of zero
independent variables”. Hence, by Theorem E we obtain that jp(N) = 3, meaning that the rst
non-zero extl (N; D) has index 3. By Theorem 3, we then get that M is a re exive D-module but not
a projective one.

Finally, if we consider the D-module F = C1( ), where s an open convex subset of R3, using
Example [0, we obtain that F is an injective cogenerator D-module. Hence, if we apply the functor
homp(; F) to the complex (@), we then obtain the following exact sequence:

FEire i RiE uo

We nd again the classical results in mathematical physics that the smooth solutions on an open convex
subset of R® of the divergence operator are parametrized by the curl operator and the solutions of the
curl operator are parametrized by the gradient operator.

The only point let open is to constructively compute injective parametrizations of linear functional
systems de ning free modules over a commutative polynomial ring D. Indeed, checking the vanishing
of the extl;(N; D), we generally obtain a successive chain of n parametrizations but not an injective
one. In the case of linear systems of partial di erential equations with polynomial or rational coef-

cients, we have recently solved this problem in [53, 54, B5] using a constructive proof of a famous
result in non-commutative algebra due to Sta ord. However, the same technique cannot be used if we
want an injective parametrization Q of kere(R:) to have only constant coe cients. The main purpose
of this paper is to solve this problem using a constructive proof of the Quillen-Suslin theorem and to
show some applications of this result to mathematical systems theory.
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14 A. Fabianska & A. Quadrat

3 The Quillen-Suslin theorem

Since Quillen and Suslin independently proved Serre’s conjecture stating that projective modules over
commutative polynomial rings with coe cients in a eld are free, some algorithmic versions of the
proof have been proposed in the literature in order to constructively compute bases of free modules
(15, 19, 124, 129, 34, B9, 60, 61l 62]). We refer the interested reader to Lam’s nice books [24), [25]
concerning Serre’s conjecture.

3.1 Projective and stably free modules

M = D! Px(D! 9R), where R 2 DY P, admits a nite free resolution. This is a result is due to
Hilbert (JIT]). Moreover, if k is a computable eld, we can even construct a nite free resolution of M
using Grobner or Janet basis ([3, [T, 20]).

A classical result due to Serre proves that every projective D-module is stably free (a stably
free module always being a projective D-module). See [II}, 24, 25] for more details. In [53, 55,
a constructive proof of this result was given and the corresponding algorithm was implemented in
OreModules. Let us recall these useful results.

Proposition 2 ( [63, B5]). Let M be a D-module de ned by the nite free resolution:
0 ¥ ptem Ry... Ryple Rgpler 1M 1o (8)

1. If m 3 and there exists Sy, 2 DPm 1 Pm such that Ry S = Ip,,,; then we have the following
nite free resolution of M

0 ¥plPm1 ™™ g pl @matom) ™M g ploms Rmg... ¥ 10 ©)
with the following notations:

8
<Tm 1=(Rm 1 Sm)2DPm 1 (Pm 2%Pm);
2 Tm 2= Rn(; 2 2 D(pm 2+Ppm) Pm 3-

2. If m =2 and there exists S, 2 DP* P2 such that R, S, = Ip,; then we have the following nite
free resolution of M

0 ¥ D! P Tapl ot ¥\ oEOQ; (10)
with the notations Ty = (R S,) 2 DPr (Po+P2) gng:

= 0: D! (Po+p2) T M
(

=(12 78 ()= ()

Remark 2. We note that Proposition B holds for every (commutative) ring D.

Let R 2 DY P and let us suppose that the D-module M = D! P=(D! 9R) is projective (using the
results summed up in Figure [, we can constructively check this result). Using 1 of Proposition [ we
obtain that the exact sequence @) splits (see 5 of De nitionBJ), and thus, there exists Sy, 2 DPm 1 Pm
such that Ry Sm = lp,,,. Repeating inductively the same method with the new nite free resolution
of M, we can assume that we have the nite free resolution of M:

0 ¥t P Fapte Ryplem Replem 5y 10

INRIA



Applications of the Quillen-Suslin theorem to multidimensional systems theory 15

As M is a projective D—moleJIe,0 by 1 of Proposition [ the previous exact sequence splits and thus,
there exists a matrix S§ 2 DP> Ps satisfying R} S = I. By 1 of Proposition %, we then get the nite
free resolution of M:

Dypte o am v

0 ¥ D! P (R S%! D! (P1+p3) (G
Let us denote by T; = (R] 0T)T. Again, as M is a projective D-module, by 1 of Proposition [
the previous exact sequence splits and there exists S3 2 D®*Ps) P2 such that (Ry S3)S) = Iy.
Using 2 of Proposition I we obtain the following nite free presentation of the D-module M =
D1 (Po+P2)=(D1 (P2+P3) (T, SD))

0 ¥ D! (Pi+p3d) (1 Sgi D! (Po+p2) 0! M?

0;

where ° denotes the standard projection on M and :M" ¥ M isde ned by (m) = ( 1), for
all = (1 2) 2D (®P*pP2) gatisfying m = (). Moreover, 2 of Proposition [l says that is an
isomorphism, i.e., M? = M, a fact that can be also directly checked. We then obtain the following
result.

Corollary 2. Let D = K[x1;:::;Xn] be @ commutative polynomial ring overa eld kand R 2 D9 P. If
the D-module M = D! P=(D! 9R) is projective, then there exists a full row rank matrix R’ 2 DY’ ¢’
such that:

M = D! P'xD! ¢ RY: (11)

We refer to Example [I4 for an illustration of Corollary 2l See also [53, b4, 55].
We note that rankp (M) = rankp(M?% =p” ¢
Finally, we have the following short exact sequence of the D-module M°

0o yptd Fapl? ¥Im ¥

and using the fact that M’ = M and M is a projective D-module, by 1 of Proposition [, we obtain
that the previous exact sequence splits and we then get ([5, B71)

MO Dl q° — Dl p’.

which, by 2 of De nition B shows that M = M’ is a stably free D-module.

always suppose that M has the form M = D! P=(D! 9R), where R 2 DY P admits a right-inverse
S 2 DP 9. We note that R has then full rowrank ( R=0) = RS =0). Let us characterize
when M is a free D-module.

In order to do that, we rst need to introduce a de nition.

De nition 6. Let D be a ring. The general linear group GLp(D) is then de ned by:
GLp(D)=fUu 2DP PjoVv 2DP P: UV =V U =1I,0:

An element U 2 GLy(D) is called a unimodular matrix.
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16 A. Fabianska & A. Quadrat

invertible in D, i.e., is a non-zero element of k. The following result holds for every (commutative)
ring D.

Lemma 1. Let R 2 DY P bhe a matrix which admits a right-inverse over D. Then, the D-module
M =D? P=(D! 9R) is free if and only if there exists U 2 GLp(D) such that RU = (15 0).

Indeed, let us suppose that there exists U 2 GL,(D) such that RU = (I 0) and let us denote
by J = (l; 0)2 DY P. We easily check that D* P=(D? 9J) = D' ® 9. Moreover, using the facts
that RU =J and U 2 GL,(D), we obtain the following commutative exact diagram

0 0
# #

0o " pta & ptr ¥ M 10
k #:u

o ¥ pta % plr ¥ pLeO 1y
# #
0 0

which proves that M = D! ® 9 je., M is a free D-module of rank p  q.

Conversely, let us suppose that M = D! ® @  Combining the isomorphism :M ¥ D! ® o
and the short exact sequence

o sptefiplP 1M ¥
we then obtain the following exact sequence:
o sptefipler ¥pl@®a xp

If we consider the matrix which corresponds to the D-morphism in the canonical bases of D! P
and D! ® 9 e then obtain a matrix Q 2 DP ® @ such that:

8 2D'P: ( ()= Q
By 1 of Proposition [ the previous exact sequence splits, i.e., we have

o " pte i ptp I pLea ¥y
'S T

or, equivalently, there exists a matrix T 2 D® @ P sych that the following Bezout identities hold
(see [B, 44, BU, 52, B7] for more details):
1

R _ g 0 ) R _ ..
+ G Q= 0 1, 6 Q 5 =k

In particular, we obtain that there exists a matrix U = (S Q) 2 GL,(D) satisfying:
RU=(lg 0):

Finally, the family ¥ (Ti)g1 i p ¢ forms a basis of the free D-module M, where T; denotes the it
row of T 2 D® @ P,

We are now in position to state the famous Quillen-Suslin theorem ([24, 25, 7).
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Applications of the Quillen-Suslin theorem to multidimensional systems theory 17

Theorem 6 (|56, 58]). (Quillen-Suslin theorem) Let A be a principal ideal domain (e.g., a eld k)

which admits a right-inverse S 2 DP 9, i.e., RS = I4. Then, there exists a unimodular U 2 GL,(D)
satisfying:
RU=(lg 0): (12)

Using Lemma [ and Theorem B we obtain the following important corollary.

Corollary 4 ([56, 58]). (Quillen-Suslin) Let A be a principal ideal domain (e.g., a eld k) and

Moreover, the problem of nding a basis of a free nitely generated D-module M can be reformu-
lated in terms of matrices as follows:

matrix U 2 GLp(D) such that RU = (I 0).
The previous problem is equivalent to completing R to a square invertible matrix:

R

p p:
T 2DF P

ut=

The Quillen-Suslin theorem states that Problem [ has always a solution over a polynomial ring

D = A|x3;:::;Xn] with coe cients in a principal ring A and, in particular, in a eld k. In what
follows, an algorithm which computes such a matrix U will be called a QS-algorithm.

Let us consider a matrix R 2 DY P which admits a right-inverse over D and let us denote by R;
the it" row of R. We note that the row R; 2 D! P admits a right-inverse over D. Let us suppose
that we can nd a matrix U; 2 GL4(D) satisfying R1U = (10 ::: 0): Then, we have

_ 1 0
RU; = 2 R,
where R, 2 D@ D (® 1 and ? denotes a certain element of D@ D 1 Hence, we restrict our
considerations to the new matrix R», which can easily be shown to admit a right-inverse over D,
and reduce Problem [0 to the following one:

Problem 2. Let R 2 D! P be a row vector which admits a right-inverse over D. Find a matrix
U 2 GLp(D) such that RU = (10 ::: 0).

The purpose of the next paragraphs is to recall a QS-algorithm solving Problem 2 over a commuta-

Even though there are some di erences in the constructive proofs of the Quillen-Suslin theorem de-
veloped in [15, 19, 24, [27, 37, B9, [60, 62], we note that our algorithm is based on the same main idea,

of the general QS-algorithm reduces the problem to the case with one variable less. A more global
and interesting approach has recently been developed in [29, 1] which needs to be studied with care
in the future.

3.3 Solution of Problem 2 in some special cases

Although the tedious inductive method, which will be explained in the next section, cannot generally
be avoided, there are cases where simpler and faster heuristic methods can be used. We shall rst
consider such cases.
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18 A. Fabianska & A. Quadrat

3.3.1 Matrices over a principal ideal domain D

We rst consider the special case of matrices over a principal ideal domain D (e.g., D = k[x1], k a
eld, Z). Let R 2 D% P be a matrix which admits a right-inverse over D. Then, computing the Smith
normal form of R ([42]]), we obtain two matrices F 2 GL4(D) and G 2 GL,(D) satisfying:
R=F(y 0)G:

If we denote by r =p ¢, G=(G] GJ)",whereG; 2D% P,G,2D" Pand G ! = (H; Hy),
where H; 2 DP 9, H, 2 DP T, then we get R = F Gy, i.e., G1 =F 1R, and thus, we get

F IR _ F1 o R .
G2 (Hl HZ) - Ip ) 0 Ir G2 (Hl HZ) - Ipy

R F O _ R _ -

) G, (Hl H2) 0 I, - Ip ) G, (Hl F H2) - Ip,

which solves Problem [0 as we can take U = (H1F H) 2 GL,(D) and T = Go.

3.3.2 (p 1) p matrices over an arbitrary commutative ring D

Let us consider the case of a matrix R 2 D® 1 P which admits a right-inverse over a commutative
ring D. If we denote by m; the (p 1) (p 1) minor of R obtained by removing the it" column of
R, then,lgsing the fact R admits right-inverse, we get that the family fm;g; i , satis es a Bezout
identity ?:1 nim; =1 for certain n; 2 D and i = 1;:::;p. Let us denote by:
R
= P P

v ( DP*2ny 0 ( 1)2Png 2Db"
Expand the determinant of V along the last row, using the Laplace’s formula, we then get detV = 1.
Hence, if we denote by U 2 DP P the inverse of the matrix V, we then obtain RU = (I, 1 0), which
solves Problem I

3.3.3 1 prows over an arbitrary commutative ring D

We now consider Problem [ i.e., the case of a row vector f = (f; ::: f,) 2 D! P which admits a
right-inverse over an arbitrary commutative ring D.

Remark 3 (Special form of the row). 1. We note that if one of the components of f is an invertible
element of D, we can then transform the row f into (1 0 ::: 0) by means of trivial elementary
operations. For instance, if f; 1 2 D, then the matrix de ned by

1

£t o0

0 Ip1

W =

satis es detW = f; !2Dand fW=(Q0F ::: fp). Then, simple elementary operations
transform £ W into the vector (10 ::: Q).

2. Another simple case is when two components of f generate D. Let us suppose that there exist
h,; and h, 2 D such that we have the Bezout identity fih; + f;h, = 1 and let us de ne the

following matrix: 0O 1
h, f 0
W = @ h2 fl 0 A:
0 0 12

We easily check that detW = 1 and fW = (1 0 f3 ::: fy). Then, we can reduce fW to
(10 ::: 0) by means of elementary operations.
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Applications of the Quillen-Suslin theorem to multidimensional systems theory 19

1

0]
1
g(l fhy 1 E
W = : . :

A f)h, 1

satis es TW = (1 f, ::: fp) and detW = 1. We can now reduce TW to (10 ::: 0) by means
of elementary operations.

In particular, this strategy is always successful when the length p of the row T exceeds the stable

refer the reader to [53, B5] for more details.

We note that all the conditions given in Remark 3 can be checked using Grobner or Janet bases.

The matrix U can also be easily computed in cases where a right-inverse g of the row f has a
special form.

Remark 4 (Special form of the right-inverse). Let g 2 DP ! be the right-inverse of the unimodular
row f 2 D! P, ie., fg=1.

1. Let us suppose that one of the entries of a right-inverse g of f, say g1, is invertible in D. Then,
the following matrix 1

0]
01
ggz 1 E
w=E8" ,
Op 1

satis es detW =g, and TW = (1 f, ::: ). As gy is an invertible element of D, then W is a
unimodular matrix and fW can easily be transformed into (1 0 ::: 0) by means of elementary
operations.

2. If two components g1; g2 of g generate the whole ring D, then there exist elements hy;hy, 2 D
such that g1 h; + g2 h, = 1. Then, the matrix de ned by

0] 1
g1 h2
g2 hy
W = 03 1
Op 1

satis esdetW =1and fW = (1 ? 3 ::: f;), where ? denotes a certain element of D. We can
then reduce TW to (10 ::: 0) by means of elementary operations.

Finally, we also note that if f 2 D! P admits a right-inverse g over D for which any of the heuristic

methods explained in Remark B may be used for g7, then a unimodular matrix V having g7 as a

rst row can be easily computed. Then, the product £V T = (1 ? ::: ?) can be reduced to the rst
standard basis vector by elementary column operations.
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For instance, let us illustrate 1 of Remark B In some of the illustrating examples, we shall also use

variables appearing in the discrete Laplace transform.
Example 4. Let us consider D = QJz;; z2; z3] and the following row vector:
R=(z2225+1 z2z3+1 z12223):

We can easily check that R admits the following right-inverse S = ( z%zz 1 z$)T. As the second
component of S is invertible over D, we can apply 1 of Remark B in order to nd a unimodular matrix
U over D which satis es RU = (1 00). Let us de ne the following elementary matrices:

O 1 0] 1
01 0 1 0 0

Uu=@1 0 0A; U, =@ 2223 1 0A:
00 1 22 01

We then have R(U; Up) = (1 2225+ 1 z;2323). Finally, if we denote by

1 2222 1 217373
U3:@ 0 1 0 A;
0 0 1

we then have RU = (1 0 0), where the unimodular U = U; U, U3 is de ned by:

2273 212373 +72223+1 732273
u=5 1 72722 1 212323 X: (13)
z3 23 (2825 +1) 2123241

3.4 A QS-algorithm for commutative polynomial rings

Over an arbitrary commutative ring A, not every row admitting a right-inverse can be completed to
a unimodular matrix over A. The module-theoretic interpretation of this result is that, over certain
rings, there exist stably free modules which are not free. For instance, using a classical topological
theorem on vector elds on the sphere S,(R), we can prove that the row vector R = (X1 X2 X3) with
entries in the commutative ring D = R[Xy; X2; X3]=(Xx2 + x5 +x3 1), which admits the right-inverse
RT, cannot be completed to a unimodular matrix over D. For more details, see [Z5].

However, it is always possible over a polynomial ring with coe cients on a eld k or a principal
ideal domain A. See Quillen-Suslin TheoremB We shortly describe a QS-algorithm which has recently
been implemented in a package called QuillenSuslin ([13]). See the Appendix for more details. In

k even if the extension of the algorithms exists when k is replaced by a principal ideal ring A. For
instance, the case of A = Z has also been implemented in QuillenSuslin. Let f 2 D! P be a row
vector which admits a right-inverse g over D. When no method explained in Section B3 can be applied
to T, we then need to consider a general algorithm. However, we point out that most of the examples
we know do not require the general algorithm as the previous heuristic methods are generally enough
to get the result.

The QS-algorithm proceeds by induction on the number n of independent variables x; of the ring

containing one variable less, consists of three main parts:

1. Finding a normalized component in the last variable of the polynomial ring.
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2. Computing nitely many local solutions of Problem [2 over certain local rings (local loop).
3. Patching/glueing the local solutions together in order to obtain a global one.

3.4.1 Normalization Step

The next lemma is essential for Horrocks’ theorem which is used in the local loop.

deg(a) denotes the total degree of a. Using the following invertible transformation

Xn = Yn, Yn = Xn;,

xi=yi y™' 1 i on 1,7 yi=xi+x™ ' 1 i n 1
we obtain a(ys;:::;y¥n) = rb(X1;:::;Xn); where 0 & r 2 k and b is a monic polynomial in x, with
coe cients in the ring E = K[X1;:::;Xn 1], namely, the leading coe cient of b 2 E[x] is 1.

In the case where k is an in nite eld, we can achieve the same result by using only a linear
transformation whose coe cients are appropriately chosen ([60, 62]). The normalization step can also

details.

3.4.2 Local Loop

In the second step, we need to compute a nite number of local solutions of Problem B over a local
ring ring A, namely, a ring A which has only one maximal ideal, i.e., a proper ideal M of A which is
not properly contained in any ideal of A other than A itself. In order to do that, we use the so-called
Horrocks’ theorem. Let us recall it.

Theorem 7 ([&7, B0]). Let B be a local ring and ¥ a row vector which admits a right-inverse over
Bly]. If one of the components f; of f is monic, then there exists a unimodular matrix U over B[y]
such that f is the rst row of U or, equivalently, such that fU 1= (10 ::: 0).

Horrocks’ theorem can easily be implemented using, for instance, the approaches developed in
[27, 57, 62]. In particular, the implementation in QuillenSuslin of this theorem follows [57]. If M
is a maximal ideal of D, we then denote by Dy, the local ring, which is a standard localization of D
with respect to the multiplicative closed subset S = DnM of D, namely, Dp =fa=bja2 D; b 2 Mg

(BD.

We can now give the rst main part of the general algorithm ([27, 62]).

Algorithm 1. Input: Let D = K[x1;:::;Xn] and ¥ 2 D! P a row vector which admits a

matrices THigi21 over the ring Em,[Xn] which satisfy fH; = (1 0 ::: 0); and such that the
ideal generated by the denominators of the matrices Hj, i 2 I, generate the ring E.

1. Let M; be an arbitrary maximal ideal of the ring E. Using Horrocks’ theorem, compute a
unimodular matrix Hy over Ep, [Xn] which satis es fH, = (10 ::: 0).

2. Let d; 2 E be the denominator of H; and J the ideal in E generated by d;. Set i = 1.

3. While J & E, do:
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(i) Fori:=1i+1, compute a maximal ideal Mj; of E such that J M;.

(i) Using Horrocks’ theorem, compute a matrix H; over the ring Emnm,[Xn] such that det H; is
invertible in Enm, [Xn] and TH; = (10 ::: 0).

4. Return fMigiz,, THigi2) and fdigiz; .

The local loop stops when all the denominators d; generate E. As the ring E is noetherian ([51]),
the number of the local solutions, i.e., the cardinal of the set I, is nite.

3.4.3 Patching

To obtain a polynomial solution of Problem [ we use the following lemma.

(X 2) =UXg5::5Xn) U 2 (Xa i Xn 13 Xn +2) 2 (EmlXn; 2])P P
is such that
8z2D: f(X1;:::;%Xn) (Xn;z)=F(X1;:::;Xn 1;Xn +2); (14)
and its denominator is d with 0 p

Moreover, using the standard formulaU * = (detU) !adj(U), where adj(U) denotes the adjugate
of U, we can also prove that the common denominator of (xn;z) isd , where 0 p.

Let fM;giz, THigi2) and fdijgi>; be the output of Algorithm [, where I isa nite set. Let us set

ci 2 E, i 21, such that the Bezout identity holds:
Cj d? =1:
i=1

Let us de ne the following matrices

T(Xn) 1(Xn;(@n Xn)C1 d?) =f(xn+(@n Xn)C1 d?);

p p. p P> [T
f(Xn+(@n Xp)c1d]) 2(Xn+(@n Xn)C1dy;(@n Xnp)C2d)) =T Xn+(an Xn) = Gidy

P ) P 4P - P = -
f Xn+(@n Xn) i=1 Ci dj I Xn+(@n Xn) iz1Cidy ;(an xp)cdi = f(an):
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Finally, we can prove that we have i(Xn;d?z) 2 GL,(D), i = 1;:::;1, ([Z7]) and:

U =  1((n;(@ Xn)crd}) 2(Xn+(an Xn)c1di;(@n  Xn)c2db)

|DI 1. 40 . p .
I Xn+(@n Xn) =1CGid? ;@ xn)ad] 2 GLp(D):

We can now state the main result.

Theorem 8 ([Z7, 57, 60, 67]). Let f 2 D! P be a row vector which admits a right-inverse over the

Fxe i xn) Ui Xn) = F(Xe i Xn 15 @)

We consider a row vector f(X1;:::;Xn) 2 DY P admitting a right-inverse g(X1;:::;Xn) 2 DP 1.
Applying inductively Theorem B to f(Xx1;:::;Xn) for the values ay;:::;an 2 k, we then obtain
Ui;::5;Un 1 2 GLp(D) such that

F(Xg; i Xn) Uy = F(X1; 000 Xn 15@n);
FX; i Xn ijan i+t @n) Uien = F(X5 000X i 15an i3iiian); 1 0 n 2
Hence, we get F(X1;:::;Xn) (U ::: Uy 1) = F(Xq;a2;:::;an) and we have simpli ed Problemto the
case of a row vector f(X1;az;:::;an) over a principal ideal domain k[x;] which admits a right-inverse

Hence, Problem 1 is then solved if we take U = Uy :::Up 2 GLp(D). We also note that it is generally

simpler to take the particular values a, =::: =an =0.
Now, let us nd a matrix U° satisfying f(x1;:::;xn)U? = f(a1;:::;an), where a; 2 k. Let us
de ne by U} (x1) = Un(X1) U, 1(a1) 2 GLp(D). Then, we have:
f(ag;az;:::;a
flaianan) UG0a) = (101::0)  TAHAITEA) S paya,00ay)

Let us illustrate the QS-algorithm on a simple example.

Example 5. Let us consider the commutative polynomial ring D = Q[X1;X2] and the row vector
R=(X1X5+1 3%,=2+Xx; 1 2X1Xp)2 D! 3 We can check that S =(1 0 x1=2)T is a
right-inverse of R, a fact implying that the D-module M = D! 3=(DR) is projective, and thus, free
by the Quillen-Suslin theorem. Let us compute a matrix U 2 GL3(D) such that RU = (1 0 0). As the

rst component of S is 1, we can easily nd such a matrix U using the heuristic methods explained
in Section However, let us illustrate the main algorithm previously described.

We rst note that R contains the normalized component 3x,=2 + x; 1 over D = E[X;], where
E = Q[x1]. The second step consists in computing certain local solutions. Let us consider the maximal
ideal M1 = (Xx1) of E. Using an e ective version of Horrocks’ theorem, we obtain that

O 1
1 4 2(3x1+2%X2 2) 4x1(3x1 2)
H, = I 8 2x1(3%X1 2%, 2) 4(X1 %5 +1) 4x1 (3X2Xy  2X1Xp +2) 2;
! 0 0 9x§ 12xZ+4x; +4
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where d; =9x§  12x?+4x; +4 2 M. We can check that det Hy = 4=d;, i.e., Hy 2 GL3(Epnm, [X2]),
and RH; = (1 00), showing that H; is a local solution.

The ideal J = (dy) is strictly contained in E. Therefore, we consider another maximal ideal M
such that J M. For instance, we can take M, = (9 xf 12 x% + 4x; +4). Using an e ective
version of Horrocks’ theorem, we obtain the matrix

O
1 0 0 4X1(3X1 2)
H,=— @ 8x, 8X1 Xz 4x1 (3X3%x2  2X1 X2 +2) A;
2 4 2Bx1+2x2 2) 9x3 12x2+4x;+4

where d; =4x1 (3x1  2) 2 My. We then have detHz; =  1=(X1 31 2)), i.e., H2 2 GL3(Em,[X2])
and RH, = (1 0 0). We can check that the ideal (d;;d2) = E as we have the Bezout identity
c1d; +cody =1, wherec; =1=4and c, = (3x; 2)=16.

The matrix j(X2; c¢1d;Xp) is de ned by:

(o]
Ox3=4 33 +xHx3+(Bx5=2 x1)x2+1

8 (18x7 24x3 +8x2)x1x3=8+ (27x3 54xF+36x3 20xZ +8X1)X1 X328 X1 X2

0
1
X2 2 X1 X2
X1X5+( 3X2=22+x1)x2+1 2x3x3 x2(Bx1 2)x2 X:
0 1

We can easily check that we have R(X1;X2) i(X2; ci1diX2) = R(X1;X2 c1dyXxp) as well as
1(X2; €1d;X2) 2 GL3(D). Moreover, the matrix (X2 c¢1diXz; C2dzX2) is de ned by:

0] 1
1 0 0

8 0 (Bx3=2 x1)xx+1 x2(3X1 2)x2 R:
(9Ox? 12x;+4)x1%2=8  ( 3X1+2)xp=4  ( 3X2=2+X1)Xp +1

We can easily check that we have R(X1;X2 ci1diX2) 2(X2 c1diXp; C2dz2X2) = R(Xg;0) and
2(X2  €1d1Xz; C2d2Xz2) 2 GL3(D). De ning the matrix

U, = 1(X2; cyd; Xz) 2(X2 Cc1d1 Xo; Cods X2) 2 GL3(D);
we then get R(X1;X2) U1(X1;X2) = R(X1;0) = (1 3x3=2 1 0).
Finally, if we denote by
0] 1
1 3x=2+1 0

U, =@ o 1 0 A 2GL3(D):
0 0 1

then, the matrix R(Xz;0) is then equivalent to (1 0 0), i.e., R(X1;0) U, = (1 0 0). Hence, if we de ne
the matrix U = Uy U, 2 GL3(D), i.e.,

1
(Bx%=2 xi))x2+1 ( 9%3=4+3x2 x1 1x2 3x3=2+1 2 X1 X2

B (32245933 xaxa (9xi=4 33+ +x1)x3+(3xE=2 x1)xa +1 2X5 X5 X:
(9% 12x1 +4)x1x2=8  ( 27x1=16 +27x3=8 9x2=4 X174+ 1=2)x> ( 3x3=2+x1)x2+1

we nally obtain RU = (100).
In the third point of Section we saw that the case of a matrix R 2 DY P admitting a right-

inverse over D can be solved by applying g times Theorem Bl on certain row vectors obtained during
the process having smaller and smaller lengths. Hence, we obtain the following corollary.
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Corollary 5 ([Z7,57, 160, 62]). Let R 2 D% P be a matrix which admits a right-inverse over D. Then,

for the row vector case.

Remark 5. In [38], it was shown how a certain transformation maps a matrix R with entries in

over D. Hence, we can use a QS-algorithm to solve ProblemsPland M over D. See [38] for more details.
See also Section @3 for explicit examples. Finally, a new algorithm has recently been developed in [IJ.

3.4.4 Computation of bases of free modules

If R 2 D% P is a matrix which admits a right-inverse over D, then, in Section we showed that a
basis of the free D-module M = D* P=(D! 9R)isde nedbyf (Ti)g1 i ¢ o Where :D* P ¥ M
denotes the canonical projection on M and T; is the it" row of the matrix T 2 D® @ P de ned by:

R
ul= T 2GLp(D):
Example 6. Let us consider again Example If we consider d;j = @=@x; instead of x;, namely,
D =Q[dy;d2], R=(d;d3+1 3d,=2+d; 1 2d;d,)2 D? 3, denote by X = (X1; X2; X3) and choose
F = C1(R®), we then obtain that the linear system of PDEs

. 3
kere(R:) =fy = (y1 Y2 ¥3)" 2 F®jdyd3 Y109+y1(0)+35 d2y2(x)+d1y2(X) y2(x)+2d1 dzys(x) = 0g

admits the parametrization (y1(x) y2(xX) ya(xX))T = Q (z1(X) z2(X))", where Q is the matrix of di eren-
tial operators formed by the last two columns of the matrix U de ned in ExampleBand z = (z; z2)'
is any arbitrary element of F?, i.e.:

8 9 3

% y1=( Zdi +3d7 di 1)dzy §d121 +2z; 2d1d22p;

Yo = %d‘lt 3d?+d%+d1 d%21+ gd% dq d221+21+2d%d522;
E 27 27 9 1 1 3
- Y3 = Ed1‘+§d§ Zdi Zd1+§ d22]_+ zdi"‘dl d222+22:
Finally, if we denote by T 2 D2 2 the matrix formed by the last two rows of the matrix U *, namely,
0] 1
di d2 1 0
@ A,

%(Sdf 2d1)d§+%( 9d3 +12d7 4d;)d, %(Sdl 2)d, %(Sdi 2d1) dy

we then have T Q = I, i.e., the parametrization Q of kerg(R:) is injective.
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Novxg, if) M = D! P=(D! 9R) is a projective D which is de ned by a non full row r:gmk matrix
R 2 DY P, then, using PropositionZ, we rst compute a full row rank matrix R’ 2 D% P satisfying

M =M’=D! P=(D! P RY);

and we then apply the previous QS-algorithm to R" 2 DY P to obtain U 2 GLy (D) such that
RIU=(lg 0). LetS'2DP ¢, Q2D @ @) 102 D¢ @) P be the matrices de ned by:

0 0 1 RO
U=(@E Q) U = o
Then, we have the following split exact sequence:
o1 ptd R pre QA pLe'd  ag
:s? T (15)

We now need to precisely describe the isomorphism between M and M? in order to get a basis
of M from one of M. In order to do that, we take the same notations as the ones used at the end
of Section B, namely, Ry = R, Ty = (R] 0", R = (T; S%), po =p, p1 =4, q° = p1 +pS,
p’ = po + p%. We rst easily check that we have the following commutative exact diagram

D! P Ry DL po ' M 10
"X " Ipg " idm
D! ®+p2)  Tw pl po ' M Y0

where X = (I; 0T)T. Moreover, we also have the commutative exact diagram

D! ®+p2) Ty Dl po T M 1o
. "y "
DI M+ Ry pl Go+r) 1 MO 10

where Y = (I 0T)",Z=(1], 07)T and the isomorphism is de ned by:
gm'= (), =(1 2)2D ® (m)= ()

Combining the two commutative exact diagrams, we then obtain the following one:

D! P Ry D! Po T M L)
SPES "y "
DI ™m+pd) Rg pl Go+p)) ¥ MO 10

Hence, if we denote by ffig; ; (o q the standard basis of D* ®" 9, using ([5), we then obtain
that £ ("(FiT)) = (Fi(T°Y))gr i @ o is a basis of M, i.e., a basis of M is de ned by taking
the residue classes of the rows of (T"Y) 2 D®* d) o,

We can check that the D-morphism 1:M ¥ M is de ned by:
8m= (), 2D?! P, my= YTy
Then, using (@), we then obtain the following split exact sequence

pta & pte % prLe @ 0;
'S (1Y)
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where S 2 DP % is a generalized0 inoverse of R, i.e.,, S 0satois es RSR = R ([44])). If we denote by
T = (T} 0TZO)O, where T} 2 D<P0 q0> Pand T 2 D® 9 P2 and Q" = ((Q)T (Q%)T)T, where
Qi 2DP ® ) and Q% 2 DPz ® ) we then get

YTQ'=qQy Ty =T
i.e., we need to select the rst p columns of T® and the rst p rows of Q'.

Remark 6. If the free D-module M = D! P=(D! 9R) is de ned by the nite free resolution (),
where R; = R, pp = p and p1 = g, we point out that we only apply once the QS-algorithm to the
matrix R in order to obtain a basis of M contrary to the algorithm developed in [27] where the QS-
algorithm is applied m times. Hence, our algorithm is generally more e cient than the one developed
in [27].

If F is a D-module, then applying the functor homp( ; F) to the previous split exact sequence, by
2 of Proposition [, we then obtain the following split exact sequence:

R Ep Qi FC o) 0:

i 0.
Sy Tig

Fa

The system kerg (R:) admits the injective parametrization QY, namely:
kere(R) = Q4 F® @ TIQ) =1y g

Remark 7. Let us consider R 2 D% P and let us suppose that the D-modules imp(:R), kerp(:R)
and coimp(:R) , D! 9=kerp(:R) are free. We now show how to use the previous results to compute
a basis of these free D-modules:

1. A basis of imp(:R) = D! 9R can be obtained as follows: we rst compute the rst syzygy
D-module of imp(:R) and we obtain a matrix R, 2 D" 9 satisfying kerp (R) = D! "R,. Let
us denote by M, = D! 9=(D! "R,) = D! 9R. Using the method previously described, we can
compute a basis of the free D-module M. We get Q, 2 DY 'and T, 2 D' 9 such that we have
the exact split sequence

ptr Ry pta 4 pr1 o
:So T2

where S, 2 DY " denotes a generalized inverse of R,. A basis of D! 9R is then given by the
D-linearly independent rows of the matrix T, R 2 D' P and we have D! 9R = D! '(T2R).

2. Using the same notations as before, we have kerp((R) = D! "R, and a basis of the free D-
module kerp (:R) can then be obtained by computing a basis of D* "R as it was shown in the
previous point.

3. Using again the same notations as in the rst point, we get
coimp(:R) = D! 9=kerp(:R) = D! 9=(D! "Ry);

and a basis of coimp(:R) can be computed using the general method previously described in
this section.

To nish, all the algorithms presented in this section were implemented in the package Quillen-
Suslin ([13]). See the Appendix for more details and examples.
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4 Flat multidimensional linear systems

4.1 Computation of at outputs of at multidimensional systems

Our rst motivation to study and implement constructive versions of the Quillen-Suslin theorem was
the computation of at outputs and injective parametrizations of at multidimensional linear systems
and, particularly, di erential time-delay systems. Let us rst recall the main ideas of at systems and
their applications in control theory.

A non-linear ordinary di erential control system de ned by x = f(x;u) is said to be at if there
exist some outputs y of the form y = h(x;u;u;:::;u®) such that we have:

X = (y Y ..... y(S))
T(ysys i yO):

The outputs y is then called at outputs of the control system x = f(x;u). See [16, [I7] and the
references therein for more details and references. We can prove that the trajectories of a at system
are in a one-to-one correspondence with those of a controllable linear ordinary di erential system
having an arbitrary state dimension but the same number of inputs, i.e., with those of a Brunovsky
canoncial system ([I7]). We say that a at non-linear system is Lie-Backlund equivalent to a control-
lable linear ordinary di erential system ([L7]). Controllable linear systems form the simplest class of
systems studied in control theory and a large literature is developed for the analysis and the synthesis
of this class of control systems. This result, as well as the fact that many classes of non-linear control
systems commonly used in the literature were proved to be at, has popularized this class of systems
in the control theory community. The motion planning problem was shown to be easily tractable for

at systems and it was illustrated on several examples in the literature ([16, [L7]). Finally, the fact
that the trajectories of a at non-linear systems are in a one-to-one correspondence with the ones of a
linear controllable system can be used to construct feedback laws which stabilize a at non-linear sys-
tem around a given trajectory (tracking problem) ([I8, [L7]). See also [48] for applications to optimal
control.

Unfortunately, no general algorithm is known for checking whether or not a non-linear control sys-
tem is at and for the computation of at outputs despite many e ort of the mathematical and control
theory communities. We refer the reader to [67] for a historical account of the main developments of
the underlying mathematical problem, the Monge problem, which was studied by Hadamard, Hilbert,
Cartan and Goursat.

We illustrate these de nitions on the model of a vertical take-o and landing aircraft considered
in [I7], namely, s
= x(t) =u(t) sin (t) "uo(t) cos (1),
- z(t) = ug(t) cos (t) +"ux(t)sin (t) 1; (16)
() = u(b);
where " is a small parameter. It is proved in [I7] that the smooth solutions of ([I8) can be parametrized
by means of the following non-linear di erential operator

Y1
x=y
§ R A
Y1 y2+1

17
Yo % P+ 0, v 17 (7

= arctan Y1 X

y2+1
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where y; and y, are two arbitrary smooth functions satisfying the following condition:
8t2R+;  (Y1(D)? + (ya(t) +1)* & 0:

Moreover, the arbitrary functions y; and y, can be expressed in terms of the system variables as
follows: C
y1 =X+"sin ;

18
Yo =2z+"cos : (18)

Hence, (y1;y2) isa at output of the non-linear system ([I8) and its knowledge gives a way to generate
the trajectories of ([[®). Finally, the at ordinary di erential system (&) is Lie-Backlund equivalent
to the Brunovsky linear system de ned by

C @ _ ., .
y - Vl!
}4) _ (19)
Yo 7 = V2,
under the invertible transformation ( ; =u; " -2and , = ;):
8 " H .
% y1 =x+"sin ;
yo =z +"cos ;
2 vi=_sin +2 5.C0s + 1UpcCOS 1 -2 sin
T Vo= ,008 2 5-sin 1 Uz sin 1205 :

The study of at linear ordinary di erential time-delay systems has recently been initiated in
[18, 32]. As for non-linear ordinary di erential systems, this class of systems shares some interesting
mathematical properties which can be used to do motion planning and tracking as shown in [32] and the
references therein on explicit examples. However, the theory of at linear ordinary di erential time-
delay systems is still in its infancy and some concepts developed for non-linear ordinary di erential
systems seem to have no counterparts for this second class of systems. In particular, for at linear
di erential time-delay systems, we can wonder which kind of linear systems could play a similar role as
the one played by the linear controllable systems (or Brunovsky systems) for at non-linear systems.
To answer this question, we rst need to understand which kind of equivalence plays a similar role for
di erential time-delay linear systems as the one played by the Lie-Backlund equivalence for non-linear
di erential systems. To our knowledge, these important questions have not be tackled in the literature
till now. This section aims at constructively answer these two questions.

As the di erential time-delay systems is a particular class of multidimensional systems, we can
de ne the concept of a at multidimensional linear system in terms of the existence of an injective
parametrization of the trajectories of the system (5, 44, 65]).

called at if there exist Q2 DP M and T 2 D™ P satisfying:

kere(R)=QF™;, TQ=Imn:

In terms of the module-theoretic/behaviour approach recently developed for multidimensional
linear systems (|5, 41, 34, ©5, 66]), it means that the module M intrinsically associated with the
multidimensional linear system is free over the commutative polynomial ring D of functional operators
(5, 18, 17, 32, 24]).

cogenerator D-module. Then, kere(R:) is a at system i the D-module M is free. Moreover, the
bases of the D-module M are then in a one-to-one correspondence with at outputs of kerg (R:).
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Remark 8. Using the end of the Section 1 we obtain that the condition that M is a free D-module
is a su cient condition for kere (R:) to be a at system.

Using Proposition B and the Quillen-Suslin theorem (see 4 of TheoremP), we then get the following
important corollary.

erator D-module. Then, kere(R:) is a at system i the D-module M is projective.

When R has a full row rank, then, using Theorem B a constructive test for atness of multidi-
mensional linear systems with constant coe cients consists in checking if the ¢ g minors of R do
not simultaneously vanish on complex common zeros ([24, [62]). This last result can algorithmically
be checked by computing a Grobner or Janet basis of the ideal |1 of D generated by the ¢ g minors
of R and check whether or not 1 2 I. We can also check whether or not R admits a right-inverse over
D (4 B, 24]).

In the general case, using Theorem [3 the projectiveness of M can constructively be obtained

N = D? 9=(D! PRT). Other possibilities are to compute the so-called global dimension of M ([57])
by means of Proposition 2 and Corollary P as it was shown in [53], check whether or not R admits a
generalized inverse S over D, i.e., check for the existence of a matrix S 2 DP 9 satisfying RSR =R
([24]) or check some straightforward conditions on the so-called Fitting ideals of M as it is explained
in [L1].

However, we point out that, till now, there has been no easy way for obtaining the at outputs
of the system, i.e., the bases of the free D-module M. Hence, we are led to use constructive versions
of the Quillen-Suslin theorem developed in the symbolic algebra community ([19, 27, 29, 37]) for
computing a basis of the free D-module M. It was our rst main purpose for developing the package
QuillenSuslin ([13]). See the Appendix for more details and examples.

Example 7. Let us consider the following di erential time-delay linear system ([32]):

yi(®) yi(t h)+2yi(t) +2y.(t) 2u(t h)=0;

20
BO+y0 u ) u® =0 @0
Let us denote by D = Q %; the commutative ring of di erential time-delay operators with rational
coe cients, where (d=dt) y(t) = y(t) and ( y)(t) =y(t h), h2 R4. Let us also denote the matrix of
functional operators de ning Z0) by:

(@) d 1
— +2 2 2
_ dt 2 3.
dt dt dt

Using the algorithms developed in [B, 44] and implemented in the package OreModules ([4]), we
obtain that R admits a right-inverse over D de ned by

(0] 0 0 1
1B ¢
Szzgdt +2 2 Ev
d
at 2

a fact proving that M = D! 3=(D! 2R) is a projective, and thus, a free D-module by the Quillen-
Suslin theorem (see 4 of Theorem ).

INRIA



Applications of the Quillen-Suslin theorem to multidimensional systems theory 31

Using a constructive version of the Quillen-Suslin theorem (see also the heuristic methods developed
in [5, 44]), we obtain the following split exact sequence of D-modules

o " pt2 % p13 9 p ro
'S T (21)

O
2

d
dt
Using the split exact sequence (), we can check that we have

1
1 d? d , d

where T=(1 0 0)and in el +a &+ 2 '
d2
d?

M =D! 33(D! 2R) = (D* ®Q)=D;
i.e., we nd again that M is a free D-module of rank 1.

Now, if F is a D-module (e.g., F = C1(R)), by applying the functor homp( ; F) to the split exact
sequence (1), we then obtain the following split exact sequence of D-modules (see 2 of Proposition [):
ROps C F o
5 Ty

0 F2

Hence, for any D-module F, we get that the system kerg(R:) de ned by 0) is parametrized by the
following injective parametrization:

2 i =x;
8x1 2 F; yz(t)=%( Xt h)+xi(t 2h) xi(®)+xi(t h) 2xi(1); (22)
U =5 0a )

We refer the reader to [53 b5] for a constructive algorithm for the computation of bases, and thus,
of at outputs of a class of linear systems de ned by partial di erential equations with polynomial or
rational coe cients. See [564, B3] for an implementation of this algorithm in the package Stafford
of the library OreModules.

Finally, we say that the D = K[X1;:::;Xn]-module M = D! P=(D! 9R)is -free, where 2D, if
the D -module D p M s free, where D denotes the localization
D =fashja2D; b= " i2Z.g

of the ring D with respect to the multiplicatively closed subset S = f1; ; 2; :::g of D ([57]).
By extension, we can de ne the concept of a - at system. See [B], 32, [33] for more details. Given a

the corresponding polynomials and basis of the free D -module D p M were given in [5] and
implemented in the OreModules package ([4, 6]). However, we can also use Remark B to compute
the corresponding basis in the case where = Xx;j. We can also follow the simple idea developed in
Section
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4.2 Equivalences of at multidimensional systems

Using a QS-algorithm, the purpose of this section is to prove that a at multidimensional linear system
with constant coe cients is algebraically equivalent to a linear controllable 1-D system obtained by
setting all but one functional operator to 0 in the system matrix. In particular, the algebraic equiv-
alence we use is the natural equivalence developed in module theory, namely, two multidimensional
linear systems are said to be algebraically equivalent if their canonical associated modules are isomor-
phic over the underlying commutative polynomial ring of functional operators D. This equivalence is
nothing else than the natural substitute to the Lie-Backlund equivalence for multidimensional linear
systems. In the case of ordinary di erential linear systems, we already know that Lie-Backlund trans-
formations correspond to isomorphisms of the underlying modules (see e.g. [I7] and the references
therein). Finally, we prove that a at di erential time-delay linear system is algebraically equivalent
to the controllable ordinary di erential system without delays, namely, the system obtained by setting
all the delay amplitudes to 0. This last system plays a similar role as the one played by the Brunovsky
canoncial form in the non-linear case.

We have the following corollary of Theorem

of kere (R(X1;:::;Xn):) are in a one-to-one correspondence with the ones of kere(R(Xy;0;:::;0):).

Proof. Using Proposition B, we obtain that M = D! P=(D! 9R) is a free D-module. Using the fact
that R has full row rank, by Theorem B, there exists a matrix U 2 GL,(D) such that RU = R, where
R = R(x1;0;:::;0). Therefore, we have the following commutative exact diagram

0 0 0
# # #

o " pta & pter ¥ WM ()
k #:u #f

o " pla & pre ¥ M xp
# # #
0 0 0

where :D?! P ® M denotes the canonical projection onto M and the D-isomorphismf : M ¥ M/
is de ned by:
8m= (), 2D'P, fm)= ( U):
Applying the functor homp(; F) to the previous commutative exact diagram and using the fact
that horizontal exact sequences split because M = MU is a free D-module, we then obtain the following
commutative exact diagram:

0 0 0
0 Fi RO 7 ere(R) 0
k " g
0 Fa R pp  kere(RY) 0:
0 0 0

The D-isomorphism 7 : kere(R:) ¥ kerg(R:) de ned by:
8 2kere(R); f°()=U
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Hence, 7 induces a one-to-one correspondence between the trajectories of kerg(R:) and those of
kere(R:) and (F?) 1 is de ned by:

8 2kere(R); () ()=u 1t :
O

Using Corollary @ and the end of the Section B4, we can always reduce the case of a non full row
rank matrix R to the case of a full row rank matrix R and then apply Corollary [ to R’.

Despite the fact that Corollary [ is a straightforward consequence of the Quillen-Suslin theorem,
its applications to at multidimensional systems seem to be ignored. In particular, it shows that the
Lie-Backlund equivalence in the non-linear case needs to be replaced by the isomorphism equivalence
in the multidimensional case. Moreover, the right substitute of the Brunovsky linear system in the
non-linear case becomes the controllable 1-D linear linear system with constant coe cients obtained
by setting all but one functional operator to 0.

Let us illustrate Corollary [4 on two examples.

Example 8. Let us consider again the di erential time-delay linear system de ned by @0). In
Example [0, we proved that the corresponding D-module M s free. It is well-known that F = C1(R)
is not an injective D-module but, by Remark B, the system kerg(R:) is at as the D-module M is
free. Hence, according to Corollary [ the at system (Z0) is algebraically equivalent to the following
controllable ordinary di erential linear system

(;ﬂo+uuo+uxo=m

z1() + 2o(t)  v(t) =0; (23)

i.e., the system obtained by setting to 0 in the matrix R. Using the constructive QS-algorithm
to R, after a few computations, we obtain an invertible transformation which bijectively maps the
trajectories of (Z0) to the ones of (Z3J) is de ned by:

Byt =200 8 2.0 =10,

y2(t) :%(Z_l(t 2hy+zi(t h)+z()+v(t h),  z(t) = %h(t h) +y>(t) u(t h);

S U =3u h+v: Tv= Zwt h)+ul
(24)
Applying again Corollary [ to [Z3), we get that the ordinary di erential system ([Z3) is equivalent
to the purely algebraic system
2X1(t) + 2X2(t) =0;

w(t) =0; )

i.e., the system obtained by setting to and d=dt to 0 in R. Applying a QS-algorithm to R,we obtain
that a transformation which bijectively maps the trajectories of (Z3) to the ones of (Z5) is de ned by:

2 50 =30 2 () =200
! 2 X
20 =% 3% -+ 5 0 =20+ 510 (26)
= V() = w(t) %n®+m®+&®; T w(t) = v(t) + za(t) + 22(0):

Combining (Z4) and ([Z8), we nally obtain a one-to-one correspondence between the solutions of (Z0)

and @3).
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We note that the solutions of @) (resp., @3)) are parametrized by means of @) (resp., [8)),
where z3, z, and v (resp., X1, X2 and w) are not arbitrary functions as they must satisfy [&3) (resp.,
([@J)). However, solving the algebraic system ([Z3), we obtain that x, = x; and w = 0. Substituting
these values in (Z8) and the result into (Z4)), we nd that an injective parametrization of (Z0) is de ned
by @).

Finally, we can check that an injective parametrization of (Z3) is obtained by setting =0 in the
matrix of operators de ning (32), i.e.:

8 z:(t) = (b);
8 2F: zp(t) = %( ®O+2 (),
Svn= 5 o

Similarly, if we set and d=dt to 0 in the matrix of operators de ning ([Z2), we obtain the following
injective parametrization of (Z5):

8

= xu(t) =7 (1);
87 2F,; - X2(t) = 7 (D);

- w(t) =0:

These results can be obtained by applying the functor (D=(D )) p (resp., (D= D +D % ) b)
to the split exact sequence ([ZI) to get the corresponding split exact sequence of D=(D )-modules
(resp., D= D +D & -modules) ([57).

We consider another time-delay system appearing in the literature of control theory.

Example 9. Let us consider the di erential time-delay system of neutral type studied in [28], where
a denotes a real constant:
X1(t) +x1(t)  u(t) =0;

o® X h) xu)+axs) =0 (@)

We consider the ring D = Q(a) %; , the system matrix of Z7) de ned by

O d 1
—+1 0 1
1 d d a o0 |
dt dt
and the D-module M = D! 3=(D! 2R). R admits a right-inverse de ned by
o 0 1 1
S = g 0 0 EZ D2 3
d
1 at 1

a fact which proves that M is a projective, and thus, a free D-module by the Quillen-Suslin theorem.
Even if the D-module F = C1(R) is injective, by Remark 8, the fact that D-module M is free is a
su cient condition for kerg (R:) to be a at system. By Corollary[d, 1) is equivalent to the following
ordinary di erential system C

z1(t) +z2(t)  v() =0;

Zo(t) +azy(t) z1(t) =0; (28)
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i.e., the system obtained by setting to O in the matrix R, under the corresponding invertible trans-
formations:

S« =zu® e hy S am=x@®+x hy
- X2 (t) = z2(1); - o Zo(t) = X2 (1);
TU® =V 2@ b oz b v =u®+xet h)+xat h):

Hence, the smooth solutions of the di erential time-delay system (7)) are in one-to-one correspondence
with the ones of the ordinary di erential system ([Z8).

Using CorollaryH, we can also set the di erent functional operators appearing in the system matrix
of a at multidimensional linear system to any particular value belonging to k. Applying this result to
the class of at di erential time-delay linear systems, we show that a at di erential time-delay linear
system is equivalent to the controllable ordinary di erential linear system obtained by setting all the
time-delay amplitudes to 0, i.e., to the corresponding ordinary di erential system without delays.

Corollary 8. Let D = k %; 1;::0; n 1 be the ring of di erential incommensurable time-delay
operators, namely, the amplitudes h; 2 R4 of the time-delay operator

(iy)® =yt hy); i=21::5n 1

module. Then, the time-invariant at di erential time-delay linear system kerg (R %; 50 a1l
is D-isomorphic to the controllable ordinary di erential linear system kerg (R %; 0;:::;0 ) obtained
by setting the amplitudes of all the delays to O, i.e., it is equivalent to the linear system without
delays. In particular, the F-solutions of the system kerg (R %; 710 o1 1) is in a one-to-one

correspondence with the ones of kerg(R %; 0;:::;0 ).
Let us illustrate Corollary B on two examples.

Example 10. Let us consider again the at di erential time-delay linear system de ned by (Z0).
Applying Corollary B on (0), we obtain that 0) is equivalent to the ordinary di erential linear
system obtained by substituting h = 0 into ), i.e., by setting = 1 in the matrix R de ned in
Example [, namely: C

z1(t) +z1(t) +222(1)  2v(t) =0;

21() +22(t)  v(t) V() =0:

Using a QS-algorithm, we then obtain that the following transformation

(29)

g 23(t) = ya (t);

2M=300 i NEy® wut +p®ru® ue b 30)

= 1

TV =L wt )+ u;
whose inverse is de ned by
g ya() = 220
BO= Z@E N nt 2mEn ) am)+zO+vE h) v

=
=

D=5 @t h) z(0)+v();

N =
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bijectively maps the trajectories of (Z0) to the ones of ). An injective parametrization of 9) can
then be obtained by taking h =0 in 32), i.e.:

S am= o
s 2 _ 20= 3( O+ O)
TV =50 ©+-O)

Example 11. We consider again the di erential time-delay system of neutral type de ned by (Z1).
As we have already proved that (7)) is a at system, by Corollary B we know that Z7) is equivalent
to the ordinary di erential linear system

21() +z2(t)  v(t) =0;

22(t) + aza(t) = 0; (31)

obtained by setting h = 0 in (Z7) . Using a QS-algorithm, we then obtain that the invertible trans-
formation de ned by

8

= Xi(t) =z1() +22()  zo(t  h);

- Xe(t) = z2(1);

Tu() =v(t) +zp(t) za(t h)+zp(t) z2(t h);

8
= z() =x1 ()  Xo(t) +x2(t  h);
> 22(t) = x2(V);
TV =u() xp(t) +xe(t h)  xa(t) +x2(t h);
bijectively maps the trajectories of [ZZ)) to the ones of ().

In the previous examples, we note that the invertible transformations can easily be computed
by hand but it is generally not the case for more complicated examples. Hence, we need to use an
implementation of constructive versions of the Quillen-Suslin theorem for computing the invertible
transformations and the injective parametrizations of at multidimensional linear systems. Such an
implementation has recently been done in the package QuillenSuslin ([I3]) which, with the library
OreModules ([4), allows us to e ectively handle these di cult computations.

As for the at non-linear ordinary di erential systems, using the fact that there is a one-to-one
correspondence between the trajectories of the at di erential time-delay systems with those of the
ordinary di erential system without delays, we can use stabilizing controllers of the latter in order to
stabilize the former. This approach echoes the Smith predictor method. We illustrate this idea on an
explicit example. More general ones can be handled in a similar way or will be studied in a future
publication.

Example 12. The di erential time-delay linear system de ned by
X(t) +x(t  h) =u(t) (32)
is at as we have the following injective parametrization of ([32):

C
x() =y(®);
u(t) = y(t) +y(t h):
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We easily check that [@2) is algebraically equivalent to the controllable ordinary di erential system
obtained by setting h = 0 in @2), namely,

z(t) +z(t) = v(t) (33)
under the following invertible transformation:
¢ x(t) = z(V); ¢ z(t) = x(v);
u® =v(®) (z@® z@ h); T v =u@®+x(@E) x( h)):
The transfer functions of @) and @3) are then de ned by:

— 1 . — 1 .
“re sy T Erny

(34)

P1

Let us show how to use the invertible transformation ([34) in order to parametrize all the stabilizing
controllers of p; by means of the ones of p,. Let us consider the algebra A = RH4_ of proper and stable
real rational transfer functions and the Hardy algebra B = H; (C4.) of bounded analytic functions
in the right half-plane C. ([[4, B0, B2, 5T, 60]). We recall that A is a R-subalgebra of B. As p, 2 A,
Zames’ parametrization of all stabilizing controllers of p, has the form ([51, 60]):

) R
8q2A; ()= 15 qp,
Now, using the Laplace transform of (34) ([7]), we get
C
2=%;

¢=0+(1 e "SR

where 2 denotes the Laplace transform of z and similarly for x, u and v. Using the fact that ¢ = c»(q) 2,
we obtain the following stabilizing controllers of p;:

8g2A; 0= (1 e " c(q)%

Let us check that the controller c1(q) = (1 e NS cy(q)) internally stabilizes p;:

1 _ s+e s (s+e N9 1
1 pa@ s+l @ G+ | @
(s+1)
P1 _ 1 _ 1 1 _
1 pca(@  s+1 c(q) (s+1) 1 c2(q)
(s+1)
c1(q) _ (s+e ") 1 hs .
I pa@ - 6rD @ ¢ ¢ @@
(s+1) 1
(s+e hs) 1 ehs c2(9) §
G+) O @ @, @ &
(s+1) (s+1)
Then, using the fact that for all g 2 A, we have
1 : c2(q) :
ca(@ * 20 ’
(s+1) (s+1)
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as c(q) internally stabilizes p, and (s +e N"S)=(s+1); 1 e NS 2 B; we obtain

1 . p1 . c1(q) 5B
1 pica(@)’ @ prci(@)’ (@ pica(a) ,

which shows that c1(q) internally stabilizes p; for all ¢ 2 A. For more details, see [[7, 50, 52, 5T, &0].
Following [51], we can then nd the general Q-parametrization of all stabilizing controllers of p;.

8q2A;

Taking q = 0, the internal stabilizing controller c;(0) = (1 e "S) of py, i.e.,
ui®) = x(@®) +x(@t h); (35)

Lo(R+) La(R+)-stabilizes 32). See [[7] for more details. We note that a similar result holds if we
consider the Wiener algebra A ([, 51, 60]) instead of B = H1 (C.). Hence, the controller de ned by
@3 also L3 (R+) Lg (R+)-stabilizes (32).

Finally, using some results of [51] and the fact that c1(0) 2 B, we obtain that p admits the following
coprime factorization p = n=d

8
_ p1(0) _ 1 .
2= e - G+D 2P
hs
Fg=__ 1 =6*e D,p

(I pica(0)  (s+1)
as we can easily check that the following Bezout identity holds:

1

(s+e ) _
G+D

e+ 7D

In particular, the stable controller c;(0) = (1 e NS) strongly stabilizes p; ([51, 60]).

5 Pommaret’s theorem of Lin-Bose’s conjecture

The purpose of this section is to show how to use a QS-algorithm to constructively solve Pommaret’s
theorem of Lin-Bose’s conjecture ([43]). Let us rst recall this conjecture recently developed in the
multidimensional systems theory which generalizes Serre’s conjecture ([Z6]). Let us state a new prob-
lem.

R 2 DY P a full row rank matrix and M = D! P=(D! 9R) the D-module nitely presented by R.
We suppose that M=t(M) is a free D-module.

Does it exist a full row rank matrix R® 2 DY P satisfying M=t(M) = D! P=(D! 9R%? If so,
compute such a matrix R°.

If we can solve Problem 3, we then have
t(M) = (D' “R")=(D* “R);
and using the fact that D! 9R D! ¢’ R?, there exists R® 2 D9 9 such that;

R=R"R%: (36)
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Let us denote by r = p!=((p  g)!q!). The fact that M=t(M) is a projective D-module implies that
there is no common zero in the ¢ g minors fmlg; ;  of R’, i.e., there exists a family fp;jg; ;i r of
elements of D satisfying the following Bezout identity:

0
pim; = 1: 37)
i=1

Now, using the fact that we have m; = (det R®)m{, for i = 1;:::;r, where the m; denote the
g g-minors of R, we obtain that the following inclusion of ideals of D:
1

X
Dm; (D (det RY)) Dm! =D (det R"):
i=1 i=1

Multiplying @32) by det RY, we obtain

X X
detR" = pij(detR"Y)m! = pim;;
i=1 i=1

P P
which shows that D (det RY) ., Dmj and  [_, Dm; = D (det R®): Hence, the greatest com-
mon divisor of the @ g minors fmjg: i r is then equal to det R,

Hence, solving ProblemBlgives us a way to factorize R under the form R = RY R, where R 2 D9 P
admits a right-inverse over D and det R” is the greatest common divisor of the ¢ g minors of R.
The question of the possibility to achieve this factorization was rst asked by Lin and Bose in [26]
and solved by Pommaret in [43]. See also [63]. It was proved in [43] that this factorization problem
is equivalent to Problem Bl The purpose of this paragraph is to give a general constructive algorithm
which solves Problem and thus, performs the corresponding factorization. The algorithm has
recently been implemented in the package QuillenSuslin. See the Appendix.

Based on the Quillen-Suslin theorem, we rst prove that a matrix R? satisfying Problem [ always
exists. We then show how to e ectively compute it.

The fact that R has full row rank implies that we have the following exact sequence:
0o '*plda Aplr 1M 10 (38)

Let N = D! 9=(D? PRT) be the transposed D-module of M (see Remark[I), according to Theorem[3,
there exists Q 2 DY P such that M=t(M) = D! P=(D! 9 Q). In particular, using the fact that
(D! 9Rr) (D? o Q), there then exists a matrix P 2 D¢ o satisfying R = P Q. We refer the reader
to [4] for the implementation of the corresponding algorithms in the library OreModules as well as
the large library of examples which demonstrates these results.

Then, we have the following commutative exact diagram:

0
i
0 t(M)
# #i
o " pta & pte ¥ M 10
#:p k #
ptd ‘§ pLep ¥ M=t(M) 10
# #
0 0
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As, by hypothesis, the D-module M=t(M) is projective, using 1 of Proposition [, we obtain that the
following exact sequence

0 1Dt Q ¥IDLP ¥ M=t(M) ¥O (39)

splits and we obtain .
D! P =M=t(M) (D! % Q);

Whickg shows that D* 9" Q is a projective D-module. By the Quillen-Suslin theorem, we obtain that
D! 9 Q is then a free D-module.

Let us compute the rank of the free D-module D? ¢ Q. Applying the exact functor K p to the
short exact sequence [39), where K = Q(D) denotes the quotient eld of D ([57]), we obtain that:

ranko(D! Q) =p rankp((M=t(M)):
See [B7] for more details (Euler characteristic). Similarly with the two short exact sequences (Z8) and

0 TtM) ™M ¥ M=t(M) ¥ 0

and, using the fact that K  t(M) = 0 because t(M) is a torsion D-module ([57]), we then get:
rankp(M=t(M)) =rankp(M)=p q:

Therefore, we obtain rankp (D? ¢ Q) =p (p 9 = q; which shows that D* o Q is a free D-module
of rank g, i.e., D! ¢ Q = D! 9, Computing a basis of this free D-module, we obtain a full row rank
matrix R’ 2 D9 P satisfying

D! Q=D 9RY; (40)

which implies that M=t(M) = D! P=(D? 9R’) and we have the following nite free short resolution
of M=t(M):

0 ¥ptd A DLP ¥ Mt(M) 1O (41)
We note that if Q has full row rank, we then can take R’ = Q and ¢’ = q.

In order to computeothe matrix R? 2 DY P which satis es @), we need to compute a basis of
the free D-modtgle D! 9 Q. Hence, we can use the rst point of Remark [7 to compute a basis of the
D-module D* 9 Q.

Algorithm 2. Input: A commutative polynomial ring D = K[x1;:::;Xn] Over a computable
eld k, a full row rank matrix R 2 D% P and the nitely presented D-module M = D! P=(D! 9R)
such that M=t(M) is a free D-module.

Output: A full row rank matrix R’ 2 D% P such that:
M=t(M) = D! P=(D! 9R?):
1. Transpose the matrix R and de ne the nitely presented D-module:
N = D! 9=(D! PRT):
2. Compute the D-module extl (N; D). We obtain a matrix Q 2 DY P such that:

M=t(M) = D! P=(D! ¢ Q):
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3. Compute the rst syzygy module kerp (:Q) of D o Q.

4. If kerD(:oQ) = 0, then Q has full row rank and exi‘ot the algorithm with R" = Q. Else, denote by
Q2 2 D% 9 a matrix satisfying kerp (:Q) = D! % Q,.

5. Compute a basis of the free D-module:
L=D! “=D! %Q,):

In partiCLgIar, we obtain a full row rank matrix B 2 DY 9 such that L = 2(D! 9B), where
»:D! 9@ ¥ | denotes the canonical projection on L.

6. Return the full row rank matrix R =B Q 2 D9 P,

Remark 9. The computation of a basis of L gives two matrices P, 2 DY dand B 2 DY ¢ such that
we have the following split exact sequence

0

Dl ‘94 pra ¥ L 10
k 11

ptd Pax pta xop;

where : D! 9 ¥ L denotes the corresponding isomorphism. We can now check that the matrix
R’ = BQ has full row rank. Let 2 D! 9 be such that R? = 0. Then, we get ( B)Q =0, i.e.,

B 2 kerp(:Q) = D! % Q,, and thus, there exists 2 D! % such that B = Q,. Using the
identity B P, = Ig, we then obtain:

=( B)P2= (Q2Pz)=0:
We illustrate Algorithm [ on a simple example.

Example 13. Let us consider the di erential time-delay model of a exible rod with a force applied
on one end developed in [32]:

C
yi(t) ye(t 1) u(t)=0;

2yi(t 1) ya(t) Yot 2)=0: (42)

Let us de ne thering D = Q %; of di erential time-delay operators with rational coe cients. The
system matrix of (#2) is de ned by:

o 1
at at '
Rzg §2D23:
, d d d
dt

Let M = D! 3=5(D? 2R) be the D-module associated with (@2) and D-module N = D! 2=(D! 3RT).
Then, N admits the following nite free resolution

T ‘RT
‘R 'Ry D 0;

0 N D12 D13

RR n 6126



42 A. Fabianska & A. Quadrat

whereR] = 2 1 2 & 2 4 Thedefects of exactness of the complex

o spt2Apt3Fap ro
are then de ned by:
extd (N; D) = kerp (CR) = 0;
extt (N; D) = kerp(:R2)=(D! 2R);
ext3 (N; D) = D=(D? 3Ry):

wvoON®

Computing the rst syzygy module kerp(:Rz) of D! 2R, we obtain kerp(:R2) = D! 3Q, where the
matrix Q is de ned by:
O 2 24101

d d
ng dt ot 1§2D3 K (43)
d d
dt dt
We get t(M) = (D! 2Q)=(D! 2R) and reducing the rows of Q with respect to D! 2R, we obtain
that the only non-trivial torsion element of M is de ned by

8

<=m= 2 y1+(2+1)yy;
- d

- &m_o,

where y1, Yy, and ys denote the residue classes of the standard basis of D 3 in M.

Following Algorithm 2, we compute the rst syzygy module kerp (:Q) and obtain kerp (:Q) = D Qg,

where:
d

= — 1 2D 3 44

Q2 i (44)

We now have to compute a basis of the free D-module L = D! 3=(D Q). Using a constructive version
of the Quillen-Suslin theorem, we obtain the split exact sequence

o D % pr2 Px p xg

'Sy ‘B
with the following notations:
1
o 10
_ T _B o1 § _ 100
S2=(0 0 1)°; Pz—gd > B= 4 10
dt
Computing R’ = B Q, we obtain that the following full row rank matrix
1
o 2 210
RI=@ d . A2p? 3
dt dt
satis es D! 2Q = D! 2R’. Finally, we have the factorization R = RYR?, where the R” is de ned by
1
o 0 1
RV = @ q A
— 0
dt
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and satis es det R® = d=dt, where d=dt is the greatest common divisor of the 2 2 minors of R and
is the functional operator which annihilates the torsion element m.

Using the fact that M=t(M) is a free D-module of rank p g, i.e., there exists an isomorphism
:M=t(M) 1 D! ¢ O,
and the exact sequence (1), we then obtain the following exact sequence
o1 pte A pte i prtea xy (45)
where P 2 DP ® 9 js the matrix de ning the morphism ° in the standard bases of D' P and

D! ® 9  As the exact sequence [@3) ends with a free D-module, by 1 of Proposition [, it splits, i.e.,
there exist S2 DP 9and T 2 D® @ P such that we have the following Bezout identities:

= Iy O
(s P)= = lp; (46)
T 0 Iy q
RO
s P) T =l (47)
Now, we have
R ROO RO ROO 0 RO
T - T - 0 Ipgq T
and using (@8), we obtain that det(R™ TT)T) =1 and:
R _ RY 0 R*  _ 0.
det T = det 0 1y q det T = detR™:

Finally, using the fact that we have proved that det R? is the greatest common divisor of the q ¢
minors of the matrix R, we then have solved the following problem.

P
Problem 4. Let R 2 D% P be a full row rank matrix such that the ideal = [_, D m; of D generated
by the ¢ g minors fmjg; j  of the matrix R satis es

Dm; = Dd;
i=1

where d denotes the greatest common divisor of the g g minors of the matrix R.

Find a matrix T 2 D® @ P such that we have:

To our knowledge, such a problem was rst stated by Bose and Lin in [Z6]. Let us give a constructive
algorithm solving Problem B

Algorithm 3. Input: A commutative polynomial ring D = K[x3;:::;Xn] over a computable
eld k, a full row rank m&;rix R 2 D9 P such that the ideal of D generated by the ¢ g minors
fmig: i r of Rsatis es  {_; Dm; = Dd, where d denotes the greatest common divisor of the

q ¢ minors of R.
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Output: A matrix T 2 D® 9 P sych that det $ =d.

1. Transpose the matrix R and de ne the nitely presented D-module:
N =D?! 9D PRT):
2. Compute the D-module ext} (N; D). We obtain a matrix Q 2 DY P such that:
M=t(M) = D* P=(D! ¢ Q):

3. Compute a basis of the free D-module M=t(M) = D! P=(D! 9 Q). We obtain a full row rank
matrix T 2 D® @ P sych that M=t(M) = (D! ® O T), where °: D! P ¥ M=t(M)
denotes the canonical projection on M=t(M).

4, Return the matrix U = (RT TT)T which satis es det U = d.

We illustrate Algorithm [3 on an example.

Example 14. We consider again the model of a exible rod de ned in (@2). In Example [[3 we have
proved that M=t(M) = D! 3=(D! 3Q), where the matrix Q is de ned by @3). Let us compute a
basis of the free D-module M=t(M). The D-module M=t(M) admits the following free resolution

0 1D ADI3IDL3 ¥ M=t(M) ¥ O

where Q is de ned by #4). Using the fact that Q, admits the right-inverse S, de ned by ([3), we
obtain the following minimal free resolution of M=t(M)

0 1D!39ApL4 ¥ M(M) 1o
where the full row rank matrix Q is de ned by Q = (QT SJ)T.
Applying a constructive version of the Quillen-Suslin theorem to Q, we then nd that a basis of
M=t(M) is given by ( © 0)(T), where T denotes the matrix:

T:l_
> 0 0

If we denote by T the matrix de ned by the rst three entries of T, we then obtain a square matrix
U=(RT TT)T satisfying det U = d=dt.

The explicit computation of the D-module ext{, (N; D) gives a matrix R 1 2 DP ™ which satis es
kerp(CR 1) =D? o Q, i.e., such that we have the following exact sequence:

pt @ 9pteRyptm

A direct way to solve Problem H exists when the matrix R ; admits a left-inverse S ; 2 D™ P,
Then, we have M=t(M) = D! PR ; = D! ™ and using the fact that rankp(M=t(M)) =p q, we
get m=p . The fact that D* o Q is a free D-module of rank q implies that there exists a full row
rank matrix R” 2 DY P satisfying D! ¢’ Q = D! 9R". Combining this result with the previous exact
sequence, we obtain the split exact sequence

0o sptaRaIplerRygplGa yo

which shows that P =R ;and T =S ; solve ProblemE
Let us illustrate this last remark on an example.
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Example 15. Let us consider again the model of a exible rod de ned in @2) and let us compute
T 2 D! 3 such that the determinant of the matrix (RT TT)T equals d=dt. In Example[L3, we proved
that we have the exact sequence

D! ® ‘9 p! 3 i p;

T

2 4 " R, admits a left-inverse T de ned by

where R, = 2 1 2

Sl

1
T=1 = 0
2

which proves that M=t(M) is a free D-module of rank 1 as we have the isomorphisms:
M=t(M) = D* 3=(D* 3Q) = (D' ®R;) =D:

We nally obtain that the matrix de ned by

NI
o

satis es detU = d=dt, which solves Problem @l
To nish, let us show how to handle an example given in [64] by means of Algorithms [ and

Example 16. Let us consider the commutative polynomial ring D = Q[z1; z2; z3] and the following
matrix de ned in [64]:
L}
2,232 0 7223 1
R= 027 1% 2D? 3

z1z25+23 23 2iZ3 I3
Letusde nethe D-modulesM = D! 3=(D! 2R)and N = D?! 25(D! 3RT). Computing ext} (N; D),
we then get s
= t(M) = (D* *Q)=(D* *R);
_ M=t(M) = D* 3=(D* *Q);
- M=t(M) = (D! 3P);

with the notations:

7232 252 2125 212
2 £3 2 £3 142 143 2.2
73 7272 Z3 721+ 2324 212, +1
_ 143 1 . — .
Q= 9 52 : P—B 22z3+1 2 (48)
z7z3 1 z7z5+1 0 5
212512
2 2 142 43
0 2125123 z7zz3 1

Reducing the rows of Q with respect to the rows of R, we obtain that the only torsion element of
M is de ned by C
m= (zfzz+1)y1+ (2§25 +1)ys;
Zzm =0;

where y1, y» and y3 denote the residue classes of the standard basis of D* 3 in M. We refer the reader
to [4] for more details concerning the explicit computations.

RR n 6126



46 A. Fabianska & A. Quadrat

We can easily check that P admits the left-inverse T = ( z2z3 1 2z3); a fact showing that
M=t(M) is a free D-module of rank 2. Then, the matrix U = (RT T7)T de ned by

1
2,23 23 0 72275 1
UZB 2222+23 73 Ziz3 zlg
2?23 1 z3

satis es det U = z3, which solves Problem B

Let us solve Problem B From the previous result, we know that kerp(:P) = D! 4Q is a free
D-module of rank 2. In order to be able to apply a constructive version of the Quillen-Suslin theorem,
we rst need to compute the rst syzygy module of D' Q. We obtain that kerp(:Q) = D! 2Q,,
where the matrix Q, 2 D? 4 is de ned by:

1
22z3+1 z3 25 253 0O
Q2 =
0 1 23 71
Hence, we have D! 4Q = L = D! 4=(D?! 2Q,). Applying a constructive version of the Quillen-Suslin
theorem to Q,, we then obtain L = (D' 2B), where the full row rank matrix B is de ned by
1

z¢ 0 z22z3+1 0

B =
0 z3z3(z5 z3) 0 1

and ,:D! 2 ¥ L denotes the canonical projection onto L. Hence, we get that the full row rank
matrix de ned by 1
Rli Ri; Ris

0 0 . 2D* %
R R R

R'=BQ=

where
R, = ziziz3+2z1253 1,

R}, =222 2z2z3+1;
0 — 55 (52 .
Ris=127(z5 z3);

VR AR 00

Rhw= 258 1z3)(zfzz+1);
RY = 2328 +2322 + 2125 23;
Ris= ziz§ 28 +ziz3zs+272528 zfzs L

satis es D' 4Q = D! 2R’ and the two independent rows of R’ de ne a basis of D! Q. Finally, we
obtain that R = RYR’, where the matrix RY is de ned by
1
RY = 212323 Z32325+2325 2225 Z2z3+1
B 2272 73 Z1

and det RY = z3, which solves Problem

We note that we can use the fact that P has a full column rank in order to also solve Problem
Indeed, we can use a constructive version of the Quillen-Suslin theorem to compute a basis of kerp (:P).
Indeed, if we transpose the column vector P, we then obtain the row vector de ned in Example @
Hence, if we take the last two rows of UT, where U is the unimodular matrix de ned in ([C3), we
obtain that the full row rank R} de ned by

1
14212323 +2%23 2225 1  Z3 (2222 +1)

RY =
732523 212323 732523+ 1

; (49)
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satis es D! 4Q = D' 2R} and we obtain the factorization R = RY RY, where:
]

2 2,2 -
212523 252 1
RY = 2 1oz ; det RY =z3:
Z3 Z1

6 Computation of (weakly) doubly coprime factorizations of
rational transfer matrices

We now turn to another application of the constructive proofs of the Quillen-Suslin theorem in mul-
tidimensional systems theory, namely, the problem of nding (weakly) left-/right-/doubly coprime

coe cientsin a eld k. The general problem of the existence of (weakly) left-/right-/doubly coprime
factorizations for general linear systems was recently studied and solved in [50, 52].

Let us recall a few de nitions.
De nition 8 ([&0]). Let D be a commutative integral domain, its quotient eld
K=fn=dj06&d; n2Dg;
and P 2 K% ' a transfer matrix.
1. A fractional representation of P is a representation of P of the form

P=DpNp'=MpB,%

where 8
5 R = (Dp Np) 2 D¢ @+r)-
1
=g= " pp@n . 0
B P

i.e., the entries of the matrices R and R belong to the ring D.

2. A fractional representation P = DF,1 Np of P is called a weakly left-coprime factorization of P
if we have:
8 2K 4: R2D! GN H 2pta

3. A fractional representation P = Np I§P1 is called a weakly right-coprime factorization of P if
we have:
8 2K':R 2D 1>y 2p"

4. A fractional representation P = D" Np = Rp B! is called a weakly doubly coprime factor-

ization of P if P = DPl Np is a weakly left-coprime factorization of P and P = p I9P1 is a
weakly right-coprime factorization of P.

5. A fractional representation P = Dple of P is called a left-coprime factorization of P if
the matrix R admits a right-inverse over D, i.e., if there exists S = (XT YT)T 2 D@+ «
satisfying:

RS=Dp X NpY =l
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6. A fractional representation P = Np I§P1 of P is called a right-coprime factorization of P if the

matrix R admits a left-inverse over D, namely, if there exists a matrix § = ( ¢ X)2 D" @+n
satisfying:
SR= €Np +XBp =I,:

7. A fractional representation P = DF,1 Np = Np I§P1 is called a doubly coprime factorization

of Pif P = DF,1 Np is a left-coprime factorization of P and P = Np @Pl is a right-coprime
factorization of P.

transfer matrix is also called a minor left-coprime factorization.

The next de nition will play an important role in what follows.

De nition 9 ([B0]). Let the matrix R 2 D9 P have a full row rank. We call D-closure D1 9R of the
D-submodule D! 9R of D! P the D-module de ned by:

Dl aR=f 2D! Pj90&d2D:d 2D! 9Rg:
We have the following characterizations of the closure of a D-submodule of D P,

Proposition 4 ([50]). Let R 2 DY P be a full row rank matrix and the nitely presented D-module
M = D! P=(D! 9R). We then have:

1. D! aR=(K! 9R) \ D! P, where K denotes the quotient eld of D.

2. The following equalities hold:

t(M) = (K! 9R) \ D! P)=(D! 9R):
M=t(M) = D! P=((K! 9R) \ D! P):

The next theorem gives necessary and su cient conditions for the existence of a (weakly) left-
/right-/doubly coprime factorization of a transfer matrix.

Theorem 9 ([B0]). Let P 2 KA "and P = DF,1 Np = Np I§P1 be a fractional representation of P,
where the matrices R and R are de ned by (&0). Then, we have:

1. P admits a weakly left-coprime factorization i the D-module D! 4R is free of rank g.

2. P admits a weakly right-coprime factorization i the D-module D! " RT is free of rank r.

3. P admits a left-coprime factorization i D?! 9R is a free D-module of rank g and the D-module
D! @*N=(DI dR) is stably free of rank r.

4. P admits a right-coprime factorization i D! "RT is a free D-module of rank r and the D-
module D! @+N=(D1 r RT) js stably free of rank q.

5. P admits a left-coprime factorization i D! ©@*N=(D! rRT) is a free D-module of rank g.

6. P admits a right-coprime factorization i D?! @*P=(D1 dR) is a free D-module of rank r.
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Testing the freeness of modules is a very di cult issue in algebra. Hence, using Theorem B, we
deduce that it is generally di cult to check whether or not a transfer matrix P 2 K% " admits a
(weakly) left-/right-/doubly coprime factorization and if so, to compute them. See [50, 5Z] for results
for D = H4 (C4) or the ring of structural stable multidimensional systems.

K = k(Xq1;:::;Xn) its quotient eld, then we can use constructive versions of the Quillen-Suslin the-
orem in order to e ectively compute (weakly) left-/right-/doubly coprime factorizations of a rational
transfer matrix. We rst note that using Proposition Bl and a computation of an extension module,
we can explicitly compute the closure D1 9 R and then test whether the necessary and su cient con-
ditions given in Theorem @ are ful lled. The next algorithm gives a constructive way to compute the
corresponding factorizations.

Algorithm 4. Input: A commutative polynomial ring D = K[x3;:::;Xn] over a computable
eld k, a fractional representation P = DF,1 Np of a transfer matrix P 2 K9 " which admits a
weakly left-coprime factorization over D.

Output: A weakly left-coprime factorization of P.
1. De ne the matrix R = (Dp Np) 2 D9 @+ and the following D-module:

M = D! @*N(p?! IR):

2. Transpose the matrix R and de ne the nitely presented D-module:
N = Dl q:(Dl @+r) RT):
3. Compute the D-module ext} (N; D). We obtain a matrix Q 2 D% @*" sych that:
M=t(M) = D! @*N=(D! @ Q):

4. Compute a basis of the free Do-module DI aR=D! ¢ Q. We obtain a full row rank matrix
R’ 2 DY @*N gych that D* 9 Q = D! 9R’.

5. Write R’ = (D} NZ%), where DL 2 DY 9 and N} 2 D9 ". If detD}, & 0, then P admits
the weakly left-coprime factorization P = (DL) 1 NS.

Up to a transposition, weakly right-coprime factorizations can similarly be obtained.
Let us illustrate Algorithm Bl on an example.

Example 17. Let us consider the commutative polynomial ring D = Q[z1; z2; 23], K = Q(z1; 22; 23)
the quotient eld of D and the following rational transfer matrix:

252
z7z5+1

21222
P:g 15243 §2K2 1, (51)

22z73+1
212373

Let us check whether or not P admits a weakly left-coprime factorization and if so, let us compute one.
We consider the fractional representation P = DP1 Np of P obtained by cleaning the denominators
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of P,i.e., Dp and Np 2 D2 1 are de ned by:

_ 212223 0 > 2.
% = 5 2 D <
21725123
1
22722 +1
§ = 37 2D? L
leg+l

We denote by R = (Dp Np) 2 D? 3 and de ne the nitely presented D-modules:
M =D?! 3=(D! 2R); N =D?! ?3(D?! 3R"):
Computing extl (N; D), we then obtain

t(M) = (D* “Q)=(D* ?R);
M=t(M) = D! 3=(D* *Q);

where the matrix Q is de ned by #8) in Example I8 Using the results obtained in Example [[8, we
get that the full row rank matrix R} 2 D? 3 de ned by @9) satis es D! 4Q = D' 2R}. Therefore,

if we denote by s 1
Dl = 1+2z§2323+2%23 7325 1
B 2322 72 2,232
125323 12523
522 1 (52)
%NO _zi(zizz +1)
- P T 4.2
272523 1

P = (D) 1N} is then a weakly left-coprime factorization of P.

Finally, by construction, the D-module
M=t(M) = D* 3x(D' “Q) =D* 3=(D* 2RY))

is torsion-free, and thus, by Theorem E, we have extl (N’; D) = 0 where N = D! 2=(D! 3(R%)").
Moreover, we can easily check that ext3 (N D) =0 and extd (N’; D) = 0, which shows that M=t(M)
is a projective, and thus, a free D- module by the Quillen-Suslin theorem. Hence, by 3 of Theorem &
we obtain that P = (D%) 1N is a left-coprime factorization of P. We nd that the matrix R}
admits the following right-inverse over D:

1

1 0
8 2223 73 R:

0 1

Therefore, we have the Bezout identity DS X N Y = I,, where:
1

1 o0
3!

X = 5

Y =(0 1):
The next algorithm gives us a way to compute left-coprime factorizations of a transfer matrix. Up

to a transposition, right-coprime factorizations can similarly be obtained.

Algorithm 5. Input: A commutative polynomial ring D = k[x1;:::;Xn] Over a computable
eld k, a fractional representation P = 9 B, * of a rational transfer matrix P 2 K9 ' which
admits a left-coprime factorization over D.
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Output: A left-coprime factorization of P.

1. De ne the matrix R = (147 BF)T 2 DU r and de ne the D-module:

m: D! (q+r):(D1 rRT):

2. De ne the nitely presented D-module:

e =p!? r:(Dl (q+r) R)

3. Compute extl (I; D). We obtain a matrix @" 2 D"’ @*+" sych that:

W:t(m) =p! (q+r):(D1 rf @T):

4. Compute a basis of the free D-module M=t(W). We obtain a full column rank matrix
ET = (D?g N|03)T 2 p@+n a
where DS 2 DY 9 and N} 2 DY ', such that we have the following split exact sequence:

o D9 E ptaemn Q@ pr.

5. Transpose the matrix BT to obtain E = (D} NE) 2 DY @*D_ |f detD) & 0, then
P =(DL) 1N} is a left-coprime factorization of P.

Let us illustrate Algorithm Bl on an example.

Example 18. We consider again Example [[7 and the rational transfer matrix P de ned by (&I). We
have the fractional representation P = Mp B, of P, where:

8 !

2225 +1
2 g, = 12 2D2? 2
z7z3+1

=
T Bp =22723232D:

Let us de ne the matrix R = (g BJ)T and the D-modules:
W: D1 (q+r):(D1 r RT); e =p? r:(Dl (g+r) R)

The row vector RT is exactly the one de ned in Example Bl Hence, using the results obtained in
Example B, we obtain that the unimodular matrix U de ned by ([3) satis es RT U = (1 0 0). Hence,
selecting the last two columns of U and transposing the corresponding matrix, we then nd again the
matrix R} de ned by @3). Hence, using Example [[7, we obtain that P = (D) N} is a left-coprime
factorization of P, where the matrices D and N} are de ned by &2).

7 Decomposition of multidimensional linear systems
It was recently shown in [9] that the computation of bases of free modules plays a central role in the

decomposition problem of multidimensional linear systems. We shall recall this problem as well as the
main important results obtained in [9]. Let us rst recall a few de nitions and notations.
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We shall denote by endp (M) the non-commutative ring of D-endomorphisms of the D-module M,
i.e., the ring formed by the D-morphisms (namely, the D-linear maps) from M to M. Moreover, we
recall that if ¥ is a D-morphism from a D-module M to a D-module N, then coimf is the D-module
de ned by coimf = M=kerf, where kerf = fm 2 M jf(m) = Og is the kernel of f.

Let M be a nitely presented D-module, i.e., M is of the form M = D! P=(D! 9R), where
R 2 DY P, and let us denote by : DY P ¥ M the canonical projection. We can easily prove that
a D-endomorphism f of M is de ned by f(m) = ( P), where P 2 DP P is a matrix such that there
exists Q 2 DY 9 satisfying RP = QR, and is any element of D! P satisfying m = (). See [€]
for more details and for constructive algorithms which compute the pairs of matrices (P; Q) satisfying
RP = QR. These algorithms have been implemented in the package Morphisms ([10]) of the library
OreModules ([4).

We have following results.

Theorem 10. ([¥]) Let R 2 DY P, M = D! P=(D! 9R) and f 2 endp(M) de ned by P 2 DP P
and Q2 D% 9, i.e.,, RP =QR. If the D-modules

kerp(:P); coimp(:P); kerp(:Q); coimp(:Q);

are free of rank m, p m, I, g 1, then there exist matrices Uy 2 D™ P; U, 2 D® ™ P v, 2 D! d
and V, 2 D@ D 9 sych that

U=y U2 GLy(D); V = v, Vv, 2 GLq(D);
and

Vi RW; 0
Vo RW; Vo RW,

R=VRU 1= 2 D4 P,

where U 1= (W; W,), Wy 2DP ™ and W, 2 DP ® ™),

In particular, the full row rank matrix Uy (resp., Uz, V1, V2) de nes a basis of the free D-module
kerp(:P) (resp., coimp(:P), kerp(:Q), coimp (:Q)), i.e., we have:

8
kerD(:P) =ptm Us;
coimp(:P) =Dt ® M y,:
= kerp(:Q) =D* 'vy;
© coimp(:Q) =Dt @ Dy,:

An important point in Theorem [I is the computation of bases of the free D-modules kerp (:P),
coimp (:P), kerp(:Q) and coimp (:Q), which can be solved by means of constructive versions of the
Quillen-Suslin theorem and their implementations in computer algebra systems. In order to do that,
we use the package QuillenSuslin described in the Appendix.

Let us illustrate Theorem [I0 by means of an explicit example.

Example 19. Let us consider the system of partial di erential equations de ned by
1
GA+=FATA TV =0 (53)

where and are two constants. The previous system corresponds to the equations satis ed by the
electromagnetic quadri-potential (A;V) when it is assumed that the term @; D can be neglected in
the Maxwell equations. See [8] for more details. It seems that Maxwell was led to introduce the term

@ D in his famous equations for purely mathematical reasons. See [8] for more details.
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Let us consider the ring D = Q[@¢; @1; @2; @3] of di erential operators in @ = @=0t and @; = @=0X;
with rational coe cients, the system matrix of (&3) de ned by

(@] 1
0 L(e2+@2) Lo.0 L 0,05 0,
R= 10,0 6 1@2+02) L 0,05 0
Loies Lo, 6 1(@2+62) 0

and the nitely presented D-module M = D! 4=(D! 3R).
The matrices P and Q de ned by

o) 1
0 0 0 0
_Bo 0 0 0 .
P_go 0t 0t @2 §2D44’
0 @:@0: 0:03 (@2 +@3)
o) 1
0 0 0
Q=0 @0, 0 03 0,0 A2D° 3
01 @3 02 @3 @ 02

satisfy the relation RP = QR, and thus, de ne a D-endomorphism f of M. Moreover, we can check
that kerp (:P), coimp (:P), kerp (:Q) and coimp (:Q) are free D-modules of rank 2, 2, 1 and 2. Hence,
computing bases of these free D-modules by means of a constructive version of the Quillen-Suslin
theorem, we obtain:

8 10 0 O 8

2 u = 0 & 6, . =Vi= 100
2,-L1 0100 . ?v2=832
- 2T 0010

De ning U = (U] UJ)T 2GLy(D) and V = (V;" V)T 2 GL3(D), we get that R =V RU 1is
the block-triangular matrix de ned by:

O 1
o l(z+e2) Lo 0 0
R= Lo.0 Too (e @2+02+02) 0
Loses Lo, 0 (6 (62+03+62)

Now, we recall that a projector f 2 endp(M) is a D-endomorphism f of M satisfying f? = f.
We can now state another important result of [9] on the decomposition of D-modules for which the
Quillen-Suslin theorem plays a central role.

Theorem 11. ([¥]) Let R2 D% P, M = D*? P=(D! 9R) and f 2 endp(M) be a projector de ned by
two idempotents P 2 DP P and Q 2 DY 9, namely, they satisfy RP = QR, P2 =P and Q? = Q.
Then, there exist four matrices Uy 2 D™ P, U, 2D® ™ P v, 2 D! 9and V, 2 D@ D a sych that

U=(U] U)T 2GLy(D); V =(V V,)" 2GLy(D);
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and
_ 1 _ ViRW; 0 q p.
R=VRU *= 0 Vo RW, 2DY P

where U 1= (W; W), W; 2DP M™and W, 2DP ® ™,

In particular, the full row rank matrix U; (resp., Uz, V1, V2) de nes a hasis of the free D-module
kerp (:P), (resp., imp(:P) = kerp(:(Ip P)), kerp(:Q), imp (:Q) = kerp (:(Iq Q))) of rank respectively
m,p m,Il,q I In other words, we have:

8
= kerp(:P) = D! MU;y;
imp(:P) =Dt ® Muyy;

= kerp(:Q) =D? 'vy;
T imp(:Q) =Dt @ Dy,:

Let us illustrate Theorem [T by means of an example coming from control theory.

Example 20. Let us consider the di erential time-delay system describing the movement of a vibrat-
ing string with an interior mass studied in [33], namely,

g WO+ 1) o) o) =0

)+ )+ 1 () 1 () 2 2000+ 2 2()=0;
§ 1(t 2h1)+ 1(t) U(t hl):0;
T2+ ot 2hy) vt hy) =0;

(54

where h; and h, 2 R4 are such that Qh; + Qh, is a two-dimensional Q-vector space (i.e., there
exists no relation of the form mh; + nh, =0, where m;n 2 Z), ; and , are two non-zero constant
parameters of the system.

Let us consider the ring of di erential time-delay operators D = Q( 1; »2) %; 1; 2 , Where
(dy=dt)(t) = y(t) and ( jy)(t) = y(t hj), for i = 1;2. The condition on h; and h, implies that
the two time-delay operators 1 and , are incommensurable, i.e., de ne two independent variables.
Hence, D is a commutative polynomial ring. Let us denote by R the system matrix of (&4), namely,

o) 1
1 1 1 1
E+ E 0
R=Bd ' dat ° 2 2 2D* 6
2 1 0 0 . 0
0 0 1 2 0 )

and the nitely presented D-module M = D! é=(D! 4R).

Computing projectors of endp (M), we obtain a projector f de ned by the following two idempotent
matrices:

41 00 0 0 0" °, . 17t
200 0 1 0 d
P = 88815802’Q201ﬁ+12
0 0 0 0
0 00 0 1 0
0 00 O 0 1 00 0 0

Moreover, we can check that kerp(:P), imp(:P), kerp(:P) and imp(:P) are free D-modules of rank
2, 4, 2 and 2. Computing bases by means of a constructive version of the QuillenSuslin theorem, we
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then get: s
210 0 0
. — Nl 2. - 1 1
(@) 1
1 00 0 0O
. 0 0 0100
imp(:P) = D! 4Uy; Uzzg 0000 10 §;
0 0 0 0 0 1
0010
O = L 2y, -
kerD(.Q) =D V]_, V]_ = 000 1
(@) 1
1 0 1 1
imp(:Q) =D 2V,; Vv, =@ d A:
- 0o 1 rraE! 2

Forming the matrices U = (U] UJ)T 2 GLg(D) andV = (V7 V,J)T 2 GL4(D), we obtain that R
is then equivalent to the block-diagonal matrix R=V RU *:

1
o 10 0 0 0 0
0 1 0 0 0 0
0 0 1 2 21 1 2 :
d d d
00 ¢ i &"'1 2( 3+1) 1 a"'l 2 2
Now, considering the second diagonal block, namely,
© 12 3 1 ) T
s=@ d d d A;
2 i it + 3 2( 2+1) 1 + 1 2 2

and the D-module L = D! 4=(D! 2S). Using an algorithm developed in [9], we obtain that a
projector g 2 endp (L) is de ned by the two idempotent matrices:
O 1 o 1

1
Pozg §; Qo:}@ F+1 _2(% 1)A;

2
2( 3+1) Z+1
with the notations:

[ RN e R o
O O oo
O, T O
= O O O

1 d d
2, fﬁ (i+2) H+(z2 1)

- 1 4d
b= 2, dt (1+ 2)

a

"WoOWm

We can check that the D-modules kerp (:P?), imp(:P?) = kerp(:(1s  P?)), kerp (:Q%) and imp (:Q°) =
kero(:(1. Q")) are free and, using a constructive version of the Quillen-Suslin theorem, we obtain
that kerp (:P%) = DU}, imp(:P") = D! 3UJ, kerp(:Q") = DV} and imp (:Q%) = DV}, where:

d d d
ul= ¢ A &"' 12 2 > 1o t2 0 ;
O 1
1 0 0 0
uj=@ 1 0 1 0o A
2,d 1 2 20d+ 1 2 O 120 1 2) 2

Vi=(2 1) Vi=(2(3+1) & 1)
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De ning U' = (UIT UIN)T 2GL4(D) and V' = (VT VJT)T 2 GL,(D), we get:

Ol 0 0 01

S=visuy' =@ d d A

0 —+ 4+ — +
dt 1 2 ldt 2 1 2

If we denote by diag(A; B) the diagonal matrix formed by A and B and de ne the new matrices
U% =diag(l,; U" 2 GLg(D) and V¥ = diag(l»;V?) 2 GL4(D), then we get:

R=(V2"V)RU"U) ! =diag(l»;S):

The last result proves that the system de ned by (&4) with 6 unknowns and 4 equations is in fact
equivalent to the following simple equation:

2z +( 1+ M) +z(t h)+(2 1)z(t h) z3(t hy) =0 (55)
Using the results summed up in Figure [, the D-module de ned by
d d
MOZDl 3= D ﬁ+ 1+ > 1 ﬁ+2 1 2 =M;

is re exive but not projective, i.e., not free, as we have

J =annp(exty(T(MY); D)) = 1; 2;%+ 1+ 2

and dimcV (J) = 0. As we have 1; > 2 J, we obtain that the Q( 1; 2) &; 1; 2; ;' -module
Q( 1; 2) %; 1, 2; 11 pMUisfree, i.e., @3 is 1-free ([6,32]). Computing an injective parametriza-
tion of (BH), we obtain s

d
§21: 1 2Y1+ 1 &"' 2 1 Y2,

Z; = 2Y1 £+ 1+ 2 Y2 (56)
= dt !
T Z3= 2 1Yys,
and a basis of Q( 1; 2) &5 1, 25 1 -module Q( 1; 2) &; 1; 25 ;' o M"is then de ned by:
1
Y1 = 2—1 1123; Yo = 2—1(1121"'22):

Using (BB) and the transformation ( 1; 1; 2; 2;u;v)T = (U%U) 1(z1;22;23)7, we get an injective
parametrization of (&4) if we also use the advance operator 1

Finally, the Q( 1; 2) &; 1; 2; ,* -module Q( 1; 2) & 1, 20 »* b MY is free and, from
([ED), we obtain that

zz() =za(t+h) +( 1+ 2)zi(t+h)+2z(t hi+hy)+(2 1)z(t hy+hy);

showing that the Q( 1; 2) & 15 25 > -module Q( 1; 2) &; 1; 25 ' b M admits the basis
fz1;2,9. Using the transformation de ned by (UYU) 1, we get an injective parametrization of (&2)
if we also use the advance operator .

Generalizations of Theorems [0 and [T hold for some classes of non-commutative polynomial rings
of functional operators. See [9] for more details. However, we need to be able to compute bases of free
modules over the corresponding rings. A general algorithm has recently been developed in [53|, 5] for
the ring of di erential operators with polynomial or rational coe cients (the so-called Weyl algebras).
See [54] for an implementation of this algorithm and a library of examples which illustrates it.
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8 Conclusion

In this paper, we have shown new applications of constructive versions of the Quillen-Suslin theorem
to mathematical systems theory. In particular, we explained that the construction of bases of a free
module over a commutative polynomial ring D gives us a way to obtain at outputs of the correspond-
ing at multidimensional linear system as well as injective parametrizations of all of its solutions over
a D-module F. We have also shown that a at multidimensional system was algebraically equivalent
to the 1-D controllable linear systems obtained by setting all but one functional operator to particular
values in the system matrix. This last result gives an answer to a natural question arising in the
study of at multidimensional linear systems and particularly in the study of di erential time-delay
systems. Moreover, we gave constructive algorithms for two well-known problems stated by Lin and
Bose in the literature of multidimensional systems. These problems are generalizations of Serre’s con-
jecture. We also show that the computation of (weakly) left-/right-coprime factorizations of rational
transfer matrices can constructively be solved by means of the Quillen-Suslin theorem. The need for
the computation of bases of free D-modules recently appeared as an important issue in the study of
the decomposition problems of multidimensional linear systems. Finally, we have demonstrated the
di erent algorithms by means of the recent implementation of the Quillen-Suslin theorem in the pack-
age QuillenSuslin. To our knowledge, this is the rst implementation of the Quillen-Suslin theorem
in a computer algebra system which is nowadays freely available and dedicated to applications of the
Quillen-Suslin theorem and, in particular, to mathematical systems theory and control theory.

New applications of the Quillen-Suslin theorem and of the package QuillenSuslin will be studied
in the future (e.g., algebraic geometry, signal processing). Moreover, an interesting but di cult prob-
lem is to constructively recognize when a nitely presented D = A[x]-module M = D! P=(D! 9R),
where R 2 DY P and A is a commutative ring, is extended, namely, when there exists S 2 A P
such that M = D A P, where P = A! P=(Al 9S). See [57] for more details. It is well-known that
the Quillen-Suslin theorem is a particular case of this problem when M is a projective D-module
([24, 125, B8, 57]). If we can e ectively solve this problem for particular classes of D-modules, then, for
every D-module F, we obtain kerg(R:) = kerg(S:), which shows that the integration of the system
kere(R:) is algebraically equivalent to the integration of the system kerg (S:) which contains one func-
tional operator less. Such a result may simplify the explicit integration of these classes of functional
systems. Finally, another interesting problem is the computation of a minimal set of generators of a

nitely presented D = A[x]-module M = D! P=(D! 9R), where R 2 DY P. The results recently ob-
tained in [9, 0] were able to explicitly answer these last two questions on particular examples coming
from mathematical physics and control theory. However, the general case seems to be far from being
solved.

Finally, more heuristic methods need to be developed and implemented in QuillenSuslin in
order to avoid as much as we can the use of the general algorithm for solving Problem 2 Di erent
QS-algorithms need also to be implemented in QuillenQuillen and particularly the one recently
developed in [29, &1].

9 Appendix: QuillenSuslin, a package for computing bases
of free modules over commutative polynomial rings

9.1 Description of the package QuillenSuslin

The package QuillenSuslin is an implementation of a constructive version of the Quillen-Suslin The-
orem. The main idea of the algorithm was inspired by the article of Logar and Sturmfels [27].
Nevertheless, many important changes were introduced. We have roughly described the implemented
algorithm in Section B4
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The general algorithm proceeds by induction on the number n of independent variables Xx; in

independent variable, consists of the following three main parts:

1. Finding a normalized component in a polynomial vector by means of a change of coordinates
(NormalizationStep).

2. Computing a nite number of local solutions (local loop) using Horrocks” theorem (Horrocks).

3. Patching local solutions of Problem [ together to get a global one (Patch).

This general method is generally quite involved. The package consists of procedures completing
a unimodular polynomial row which admits a right-inverse to a square invertible matrix over a given
commutative polynomial ring with coe cients in Q or Z. The implementation was improved by many
heuristic methods which are used as soon as it is possible. It allows us to avoid the inductive step and
leads to simpler outputs (smaller coe cients and lower degrees).

QuillenSuslin uses the library Involutive ([3]) for computing Janet bases over commutative
polynomial rings.

> with(Involutive):
> with(QuillenSuslin);

[BasisOfCokernelModule ; Cofactors; CompleteMatrix; DenomOf ; Heuristic; Horrocks;
InjectiveParametrization; Invertibleln; IsInS; IsMonic; IsParkNormalized; IsRegular;
IsUnimod; LC; LCFactorization; LM ; Laurent2Pol; LaurentNormalization; LinBosel;
LinBose2; LowestDegree; MaxMinors; MaximalFF ; MaximalQQ; MaximalZZ;
NormalizationStep; OneLocalSol; OneStepEY ; OneStepQS; ParkAlgorithm;
ParkMatrixNormalization; Patch; QSAlgorithm; ReduceBasisDegree; ReduceDeg;
Rightlnverse; RightInverseFast; SHeuristic; SetLastVariableA; SuslinLemma;
WLCFactorization; WRCFactorization]

9.1.1 The main functions of the package QuillenSuslin

QSAlgorithm Compute a unimodular matrix U which transforms a row vector admit-
ting a right-inverse into a matrix of the form (I 0)

CompleteMatrix Complete a matrix admitting a right-inverse to a unimodular matrix

HEURISTIC Test whether or not a heuristic method can be applied for the given row
vector

BasisOfCokernelModule | Compute a basis of a free module nitely presented by the given matrix
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9.1.2 Important functions of the package QuillenSuslin

Horrocks Implementation of Horrock’s theorem which computes a solution of Prob-
lem [0 over a given local ring

IsMonic Test whether or not a polynomial row vector has a monic component

IsRegular Test whether or not a polynomial row vector forms a regular sequence

IsUnimod Test whether or not a matrix admits a right-inverse

MaximalFF Find a maximal ideal over a given one in a polynomial ring with coe -
cientin a nite eld

MaximalQQ Find a maximal ideal over a given one in a polynomial ring with rational
coe cients

Maximalzz Find a maximal ideal over a given one in a polynomial ring with integer

coe cients

NormalisationStep

Compute an invertible transformation and a change of variables such
that the last component of the transformed row becomes monic in the
last new variable

OneLocalSol Compute a matrix which is unimodular over some localization of the
polynomial ring and transforms the given matrix to (I 0)

OneStepEY OneStepQS | One inductive step of the general algorithm: return a unimodular matrix
which transforms the given matrix into a matrix where the last variable
equals 0

Patch Patching procedure: patch local solutions together

SuslinLemma

Implementation of Suslin’s Lemma which computes a polynomial h in
the ideal generated by polynomials p and g such that deg(h) = deg(p) 1
and its leading coe cient is a coe cient of the polynomial g

9.1.3 Low level functions of the package QuillenSuslin

Cofactors Compute cofactors of a (p 1) p-matrix

DenomOF Compute the common denominator of entries of a rational
matrix

LM Return the leading monomial of a polynomial with respect
to the given variable

LC Return the leading coe cient of a polynomial with respect
to the given variable

MaxMinors Return the maximal minors of a given matrix

ReduceDeg Reduce degrees of the components of a polynomial row vec-

tor with respect to given variable

Rightlnverse, RightlnverseFast | Compute a right-inverse of a row vector

ReduceBasisDegree

Reduce degrees of the elements of basis of a free module
over a commutative polynomial ring
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9.1.4 Functions of QuillenSuslin for mathematical systems theory

InjectiveParametrization

Compute an injective parametrization of a at multidimensional
linear system

LCFactorization Compute a left-coprime factorization of a rational transfer matrix
when it exists

LinBosel Compute a solution of Problem B when it exists

LinBose2 Compute a solution of Problem B when it exists

RCFactorization Compute a right-coprime factorization of a rational transfer matrix
when it exists

SetLastVariableA Compute a unimodular matrix which transforms the given matrix
into a matrix where the last variable is set to a given constant A

WLCFactorization Compute a weakly left-coprime factorization of a rational transfer
matrix when it exists

WRCFactorization Compute a weakly right-coprime factorization of a rational transfer

matrix when it exists

9.1.5 Functions of QuillenSuslin for Laurent polynomial rings

IsParkNormalized Test whether or not a Laurent polynomial is normalized, i.e., whether

or not all its coe cients are Laurent monomials

Laurent2Pol Compute a transformation which maps a row vector over a Laurent poly-

nomial ring into a row vector over a polynomial ring

LaurentNormalization | Return a change of variables which normalizes a Laurent polynomial

LowestDegree Return the lowest degree of a Laurent polynomial with respect to the

given variable

ParkAlgorithm Return a unimodular matrix over the Laurent polynomial ring which

transforms the given matrix into a matrix of the form (I 0)

9.1.6 Functions of QuillenSuslin for localizations

Invertibleln | Find an element in the intersection of an ideal and a multiplicative closed subset

of the polynomial ring

IsInS Test whether or not a polynomial belogns to a given multiplicative subset of the

polynomial ring

SHeuristic Test whether or not a heuristic method can be used over a localization of the

polynomial ring

To our knowledge, the QuillenSuslin package is the only package dedicated to the implemen-
tation of the Quillen-Suslin theorem (see [12] for a partial one) and its applications to mathematical
physics, control theory and signal processing. An OreModules version of QuillenSuslin will soon
be available on the OreModules web site [4] which will extend [IZ]. Applications of the Quillen-
Suslin theorem to algebraic geometry will be studied in the future.

9.2 Classical examples

We rst want to illustrate the QuillenSuslin package on some classical examples appearing in the
literature and, in particular, in [61, [19, 23, [38].
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9.2.1 Example taken from [19]
We consider the row vector R over the polynomial ring D = Z[x] given in [19].

In the Quil lenSuslins package, all the computations are performed for a commutative polynomial
ring with rational coe cients if the last parameter is set to true and with integer coe cients if the
last parameter is set to false.

We rst declare the independent variables x of the polynomial ring by setting
> var:=[x];

var = [X]
and then the row vector R:

> R:=[13, x"2-1, 2*x-5];
R:=[13;x? 1;2x 5]
Let us check whether or not R admits a right-inverse over the ring D.
> Rightlnverse(R, var, false);
[55 36x+6x% 6;144 36X]
Applying the QSAlgorithm procedure to the row vector R, we then obtain:
> U:=QSAlgorithm(R, var, false);
U:=[55 36x+6x2;6481 8532x+4175x> 900x3+ 72x%;

(55 36x+6x2)(2x B5)[ 6; 707+468x 72x2; 30+ 12x]
[144 36x; 72(x 4)(59 39x+6x2);721 468X+ 72x?]

The matrix U is unimodular over D and RU = (1 0 0) as we have:

> Determinant(U);

> simplify(Matrix(R).U);
100

We note that the QSAlgorithm procedure uses a heuristic method as the rst two components of the
right-inverse of R generate the ring D. Hence, the general algorithm can be avoided in this example:

> Heuristic(R, var, false);

[55 36x+6x2; 6481 8532x +4175x2 900x3 +72x4
(55 36x+6x2)(2x 5)]
[ 6; 707+468x 72x2: 30+ 12x]
[144 36x; 72(x 4)(59 39x+6x2):721 468x+72x?]

We can check that R is the rst row of the inverse U 1 of U:

> U_inv::Completegatrix(R,var, false);

3
13 x2 1 2x 5
U.inv:=4 6 55 36X+ 6x? 0 S
144 +36x 1188x 360x2+36x3 1296 1
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The residue classes of the last two rows of the matrix U ' de ne a basis of the nitely presented
D-module M = D! 3=(DR).

> BasisOfCokernelModule(R, var, false);

6 55 36X+ 6x? 0
144+ 36x 1188x 360x2+36x% 1296 1

We can reduce the degree of the components of the rows de ning the basis:

> BasisOfCokernelModule(R, var, false, reduced);

0 24 6Xx 1
12 83 24+ 12X

The injective parametrization of the system de ned by R is then de ned by:

> InjectiveParametrization(Matrix(R), var, false); 3
6481 8532x +4175x%> 900x3+72x* (55 36x+6x%)(2x 5)
4 707 +468x  72x2 30 +12x
72(x  4) (59 39x+6x2) 721 468 x + 72x2

9.2.2 Example taken from [23]
We consider the vector vector R with entries in the ring D = Q[x; y] de ned by:

> var:=[x,v];

var ;= [X; Y]
> R 1= [x"2*y+l, x+y-2, 2*x*y];
R:=[xX°y+1,x+y 2;2xy]

We can check that ideal generated by the entries of R generates D as we have:

> IsUnimod(R, var);
true

Therefore, the row vector R admits a right-inverse over D and then de nes a projective D-module
M = D! ?2=(DR), i.e., free by the Quillen-Suslin theorem.

As the rst and the last components of R generate the ring D, we know that we can use a heuristic
method for computing a basis of the D-module M. This last result can be checked as follows once
we note that we are working over the eld Q and then need to set the last parameter to true in the
procedures:

> U:=Heuristic(R, var, true);
2

1 2y X 2Xy 3
0 1 0

U :=9 %
X X(x+y 2) 2y +1

2 2

We can check that the entries of the inverse Ujn, of the matrix U belong to D, i.e., U 2 GL3(D), and
its rst row is R:

> U_inv:=CompleteMatrix(R, var, true);
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2 3
X2y+1 x+y 2 2xy

uU.inv = 9 2 1 0
- 0 1
2

The residue classes of the last two rows of Ui, in M form a basis of M. This result can directly be
obtained as follows:
> BasisOfCokernelModule(Matrix(R), var, tr%e);
0 10
01

N X

The injective parametrization of the system de ned by R is given by the last two columns of U, a fact
that can directly be obtained by:

> InjectiveParametrization(Matrix(R), var, true);

2y X 2Xy
8 1 0 2
x(x+2y 2) 2y +1

9.2.3 Example taken from [61]
We consider the row vector R with entries in the polynomial ring D = Q[x;y] ([61]):
> var:=[x,yl:
> RIz[X-4*y+2,x*y+x,x+4*y"2-2*y+1];
R:=[x 4y+2,Xy+x;x+4y? 2y+1]
We can check that ideal generated by the entries of R de nes D as we have:

> IsUnimod(R, var, true);
true

Hence, R admits a right-inverse over D de ned by:
> Rightinverse(R, var, true);
ly; 1;1]

Hence, the D-module M = D! 3=(D R) is projective, i.e., free by the Quillen-Suslin theorem. Let us
compute a basis of M. We can rst try to check if a basis can be obtained by means of a heuristic
method implemented in QuillenSuslin:

> U::Heuristic(R,Zvar, true);

3
y 2y+4y? xy+1 y(x+4y* 2y+1)

u:=4 1 X 4y+2 X+4y?2 2y+1 S
1 X+4y 2 X 4y?+2y

We then can check that U solved Problem [ as we have:

> Determinant(U);

> simplify(Matrix(R).U);
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1 00

As the command QSAlgorithm rst tries the heuristic methods which have been implemented before
using the general algorithm, its output is the same as the one obtain by the command Heuristic:
> QSAIgorithm(Rz, var, true);

3
y 2y+4y* xy+1 y(x+4y? 2y+1)
1 X 4y+2 X+4y? 2y+1
1 X+4y 2 X 4y?+2y

We can check that the rst row of the inverse Ui, of U is exactly the row vector R:

> U_inv::CompIeteMatrixéR, var, true); 3
X 4y+2 Xy+x x+4y?> 2y+1
U_inv:=4 1 y 0 5
0 1 1
The residue classes of the last two rows of Ujny in M form a basis of M. This result can directly be
obtained by doing:
> BasisOfCokernelModule(Matrix(R), var, true);
1y 0
011

Finally, the injective parametrization of the system de ned by R is given by the last two columns of
the matrix U, namely:
> InjectiveParameztrization(Matrix(R), var, false);

2y +4y? xy+1 y(x+4y®> 2y+1)
4 X 4y+2 Xx+4y2 2y+1 5
X+4y 2 X 4y%+2y

9.2.4 Example taken from [38]

We now consider the row vector R over a polynomial ring D = Z[x;y;z] de ned in [38]. Let us rst
introduce the independent variables x, y and z:

> var:=[x,y,z];
var ;= [X;y; z]

We then de ne the 4 components of the row vector R:
TL1=1-X*y-2%2-4*X*Z-X"N2*Z2-2*X*y*Z+2*XN2*yN2*72-2%X* 722
=2*X*ZN2-2FXN2* 2N 2427 XFZ N2+ 2F XN 2Ry * 7212 -
2222445 X+ XN 2427 X*Y =2 XN D*Y N2+ 27X * 72+ 25 XN * 7 - 2K XN 2Ry * 7 -
T3 =142%X+X*Y -XN2*Yy N2+ X* Z+XN2* Z-XN2*y* 7
T4:=2+X+y-X*y"N2+z-X*y*Z:

VVVVYy

The row vector R is then de ned by:
> R:= [f1, f2, 3, f4];

R:=[1 xy 2z 4xz x?z 2xyz+2x%y?z 2xz? 2x?7?+2x°yz?
2+4X+X2+2XYy 2XPy?+2Xz+2X%z 2X%yz;
1+2x+Xxy x°y2+Xxz+x%z Xx°yz;2+Xx+y Xxy’+z xyz]
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Let us test whether or not the ideal generated by the entries of R de nes D:

> IsUnimod(R, var, false);
true

Hence, the row vector R admits a right-inverse over D and the D-module M = D! 4=(DR) is
projective, i.e., free by the Quillen-Suslin theorem. Let us compute a basis of the D-module M. We
can rst check that the second and the third components of R generate the whole ring D, so a heuristic
method can be used in this example. This result can directly be checked by doing:

> U:=Heuristic(R, var, false);
u:=
[0;1;0;0]
[4+3z+4y 2xy? xyz+2xz+z2+3yz 2xy%?z xyz?+xz2+2y? xys3;
(4 3z 4y+2xy?+xyz 2xz z? 3yz+2xy?z+xyz? xz? 2y?+xyd®)
(1 Xy 2z 4xz X%z 2xyz+2x?y?z 2xz° 2x%272+2x%yz?);
1 2x xy+x2y? xz x?z+x°yz; (4 3z 4y+2xy?+xyz 2xz
72 3yz+2xy?z+xyz? xz2 2y?+xy®)( 2 X y+Xxy? z+xyz)]
[%1;
%1(1 Xy 2z 4xz x2z 2Xxyz+2x2y?z 2xz%2 2x?72?>+2x°yz?);
2+4X+X2+2Xy 2XPy?+2Xxz+2X°z 2X%yz;
%l( 2 X y+xy?> z+xyz)]
[0;0;0;1]
%l:= 7 6z 8y 2x 5xz+4xy?+2xyz 2z?> 6yz 2xz?>+4xy’z
+2xyz® 4y? xy+2xy3
We can check that the matrix U is a solution of Problem [ as we have:

> Determinant(V);

> simplify(Matrix(R).U);
1000

As the general procedure QSAlgorithm rst tries to use heuristic methods described in Section
before applying the general algorithm, it returns the same output as the one obtaind with Heuristic.
We also know that the rst row of the inverse of U is R, a fact that can be checked using the procedure
CompleteMatrix:

> B:=CompleteMatrix(R, var, false);
B:=
[1 Xy 2z 4xz x%°z 2xyz+2x2y?z 2xz%? 2x%z%>+2x°yz?;
2+4X+X2+2Xy 2xX?y?+2xz+2Xx%°z 2X%yz;
1+2x+xy X°y2+Xxz+x%z X°yz;2+X+Yy Vy?°X+z Xyz]
[1;0;0;0]
[0;7+62z+8y+2x+5xz 4y>Xx 2Xyz+2z2+6yz+2x2z?> 4y>xz
2Xyz?+4y? +xy 2xy%4+3z+4y+2xz 2y’X Xyz+2z°+3yz
+x22 2y?xz xyz?2+2y? xy3 (]
[0;0;0;1]
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A basis of the D-module M can be obtained by:
> BasisOfCokernelModule(Matrix(R), var, false);
[1;0,0;0]
[0;7+62+8y+2x+5xz 4y>Xx 2Xyz+2z2+6yz+2xz> 4y>xz
2Xyz2+4y?+xy 2xy%4+3z+4y+2xz 2y’X xyz+z?>+3yz
+x2z% 2y?’xz xyz?+2y?> xy3 0]
[0;0;0;1]
We can try to reduce the degree of the generators of the basis previously computed using the option
reduce:
> BasisOfCokernelModule(Matrix(R), var, false, reduce);
[1;0;0;0]
[0;7+62+8y+2x+5xz 4y>Xx 2Xyz+2z2+6yz+2xz> 4y>xz
2Xyz?+4y?+xy 2xy%4+3z+4y+2xz 2y?X Xyz+2z2°+3yz
+x2z% 2y?xz xyz?+2y? xyS3; 0]
[0;0;0;1]
In this case, we cannot reduce the degree of the generators of the previous basis of M.

9.2.5 Example given by A. van den Essen

The following example was given to us by A. van den Essen (Radboud University Nijmegen). We
are grateful to him for letting us using it for illustrating the package QuillenSuslin. We consider
the polynomial ring D = Q[t; x;y; z]

> var:=[t,x,y,z];
var :=t; X; y; z]
and we consider the row vector R de ned by:
>  Riz[2*t*Xx*z+t*y"2+1, 2*t*x*y+t"2, t*x"2];
R:=[2txz+ty?+1; 2txy+t?; tx?]
We check that the ideal of D generated by the entries of R de nes the whole ring D:

> IsUnimod(R, var, true);
true

Hence, the row vector R admits a right-inverse over D, and thus, the nitely presented D-module
M = D! 3=(DR) is projective, i.e., free by the Quillen-Suslin theorem. Let us solve Problem [
and compute a basis of the D-module M. In order to do that, we can rst check that none of the
heuristic methods described in Section and implemented in QuillenSuslin can be used to solve
the problem:

> infolevel [QSAlgorithm]:=3;
infolevel gsaigorithm = 3

> U:=QSAlgorithm(R,var, true);
QuillenSuslin/RowQS:  RowQS  [2*t*x*z+t*y"2+1, 2*t*x*y+t"2, t*x"2], [t, X, Yy, Z]
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QuillenSuslin/RowQS:  Compute Rightlnverse

A right-inverse of the row vector R is de ned by:

QuillenSuslin/RowQS:  Rightlnverse

[25EN2XY 2 X* 225 T X ZHE DXy M- TRy 241, BAXNFZA2XYNB+BFXN2XZFYNG-A* XN ZN XY N2
—ARERY AR ZHAIXN2X N2+ DR YNTRX-TRYNBH2RYN DR KR 7, ~1BFYN*XND*¥ZN2-16FYNGHX*Z-8*y*X* 22
_4*y/\8_4*y/\3*z]

QuillenSuslin/RowQsS: RowQS  Test heuristic methods. For more information set
infolevel[Heuristic]:=3

QuillenSuslin/RowQS:  Not easy - no heuristic methods work

We obtain that none of the heuristic methods implemented in QuillenSuslin can be applied to R.
Hence, we need to use the general algorithm presented in Section B4l The rst step of this algorithm
is to compute a transformation which maps R to a row vector with a monic component in the last
variable z. We obtain that the permutation of variablest® z;x A t;y @ Xx;z ® y normalizes R:

normalization over QQ

QuillenSuslin/RowQS:  The row after normalization
[2*z_*t_*y +z_*x _"2+1, 2*z_*t_*x_+z "2, z_*t_"2]

Let us call the new row vector R. We can now test whether or not any of heuristic methods can be
applied to R:

QuillenSuslin/RowQsS: Test heuristic methods for the normalized row
[2*%z_*t_*y +z_*x "2+1, 2*z_*t_*x_+z_ "2, z_*t 2]

QuillenSuslin/RowQsS: No heuristic methods work for the
normalized row

No heuristic method can be applied to R. We can then check if it is possible to reduce the degree of
the components of R using its monic component z2 + 2z tx:

QuillenSuslin/RowQS:  No reduction - the rows is already reduced
[2*%z_*t_*y +z_*x "2+1, 2*z_*t_*x_+z "2, z_*t 2]

No simpli cation can be done. Now, we enter the general algorithm:
QuillenSuslin/RowQS:  OneStep - Enter the inductive procedure and reduce one variable:
QuillenSuslin/RowQS:  OneStep - Compute local solutions and patch them together!
QuillenSuslin/RowQS:  OneStep - For more information set infolevel[OneStepMore]:=3
After one inductive step, we obtain a matrix U 2 GL3(D) such that
R(t;x;y;2)U =R(t; x;y;0) = (1 00);
which directly solves Problem

QuillenSuslin/RowQS:  After one step: [1, 0, O]
QuillenSuslin/RowQS:  Now repeat the computation for fm [1, 0, 0]

QuillenSuslin/RowQS:  RowQS [1, O, 0], [t_, x_, v 1
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QuillenSuslin/RowQS:  Compute Rightlnverse
QuillenSuslin/RowQS:  Rightlnverse [1, 0, 0]

QuillenSuslin/RowQsS: RowQS  Test heuristic methods. For more information set
infolevel[Heuristic]:=3

Hence, we obtain that the solution of Problem B is given by matrix U de ned by:

Uu:=

[

1 ty?+4x2721% 2txz+0y* +412y?xz+2y" xt? +8x322y3 t2 + 8x2zy° t?;
4y0t2x? +8x3zt?y* 2txy t2+4yzx?t?;

272 x3+12y2x?  tx2+42x*zyS +2y5 12 X3

[ 823tx3 ty® 6ty*xz 12x%z%ty? 16z3x*ty® 24y5z2x3t 12y'x?zt 2ty°x;
1+ty? 4ty8x? 16tx*z%y* 16tx3zyS+2txz 4ty zx? 8x3z%yt;
4z2x%t 2y'x3t 8z2x5ty® 8zx*ySt 4ty?zx® yixi]

[

32tx3z3y* + 48122 x2ye + 16 X223ty + 24ty8zx + 16ty3z2x + 4y° zt + 4ty'0;
4ty® +16x222ty? +32y522x3t+ 32y x?zt 4tyz+8ty9x;

1+4ty8x2 +16tx*z2y* +16tx3zy® + 4ty3zx? + 8x3z2yt]

infolevel [QSAlgorithm]:=0;
infolevel gsaigorithm = 0

We can show that the matrix U is a unimodular matrix satisfying RU = (1 0 0):

LinearAlgebra[Determinant](U);

simplify(Matrix(R).U);
1 00

Hence, the rst row of the inverse of U is the row R, a fact which can directly be checked using the
command CompleteMatrix:

B:=LinearAlgebra[MatrixInverse](U);

B .=

[2txz+ty?+1;2txy+t?; tx?]

[Bty*xz +ty® +2tyx+24y°22x3t+12y'x2zt+ 1623 x* ty3 + 12x2 2% ty?
+823tx3;1+16tx* 22yt + 16tx3zy® +8x3 22yt +4ty3zx? + 412y’ xz
+12y* 2tXzZ+ Aty X2 +4XP 222 + 2y xt2 +8Xx3 22y 2 +8X%zy0t?  ty?;

822x5ty3 +4ty?zx3+422x4t+2y" x3t+8zx Yy t+y*x?t]

[ 4ty?0 16x2z3ty 32tx3z3y* 48tz°x°y% 24ty8zx 16ty3z%x
AySzt; 16t2y*z2x%2 16y0zt?x+4ty® 4y3zt? 8yxz?t?+4tyz
8ty?x 4t?y® 32y5z2x3t 32y'x%zt 16x%z%ty?;

1 16tx*z2y* 16tx3zy® 8x3z%2yt 4tydzx® 4ty®x?]

The residue classes of the last two rows of the matrix B in M form a basis of the D-module M.
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> BasisOfCokernelModule(Matrix(R), var, true);
normalization over QQ

[6ty*xz +ty® +2ty9x +24y°22x3t+ 12y x2zt + 1623 x* ty3 + 12x% 22 ty?
+8z3tx3;1+16tx*z2y* +16tx3zy® +8x3z2yt+4ty3zx? + 4t?y? Xz
+12y* 2tXz+4tye X2 +4XP 222 + 2y  xt? +8x3 22y 2 + 8% zy° 2 ty?;
822x5ty3 +4ty?zx3 +422x4t+2y" x3t+8z x4y t+y*x?t]

[ 4ty10 16x2z3ty 32tx3z3y* 48tz?2x?y% 24ty8zx 16ty3z°x
4ySzt, 16t2y4z2x% 16y0zt?x+4ty® 4y3zt? 8yxz?t? +4tyz
8tyox 4t?y® 32y5z?2x3t 32y’'x?zt 16x%z°ty?;

1 16tx*z%2y* 16tx3zy® 8x3z%2yt 4tydzx® 4ty8x?]

We can try to reduce the degree of the basis elements using the option reduce:

> BasisOfCokernelModule(Matrix(R), var,true, reduce);
normalization over QQ
[ 8x3z2y® 8x%2zy®> 2y'x y* 4y?xz 4x27?;
2tySx  4ty3zx? ty? 2txz+1;0]
[16y*x?z2+16y°xz +4y8 +4y3z+8yx2z?; 4tyS +8ty*xz +4tyz; 1]
Let us now detail the local step of the algorithm, i.e., compute and patch the local solutions to get
the unimodular matrix U:
> var;
[t x; y; 2]
> R;:
[2txz +ty? +1; 2txy +t?; tx?]
> IsMonic(R, var[-1]);
false
> IsMonic(R, var, p);
true; [[2txy + t?; t]; 2; 1]
None of the components of R is monic in the last variable z. But, the second component is already
monic in the rst variable t. Hence, by a simple change of variables, i.e., a permutation of variables,
we obtain a normalized component in the last variable.
> var:=[x,y,z,t];
var :=[X;y; z; t]
> varc:=var[l..-2];
varc ;= [X; y; Z]

> IsMonic(R, var[-1]);
true

Let us take an arbitrary maximal ideal M of Q[x;y; z]:

> Id:=[var[1]];
Id :=[x]
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> Max[1]:=MaximalQQ(ld, varc);
Max, = [z; y; X]

We compute a local solution of Problem B over the localization Q[X;y; z]m, [t] of the polynomial ring
D = Q[x;y; z;t], where M is the maximal ideal de ned by Max[1]:

> H[1]:=Horrocks(R, Max[1], var, true);
Hl =
1 X2+4X2yz+2xy3+2txz+1ty?
%1 '
t( 4x3y+8y?zx3+4yix? 2xy txX?+4x2ytz+2xy>3t t)
%1 (1 + x2) '
( X2+4x°yz+2txz+2xy3+ty?)t
%1

2Xx2 +y?)2
%;( 1 2x2+4xtyz+2xy® x* 2tx3z+8x3z%yt+8ty3zx?
0

2 2
2txz  ty?x?+2ty°x  ty?)=(%l (1 +x?)); (@xzviy +H)@xz+y)

%1
2xz+y2  2x3y tx®+4xPytz+2xy’t t  2txz+ty?+1
%1 (1 + x2) %L1 ’ %1

%l:= 1 x2+4x2yz+2xy°3

Let us denote by d; the denominator of Hi. As d; is not invertible in the polynomial ring D, we
compute a new local solution in the localization of D with respect to a maximal ideal M, containing
d1:

> d[1]:=DenomOf(H[1D);
di:=( 1 xX2+4x2yz+2xy3) (1 +x?)

We nd a maximal ideal M of Q[X;y;z] containing d; as follows:

> Max[2]:=MaximalQQ([d[1]], varc);
Max, :=[z;y; xz; Xy; 1+ x?]

We can then compute a local solution of Problem [ over the localization Q[X;y;z]m,[t] of D with
respect to the maximal ideal M of Q[x;y; z], where M is de ned by Max[2]:

> H[2]:=Horrocks(R, Max[2], var, true);
2

1 0 t 3
— 0 1 0
Hz =4 2Xxz+y2  2xy+t 2txz+ty?+1
X2 X2 x2
The denominator of H» is then:
> d[2]:=DenomOf(H[2]);
dy = X2

The ideal de ned by the denominators di and d, generates Q[X;y;z] as we have:

> IsUnimod([d[1].,d[2]], varc, true);
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true

We can now patch the local solutions H; and H, together as follows:
> V:=Patch(var[-1], varc, [H[1], H[2]], true);

V =
[
1 ty?+4x2z228%2 2txz+t2y* +4t2y?xz+ 2y xt? +8x322y3 2 +8x%zy° t?;
4y t2x? +8x3zt2y* 2txy t2+4yzx3t?;
27zt x3 +12y? X% tx2+42xAzyd + 2y 2 X3
[ 823tx® ty® 6ty*xz 12x%z2ty? 16z3x*ty3 24y5z2x3t 12y'x?zt 2ty°x;
1+ty? 4ty8x? 16tx*z%2y* 16tx3zy®+2txz 4ty3zx® 8x3z%yt;
4z°x%t 2y'x3t 8z2x5tyd 8zx4ySt 4ty?zx® yix?t]
[
32tx3z3y* +4812°x2y0 + 16 X223ty + 24ty8zx + 16ty3 22 x + 4yS zt + 4 ty10;
Aty® +16x%z2ty? +32y°22x3t+32y'x%zt 4tyz+8tydx;
1+4ty8x2 +16tx*z2y* +16tx3zy® +4ty3zx? +8x322yt]

The matrix V 2 D3 8 satis es that R(x;y;z;t)V = R(x;y;z;0):

> simplify(Matrix(R).V);
100
Moreover, we can check that V is a unimodular matrix, i.e., V 2 GL3(D), as:

> LinearAlgebra[MatrixInverse](V);

[2txz+ty?+1;2txy+1t?; tx?]

Bz3tx3+ty0 +12y"x2zt+24y° 2?2 x3t+ 1623 x* ty3 + 6ty* xz + 12x2 22 ty?
+2ty9x;1 2txz ty?+4y3ztx?+16tx*z2y* +16tx3zy® +8x3z%ty
+2yt 2y X2 +4x2 2212 +8x3 22y 2 +8xX2 zyP 2 + 41?2 y2 xz + 4ty8 X2,

8x5Z2ty3 +4zx3y2t+y*x2t+8x*zy>t+ 2y’ X3t +4x*z%1]

[ 16Xx2z3yt 4ySzt 4tyl® 32tz3x3y* 48tz2x2y5 24tydzx
16ty3z2x;4tyz 4y3zt? 8yxz?t? 4t2y8+4ty® 32y'x?zt
32y5z2x3t 16t2y*z%2x%2 16y%zt?x 16x%z%ty? 8ty°x;

1 4y3ztx? 16tx*z%y* 16tx3zy® 8x3z%ty 4ty®x?]

We can check again that R(x;y;z;0) = (10 0) as we have:

> R[0]:=subs(var[-1]=0, R);
Ro :=1[1; 0; 0]

As Ry already has the form (1 0 0), we nally get that the unimodular matrix V over the polynomial
ring D satis esRV = (100).

Finally, the last two colums of the matrix V de ne an injective parametrization of the system
de ned by R:

> InjectiveParametrization(Matrix(R), var, true);
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[4y8t2x2 +8x3zt2y* 2txy t2+4yzx?t?;

272 x3 +12y2 X% tx2+4t2x*zyd +2y0 2 X7

[L+ty? 4ty8x? 16tx*z%2y* 16tx3zy®+2txz 4ty3zx® 8x3z%yt;
472x%t 2y"x3t 8z2xty® 8zx*y®t 4ty?zx® y*x?t]

[ 4ty® +16x2Z22ty2 +32y°z2x3t+32y' x%zt 4tyz+8ty%x;
1+4ty8x2+16tx*z2y* +16tx3zy® +4ty3zx2 +8x3z2yt]

9.2.6 Example over Z[z;;z5]
To nish, let us consider a non trivial example over the ring D = Z[z;; z].

> var:=[z[1],z[2]1];

var :=[z1; z2]

We consider the row vector R de ned by:

> R:=[z[1]"2, 3*z[2]+1,z[1]+z[1]*z[2]+z[2]"2];

R:=[21%,32, + 1,21 + 21 25 +257]

The row vector R admits a right-inverse over D as we have:

> S:=Rightlnverse(R, var, false);

S:=[36; 9z, +182:2+ 18712, 3z, +1; 54z, +9]

We check that we have RS = 1:

> simplify(Matrix(R) -Matrix(<S>));

1

Hence, we obtain that the D-module M = D! 3=(DR) is projective, i.e., free by the Quillen-Suslin
theorem. Let us compute a unimodular matrix U satisfying Problem 1 and a basis of the D-module
M. We can rst try to use the heuristic methods implemented in QuillenSuslin (we recall that we
need to set the parameter to false as the coe cients of D belong to Z and not Q):

> Heuristic(R, var, false);
false

None of the heuristic methods implemented in QuillenSuslin is successful for this example. Hence,
we have use a general algorithm to solve Problem 1 We detail all the intermediate computations:

> infolevel [OneStepMore]:=3;
> infolevel [QSAlgorithm]:=3;

infolevel g nestepmore *=

infoleveIQSA,gorithm =3
> U:=QSAlgorithm(R, var, false);
QuillenSuslin/RowQS:  RowQS [z[1]72, 3*z[2]+1, z[1]1+z[1]1*z[2]+z[2]"2]. [z[1]., z[21]
QuillenSuslin/RowQS:  Compute Rightlnverse

QuillenSuslin/RowQS:  Rightlnverse [36,-9*z[1]+18*z[1]"2+18*z[1]*z[2]-3*z[2]+1,
-54*z[1]+9]
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QuillenSuslin/RowQS: RowQS Test heuristic methods. For more information set
infolevel[Heuristic]:=3

QuillenSuslin/RowQsS: Not easy - no heuristic method works

QuillenSuslin/RowQsS: The row after normalization
[z[1]~2, 3*z[2]+1, z[1]+z[1]*z[2]+z[2]"2]

QuillenSuslin/RowQsS: Test heuristic methods for the normalized row
[z[1]"2, 3*z[2]+1, z[1]+z[1]*z[2]+z[2]"2]

QuillenSuslin/RowQS:  No heuristic method works for the normalized row

QuillenSuslin/RowQS:  No reduction - The row is already reduced
[z[1]"2, 3*z[2]+1,z[1]+z[1]*z[2]+z[2]"2]

QuillenSuslin/RowQS:  OneStep - Enter the inductive procedure and reduce one variable:
QuillenSuslin/RowQS:  OneStep - Compute local solutions and patch them together!
QuillenSuslin/RowQS:  OneStep - For more information set infolevel[OneStepMore]:=3

QuillenSuslin/OneStepMore: OneStepMore  [z[1]72, 3*z[2]+1,z[1]+z[1]1*z[2]+z[2]"2]
[z[1], z[2]] false

QuillenSuslin/OneStepMore:  MAX, r, det [2, z[1]] [6*z[1]+1] 3/(6*z[1]+1)
QuillenSuslin/OneStepMore:  MAX, r, det [z[1]+1, 5] [6*z[1]+1, z[1]"2] 1/z[1]"2
QuillenSuslin/RowQS:  After one step: [z[1]"2, 1, z[1]]

QuillenSuslin/RowQS:  Now repeat the computation for fm [z[1]"2, 1, z[1]]
QuillenSuslin/RowQS:  RowQS  [z[1]172, 1, z[1]1]1, [z[11]1

QuillenSuslin/RowQS:  Compute Rightlnverse

QuillenSuslin/RowQS:  Rightlnverse [0, 1, 0]

QuillenSuslin/RowQsS: RowQS  Test heuristic methods. For more
information set infolevel[Heuristic]:=3

U:=

[ 10825;1+10822212; 722122 129622°217]

[ 5422212+ 27212, 5425227 32 +1+92,7;

(5425212 272125 +54125%277 +32, 1 92,9742,

362221% 732 73 +3247,%21° 648125°7:% 6482132,3 252 +10812,32;7)
2722 (621 1); 272, (62z1 1)z12;1 10825212 +19442,%22,3 324252212 + 32;]

> infolevel [OneStepMore]:=0;
> infolevel [QSAlgorithm]:=0;

infolevel opestepmore =
infolevel gsaigorithm =
The matrix U solves ProblemPlas RU = (100)

> simplify(Matrix(R).U);
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andU 12D2 3 ie., U2GL3(D) as we have:
> U_inv:=LinearAlgebra[MatrixInverse](U);
U_inv =
[22%; 322 +1; 21 +21 22 +257]
[1; 1082, +32472,%2 1944725274 ;
32475271 + 367y 7o +1082,° 648252212 64817,%741]
[0; 1622120 +272p; 5425212 +272125 5472%77 32, +1+9257]

In particular, we check that the rst row of the inverse of the matrix U is R. The residue classes of
the last two rows of Ui,y in M form a basis of the D-module M.

Let us detail the di erent steps of the general algorithm on this example and compute the matrix
U step by step:

> var;
[21; 22]
> R;
(212,322 + 1, 21 + 21 25 + 257
> IsMonic(R, var,p);
true; [[z12; z1]; 1; 10; [[21 + 21 22 + 222; 22]; 3; 2]

The third component of R is already monic in the last variable z,, so we can enter the local loop. Let
us take an arbitrary maximal ideal My of Z[z4]:

> varc:=var[l..-2];

varc 1= [z1]
> Max:=[2,z1];
Max = [2; z1]
> Max[1]:=MaximalZz(Max, varc);
Maxy = [z1; 2]

We obtain Mj = (z1;2). We now compute a local solution over the localization Z[z1]m, [22] of the
polynomial ring D, where M denotes the maximal ideal Max[1]:

> H[l]::Horrogks(R, Max1, var, false);

1 0 0 3
(Bz +3z1 1D z72? 3(z1 +2122 +1259) 3z,+3z; 1
H1 ':g 6z1 +1 6z1 +1 6z, +1 é
97,2 3(32, +1) 9
6z; +1 6z; +1 6z; +1

We denote by d; the denominator of H;. As d; = 62z; +1 2 M is not invertible in D, we need to
compute a new local solution over a localization of the ring D with respect to a maximal ideal M of
Z[z4] containing dj:
> d[1]:=DenomOf(H[1]);
dp ;=621 +1
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> Max[2]:=MaximalzZ([d[1]], varc);
Max, :=[z1 +1; 5]

We then get the maximal ideal My, = (z; + 1;5) of Z[z;]. Let us compute a local solution in a
localization Z[z1]m,[2z2], where M is the maximal ideal Max[2]:

> H[2]:=Horrocks(R, Max£2], var, false);

1 3z, +1 27 +121 25 +222
0 1 0
0 0 1
The denominator d, of Hs is then:
> d[2]:=DenomOf(H[2]);
dy ;=212

We check that d, = z2 2 M, and the ideal de ned by the d; and d, generates Z[z;] as we have:

> IsUnimod([d[1],d[2]], var, false);
true

We can now patch the local solutions H; and Ha together to get a global solution U;:
> U[1]:=Patch(var[-1], varc, [H[1], H[2]], false);

U; =

[1; 108zy; 362223 (1+ 3621 22)]

[0; 547,72:%2+272120 5475%77 32, +1+92,2;

7 (621 1)(1082227:%2+3212+ 1082213 +3212, 471 7o 3672 712)]
[0:2725 (621 1); 1944752213 + 547, 7,% 324252212 272172 + 312, +1]

The matrix U; is unimodular, i.e., U; 2 GL3(D), as we have:

> LinearAlgebra[Determinant] (U[1]);
1

Moreover, the matrix U; satis es that R(z1;z,) U = R(zy;0):
> simplify(Matrix(R).U[1D);
22 1 4
which can be compared with:
> R[0]:=subs(z[2]=0, R);
Ro :=[21%; 1; 71]
Now, we need to reduce Rg to (1 0 0) by means of elementary column operations:

> U[2]:=Heuristic(R[0], var, falsze);

0 1 0
U, ::4 1 212 Z1 5
0 0 1

Finaly, we obtain that the matrix V = U; U, de ned by
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> V:=simplify(U[1].V[2]);
V =
[ 10825;1+10822212;722122 129622°217]
[ 5422212 +27212, 542,227 3z +1+92,7;
(5425212 272125 +54125%27 +32, 1 92,%)1732;
362, 213 21 2> Z1 +324222213 648Z22214 648Z13223 222+108Z23212]
[272, (621 1); 272z (6z1 1)z32;1 10822212 +19447,°2;% 324252212 + 3125
satis esRV =(100)
> simplify(Matrix(R).V);
1 00
and V is unimodular over D, i.e., V 2 GL3(D), as we have:

> LinearAlgebra[Determinant](V);

Hence, the matrix V is a solution of Problem
To nish, let us denote by D' = Q[z1; zo] and compute a basis of the D’-module M’ = D% 3=(D'R):

> BasisOfCokernelModule(Matrix(R), var, true);

3
1 1 1
s + 27, +— 72,2 — 1
§ gttt p2 Sht g Og
3z 1 0 1
2 1

We can try to reduce the degrees of the basis elements:

> BasisOfCokernelModule(Matrix(R), var,true, reduce);
2

1 2z, 2
0 1 —+ =+ =
9 3 3%
321 1 0 1
2 4

The residue classes of the rows of the previous matrix in M° de ne a basis of the free D*-module M°.

9.3 Laurent polynomial rings & Park’s Algorithm

As it was described in [38], the problem of completing a matrix R which admits a right-inverse over

matrix over D can be transformed into Problem [ by means of a certain transformation what we shall
call Park’s transformation in what follows. Then, we can use a QS algorithm for the corresponding
polynomial matrix and use the inverse transformation to get a solution over the Laurent polynomial
ring D. We refer the reader to [38] for more details. The corresponding algorithms have been
implemented in QuillenSuslin as we are going to demonstrate it now.
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9.3.1 Example taken from [39]

Let us consider the Laurent Polynomial ring D = Q[z;z '] and the following row vector R:

> var:=[z];
var = [z]

> R:i=[1/z+1+z, 2/z"2+1,1-7];
1 2
R=[-+1+z; 5 +1;1
= Z Z]

The row vector R is unimodular over D if the polynomial row vector R obtained by means of Park’s
transformation admits a right-inverse over Q[Z]. Let us compute Park’s transformation for R:

> nvar:=[Z];
nvar := [Z]

> R _bar, T, su, isu:=Laurent2Pol(R, var, nvar);

R_bar; T; su; isu :=

2
z
M+z+2z2% 2z Zz?; 2Z Zz];go
0

[z=2],[2=12]

> IsUnimod(R_bar, nvar);
true

Hence, the row vector R = (1+Z+2Z2 2Z Z? 2Z Z?)admits a right-inverse over D = Q[Z],
and thus, we obtain that R admits a right-inverse over D. Hence, the D-module M = D! 3=(DR)
is a projective D-module. It is constructively proved in [36, 38| that every projective module over a
Laurent polynomial ring is free. Therefore, the D-module M is free. In order to compute a basis of
M, following [38], we rst compute a basis of the free D-module N = D" °=(D R) and then use Park’s
transformation to get one of the free D-module M. In other words, we rst compute U 2 GL3(D)
satisfying RU = (1 0 0) and then obtain a matrix U 2 GL3(D) satisfying RU = (1 0 0). We can
directly obtain U by calling the procedure ParkAlgorithm as follows:

> U:=ParkAlgorithm(Matrix(R), var); 3
2(z 2) 2+ 7° z2+38

322 z2 3z
U := 2+z  1+z+2%2 (2+2)?

3z z 3

0 0 1

We can check that RU = (1 0 0) as we have
> simplify(Matrix(R).U);

and U 2 GL3(D) as detU =1
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> LinearAlgebra[Determinant](U);
1

Finally, a basis of the free D-module M is given by the residue classes of the two last rows of the
inverse U 1 of U de ned by:

> LinearAlgebra[MatrixInverse](V);

1+z+22 2+72 3
5 1 z
z z
2+7z 2(z 2 2+7z
3z 322 3
0 0 1

9.3.2 Example taken from [36]

Let us consider D = Q[z;z '] and the matrix R with entries in D de ned by:

> var:=[z];
var = [z]

> R:=Matrix([[3/z-2-2*z+2*z"2, 3/z-2*z,2*Z],
> [6/z+25-23*2-16*2"2+20*2"3, 6/2+29-4*72-20*2"2, 2+4*z+20*z"2]]);
2
3 2 2z+27? 3 2z 2z

R::ge z 5 z g
E+25 23z 16z2+2027° E+29 4z 2022 2+4z+2027°

We can check that the D-module M = D! 3=(D! 2R) is projective, and thus, free by the constructive
result obtained by Park in [36, 38]. Let us compute a unimodular U over D such that RU = (I, 0):

> U:=ParkAlgorithm(Matrix(R), var);
2
6 29z+4z%2+202° 3+27° 2( 3+7%)

z z z

U :=§ 6+25z 23z%2 16z3+20z* 3 2z 2z22+27° 23 2z z?+72%
z z z
0 0 1

We check that we have RU = (I, 0):
> simplify(Matrix(R).U);

100
010
Finally, we check that U is a unimodular matrix, i.e., U 2 GL3(D):

> LinearAlgebra[Determinant](U);
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9.4 Equivalences of at multidimensional linear systems
9.4.1 Examples[Z B and

We consider the di erential time-delay linear system de ned by @0) ([32]). The matrix R associated
with @) is de ned by

> R:=Matrix([[d-delta+2, 2,-2*delta],[d,d,-d*delta-1]1);

d +2 2 2

R:= d d d 1

where d denotes the time-derivative operator and the time-delay operator. Hence, we need to consider

the commutative polynomial ring D = Q[d; ] and the D-module de ned by M = D! 3=(D! 2R).

> var:=[d, delta];
var :=[d; ]

Let us check whether or not the matrix R admits a right-inverse over D:

> IsUnimod(R, var);
true

As the matrix R admits a right-inverse over D, we then obtain that the D-module M is projective,
i.e., free by the Quillen-Suslin theorem. Let us solve Problem [Tt

> U:=QSAlgorithm(R, var);
2

0 0 2 3
::Ed?_'_% d2 +d d2 +Zz

d 2

. 1 2 d

We can check that U gives a solution of Problem [0 as we have RU = (I, 0)

> simplify(R.U);
100
010

and U is a unimodular matrix over D, i.e., U 2 GL3(D):

> LinearAIgebra[Matrixlnvegse](u);
d +2 2 2

gdddlé

1=2 0 0

The residue class of the last row of the matrix U * in M de nes a basis of M. Moreover, the system
de ned by R admits the following injective parametrization

> Q::InjectiveParametrizationzgR, var, true);

2
Q:=4d +d d? +25
d> d

3
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i.e., for every D-module F (e.g., C1(R)), every F-solution of the system kerg (R:) has the form
> simplify(Matrix(Q).Mat2rix([[xi]]));

5 3
4 (d® d+d?+ 2) 5
d( d+ )

for a certain 2 F. As the system kere(R:) is at, by Corollary B we know that kere(R(d; ):)
is algebraically equivalent to the controllable ordinary di erential system without time-delay, i.e., to
kere (R(d; 1):). We can compute an invertible transformation which maps F-solutions of kerg (R(d; 1):)
to F-solutions kere (R(d; ))):

> U[1]:=SetLastVariableA(R, var, 1, true);
2

1 o o 3
1., 1 1 1
ulzzgéd 24ty 21 12
d( 1)
5 0 1
We can check that R(d; )U; = R(d; 1):
> R[1]:=simplify(R.U[L]);
_d+1 2 2
Ri= "4 4 1 d

The inverse transformation, i.e., the transformation sending F-solutions of kerg(R(d; ):) to F-
solutions of kerg (R(d; 1):), is then de ned by the matrix U, 1.
> LinearAlgebra[MatrixInverse](U[1]);
2 1 0 o0

g %d % + +%d 1 +1z
d(
2

As the E = Q[d]-module N = E? 3=(E! 2R;) is also free, we can nd U, 2 GL3(E) such that
R1 U, = (I 0). For instance, we get:

3

~ NI|

1

0 1

> U[2]:=QSAlgorithm(R[1], var);
2

0 o 2 3
1 d ,
Uz=§§+§ 1 d+1z
d 1 @ d

N

Similarly, we can prove that the system kerg(R(d; ):) is algebraically equivalent to the system
kere (R(d; 0):), namely,

> R[0]:=subs(delta=0, R);

d+2 2 0

Ro:= "4 4 1

by means of the following invertible transformation:
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> V[1]:=SetLastVariableA(R, var, 0, true);
2

1 0 03
1., 1
Z + =
V1::§2d 2 1 z
d
— 1
> 0

The inverse transformation, i.e., the transformation sending F-solutions of kerg(R(d; ):) to F-
solutions of kere (R(d; 0):), is de ned by the matrix V, *:

> LinearAlgebra[MatrixInverse](V[1]);
2

1 0 O
d
- 0!

As the E = Q[d]-module P = E* 3=(E! 2Ry) is also free, we can nd V, 2 GL3(E) such that
RoVz = (l2 0). In particular, we have:

> V[2]:=QSAlgorithm(R[0], var);

29 o 23
1
szgi 0d+2z
d 2
5 1 d

9.4.2 ExamplesB and [T

We consider the di erential time-delay linear system ([Z7) studied in [Z8]. The matrix R of functional
operators associated with [Z7) has the form
> R:=Matrix([[d+1, 0, -1],[-1, d-d*deltata, 0]]);

d+1 0 1

R:= 1 d d +a 0

where a denotes a real constant, d the time-derivative operator and the time-delay operator. Let us
consider the D = Q(a)[d; ]-module M = D! 3=(D! 2R).
> var:=[d, delta];
var :=[d; ]
Let us check that R admits a right-inverse over D:

> IsUnimod(R, var);
true

Hence, the D-module M = D! 3=(D? 2R) is projective, i.e., free by the Quillen-Suslin theorem. Let
us compute U 2 GL3(D) such that RU = (I, 0):
> U:=MatrixQS(R, var);

2
0 1 d d +a
u=4 o0 0 1
1 d 1 (d+1)(@d d +a)
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We can check that detU =1 and RU = (I, 0) as we have:
> simplify(R.U);
1 00
010
The system de ned by R admits the following injective parametrization
> Q::InjectiveParametrizationgR, var, true);

d d +a
Q;:4 1
@d+1)(d d +a)

i.e., for every D-module F (e.g., C1(R)), every F-solution of the system kerg (R:) has the form
> simplify(Matrix(Q).Matrixz([[xi]]));
(d d +a)
(d+1)d d +a)

for a certain 2 F. As the system kere(R:) is at, by Corollary B we know that the system
ker=(R(d; ):) is algebraically equivalent to the controllable ordinary di erential system without time-
delay, i.e., to kerg (R(d; 1):). Let us compute an invertible transformation which sends F-solutions of
ker=(R(d; ):) to F-solutions of kerg (R(d;1):):

> U[1]:=SetLastVariableA(R, var, 1, true);

2 3
1 d( 1) 0
U, =40 1 05
0 d?2+d2 d +d 1
> R[1]:=simplify(R.U[1]);
_d+1 0 1
Ri = 1 a 0

The invertible transformation, i.e., the transformation sending F-solutions of kerg(R(d; ):) to F-
solutions of kerg (R(d; 1):), is de ned by the matrix U, *:

> LinearAlgebra[MatrixI nvgrse] [1D:;

3
1 d( 1) 0
40 1 09
0 d® d2+d d 1

The E = Q(a)[d]-module P = E! 3=(E! ?R;) is also free. Hence, there exists U, 2 GL3(E) such
that Ry U, = (12 0), which can be computed by:

> U[2]:=QSAlgorithm(R[1], var);

2 3
0 0 a
1
v=§ 0 . ¢
1 0 (d+1)a

Similarly, by Corollary[4 for every D-module F, the system kere(R(d; ):) is algebraically equivalent
to the system kere (R(d; 0):), where R(d;0) is de ned by:
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> R[0]:=subs(delta=0, R);

d+1 0 1

Ro = 1 d+a O0

The invertible transformation which maps F-solutions of the system kerg (R(d;0):) to F-solutions of
kere(R(d; ):) is de ned by:

> V[1]:=SetLastVariableA(R, var, 0, true);

2 3
1 d 0

VvV, =40 1 095
0 2 d 1

The inverse transformation which sends F-solutions of kerg (R(d; ):) to F-solutions of the system
kerg (R(d; 0):) is then de ned by v, *:

> LinearAIgebra[MatrixlnverseJ(V[l]);

3
1 d 0
40 1 09
0 d?+d 1

Finally, as the E = Q(a)[d]-module P = E* 3=(E! 2Ry) is also free, there exists Vo 2 GL3(E) such
that Ro Vo = (I, 0), where V5 can be chosen as follows:

> V[2] ::QSAIgorithm(R[O],v%r, true);

o

1 d+a
0 1 S
1 d 1 (d+1)(d+a)

\'/ =4

o

9.4.3 Example of a - at di erential time-delay system taken from [2Z]

We now consider the stirred tank model described on pages 450-451 of [22]. Let us rst consider
the commutative polynomial ring D = Q( ;cop;c1;¢C2; Vo)[d; ], where d denotes the time-derivative
operator and the time-delay operator.

> var:=[d, delta];
var :=[d; ]

The system is de ned by the following matrix R of functional operators:

> R := Matrix([[d+1/(2*theta),0,-1,-1],[0,d+1/theta,-(cl-c0)*delta/\VO,
> -(c2-cl)*deltasVv0]]);
1 3
d+ — 0 1 1
R:::g 2 g

0 d+} (c1 c0) (c2 «cl1)
VO VO

Let us check whether or not the D-module M = D! 4=(D! 2R) is free:

> IsUnimod(R, var);
false

As the full row rank matrix R does not admit a right-inverse over D, the D-module M is then not
free. We can prove that we have extl (N; D) = 0 but ext3 (N; D) & 0, where N = D! 2=(D! 4RT)
and annp (ext3 (N; D)) = ( d+1; ). See the library of OreModules examples ([4]) for more details.
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Hence, using Figure[l, we obtain that M is a torsion-free but not a projective D-module. In particular,
M is not a free D-module, and thus, for every injective cogenerator D-module F, the corresponding
system kerg(R:) is not at.

However, the fact that 2 annp(ext? (N; D)) proves that the D -module D p M is free, where
D =fashja2D; b= ' i2 Z.gis the localization of the ring with respect to the multiplicative
closed subset S = f1; ; ?;:::g of D (|5, 49]). In a system-theoretic language, it means that, for
every D -module F (e.g.,, F = C1(R)), the system kerg(R:) is at when we also use the time-
advance operator 1. In this case, the rst system is said to be - at ([5, 32]). Many examples of
time-delay systems were proved to be - at (e.g., transport equations, wave equations). For more
details and examples, see [4, B, |6, 32, 33] and the references therein.

Let us compute a basis of the free D -module D M by declaring to be an invertible element,
i.e., by considering the principal ideal domain A = Q( ;cop;c1;¢2; Vo; )[d]:

> var2:=[d];
var2 :=[d]

We can check that the A-module P = Al 4=(Al 2R) is projective, i.e. free by 4 of Theorem

> IsUnimod(R, var2);

true
Let us compute a basis:
> U:=QSAlgorithm(R, var2, true);
U:=
[0;0;1;0]
[0;0;0;1]
2+cl VO S(2d +1)( c2+cl) VO (d +1)
c2+2cl c0’ (c2+2cl c0)’' 2 (c2+2cl cO)' ( c2+2cl <c0)
cl «c0 ] VO (el c0)(2d +1) VO +1)
c2+2cl c0" ( c2+2cl ¢c0) " 2( c2+2cl «c0) ’ ( c2+2cl c0)

Let us compute the determinant of the matrix U:

> LinearAlgebra[Determinant](U);
VO
( c2+2cl c0)
Hence, if co + ¢, 2cq & 0, which will be assumed in what follows, then the determinant detU of U

is invertible over A. See [4] for the other cases. Therefore, if we also use the advance operator 1,
an injective parametrization of the system is then de ned by:

> Q:=InjectiveParametrization(R, var2,true);

1 0 3
0 1
8 (2d +1)( c2+cl) Vo +1)
Q2 (c2+2cl c0) ( c2+2cl c0)
(c1 c0)(2d +1) VO (d +1)
2( c2+2cl c0) ( c2+2cl c0)

Hence, we get that every F-solution of the system kerg (R:) de ned by R, where F is a D -module
(e.g., F =C1(R)), is of the form =Q foracertain 2 F2. Finally,a - at output of the system
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kere(R:) is de ned by =T , where T denotes the last row of the unimodular matrix U. Another
- at output of kerg (R:) is then

> BasisOfCokernelModule(R, var2, true);

1000
0100

i.e., isde ned by f ;; g with the notation = ( 1;:::; 4).

9.5 Pommaret’s theorem of the Lin-Bose conjecture
9.5.1 Examples 4] and Y

Let us consider the di erential time-delay model of a exible rod with a forced applied on one end
de ned in Example [[3 ([32]). The system matrix R with entries in the polynomial ring D = QJd; ],
where d denotes the time-derivative operator and the time-delay operator, is de ned by
> var:=[d, delta];
var :=[d; ]

> R:=Matrix([[d,-d*delta,-1],[2*delta*d,-d*delta”2-d,0]]);

d d 1

R= 94 d2 d o

Let us check whether or not the D-module M = D 3=(D! 2R) is projective, i.e., free by the Quillen-
Suslin theorem:

> IsUnimod(R, var);
false

We obtain that R does not admit a right-inverse over D and the D-module M is not free. In particular,
there does not exist a matrix U 2 GL3(D) such that RU = (I, 0) or, equivalently, R cannot be
completed to a unimodular matrix over D. Let us compute the set of all maximal minors of R:

> m:i=MaxMinors(R);
m:=[d® 2 d?2d; d? d
The ideal I of D de ned by the maximal minors is generated by

> Involutive[lnvolutiveBasis](m, var);
[d]

i.e., I = (d), and thus, d is a greatest common divisor of the maximal minors of R. In particular,
using Figure [ we obtain that the torsion D-submodule t(M) of M is not reduced to 0. Using
OreModules ([, B]), let us compute exty (N;D), where N = D! 2=(D? 3RT). We rst need to
de ne the commutative polynomial ring D = Q[d; ] in OreModules in the following way:

> Alg:=0OreModules[DefineOreAlgebra] (diff=[d,t],dual_shift=[delta,s],
> polynom=[t,s]):

We then obtain

> Ext:=0reModules[Exti](Involution(convert(R,array),Alg),Alg,1);
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2 3 2 3 3
d 00 2 1+ 2 0 1+ 2
Ext:=40 1 05;4 d d 15; 2 5
0 0 1 d d d 2+d
i.e., if we denote by
> Q:=Ext[2];
2
2 1+ 20
Q= d d 1

d d

then, we have extl (N; D) = (D! 3Q)=(D! 2R), which is not reduced to 0 as the rst matrix of Ext
shows that the residue class of the rst row of Q in extl (N;D) de nes the element

z= 2 yi+(1+ 9y,
which satis es dz = 0. As the residue classes of the second and third rows of Q in extl (N; D) are
reduced to 0, we deduce that t(M) is only generated by z.

We also know that R can be factorized by Q, i.e., there exists P 2 D? 3 satisfying R =P Q. The
matrix P can be computed as follows:

> P:=0OreModules[Factorize](R,Q,AlQ);

0 10

P .= 0 1

We note that P is not a square matrix. Let us compute kerp (:Q):

> Q[2]:=OreModules[SyzygyModule](Q,AlQ);
Q. = d 1

Hence, we obtain that Q has not full row rank, i.e., the D-module D! 3Q is not free. However, the
D-module M=t(M) is projective, i.e., free by the Quillen-Suslin theorem as Q admits a generalized
inverse X over D de ned by

> X:=OreModules[Generalizedlnverse](Q,AlQ);
2

-

i.e., we have Q X Q = Q. Another way to prove this result is to check that Q. trivially admits a
right-inverse over D, a fact that shows that L = D! 3=(D Q,) = D! 3Q is a projective, and thus,
a free D-module by the Quillen-Suslin theorem. Hence, following Algorithm [ we can constructively
solved Problem Bl We rst solve Problem [ for the full row rank matrix Qo:

0 0

0 o

2
1
d
— 1
5 0

> U:=QSAlgorithm(convert(Q[2], Matrzi x),var,true);

00 1
u=401 0 5
1 d

We can check that U is a unimodular matrix over D as we have:

> U_inv:=linalg[inverse](V);
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2
U_.inv =4 1

0

oo
o o
a w

If we denote by B the matrix formed by the last two rows of U 1, namely,

> B:=linalg[submatrix](U_inv,2..3,1..3);

010

B= 100
we know that a matrix R’ 2 D? 3 solving Problem B is then de ned by R®"=BQ

> Rp:=simplify(evalm(B&*Q));

d d 1

Rp:= 5 142

where R! was denoted by Rp. Hence, we have D! 3Q = D! 2R’ and R = R?R?, where R? 2 D? 2
is de ned by

> Rpp:=0OreModules[Factorize](R,Rp,AlQ);

10
Rep:= o 4

where R? was denoted by Rpp, and RY satis es detR” = d:

> linalg[det](Rpp);
d

We can check again that M=t(M) = D! 3=(D' 2R") is a projective, i.e., a free D-module as the ideal
of D de ned by the set of maximal minors of R’, namely,

> maxminors:=MaxMinors(convert(Rp,Matrix),var);
maxminors :=[d 2 d;2 ; 1 ?
generates D:

> Involutive[lnvolutiveBasis](maxminors,var);
[1]
Equivalently, we can check that the matrix R’ admits a right-inverse of D de ned by:

> OreModules[RightInverse] (Rp,AlQ);
2

3
0 3
0 1
d
L7

Of course, a solution of Problem B can directly be obtained by calling the QuillenSuslin procedure
LinBosel as follows:
> F:=LinBosel(R, var);

10 . d d 1

F=l o 9 2 24190}
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The second matrix of the previous output corresponds to the matrix R? solving Problem 3, whereas
the rst one corresponds to the matrix RY satisfying R = RYR? and detRY® = d, where d denotes
the greatest common divisor of the maximal minors of R (which is, by the way, the time-derivative
operator d in this particular case!).

Let us now solve Problem Bl We rst need to solve Problem [ for the full row rank matrix R’
using the procedure QSAlgorithm;

> V:=QSAlgorithm(convert(Rp,Matrix),var,true);
2

_ 2
0 5 1
V=60 1 2
d
1 b 2
> d d
We can check that V 2 GL3(D) as we have
> V_inv:=LinearAlgebra[Matrixinverse](V);
d d 1
2
V .inv :=9 2 1+ 0 E
1 _
> 0

and we can check that the matrix formed by the rst two rows of V;,, is exactly R’, i.e., R"V = (I, 0).
Let us denote by T the matrix formed by the last row of Vi,

> T:=LinearAlgebra[SubMatrix](V_inv,3..3,1..3);
T:= —
1 5 0
and let us denote by W = (RT TT)T 2 D3 3, namely:
> W:=Matrix([[R]1.[T1D):

d d 13
wi=§2d d2 d 0Z
1 5 0

We can nally check that W is a solution of Problem H as its determinant is exactly d:

> LinearAlgebra[Determinant](W);
d

We can directly obtain a solution of Problem E] by using the procedure LinBose2:

> C:=LinBose2(R, var);

> 4 d 13
c.—§2d d2 d 0Z
1 0
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9.5.2 Example [[d

Let us consider the commutative polynomial ring D = Q[z1; z»; z3] and the polynomial matrix de ned
in Example [IG, namely:

> var:=[z[1].z[2],z[31];
var = [z1; 2, 23]
> R:=Matrix([[z[1]*z[2]"2*z[3],0, -z[1]"2*z[2]"2-1],
> [z[1]1"2*z[3]"2+z[3],-z[3],-z[1]1"3*z[3]-z[11]1D):
71 22223 0 72122,%2 1

R:=
721%2232+23 73 721°%13 21

The set of the maximal minors of the full row rank matrix R is de ned by:
> m:=MaxMinors(R);
m:=[ 2122232, 212232 +123; ( 712222 1)z3]
Let us compute a Janet basis of the ideal of D formed by the maximal minors of R:

> Involutive[lnvolutiveBasis](m, var);
23]

As the ideal de ned by the maximal minors of R is equal to the principal ideal of D generated by z3,
we then deduce that z3 is a greatest common divisor of the maximal minors. Hence, the D-module
M = D! 3=(D! 2R) is not projective, and thus, not free and there exists no matrix U 2 GL3(D)
satisfying RU = (I, 0).

However, if we divide the maximal minors of R by z3 then the ideal generated by these new
elements, i.e., ( 2123232223 +1; z2z3 1), exactly generates D, a fact which is equivalent to the
fact that M=t(M) is a projective D-module, i.e., free by the Quillen-Suslin theorem. Hence, we can
solve Problems 3 and Bt

> F:=LinBosel(R, var);

Fo=] 21°2,% 23 21%2° n%7323% 1
. 214232252 73 +71%2,%24 221323 71°23% 77
721223 1 71%2,%2+277%232,%2+1 213 71%°z3 ]
71 2% 235 2132,% 23 21%42532,2+1

If we denote by R® the rst matrix appearing in the previous output and by R’ the second one, we
can check that we then have the factorization R = RY R!

> simplify(F[1].F[2]);
7122223 0 21%22% 1
212232 +23 3 z71%z23 21

and the determinant of R” is  z3 i.e., zz up to a unit of D (we recall that a greatest common divisor
is always de ned up to a unit of the ring D):

> LinearAlgebra[Determinant] (F[1]);
z3

Hence, we get that M=t(M) = D! 3=(D! 2R’). Let us complete the matrix R to a square matrix
over D whose determinant is zs:
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> C:=LinBose2(R, var);

71 222123 0 7122,2 1
C:=4 2,27232 + 125 3 21323 71 O
1 212222 213

> LinearAlgebra[Determinant](C);
Z3

9.6 (Weakly) coprime factorizations of rational transfer matrices
Let us consider the commutative polynomial ring D = Q[zy; z2; z3]:
> var:=[z[1],z[2]1.z[31];
var :=[z1; 22; 23]
We consider the rational transfer matrix de ned in Example [, namely:

> P:=Matrix(<(z[1]"2*z[2]"2+1)/ (z[1]1*z[2]"2*z[3]),
> ([11"2*z[3]+1)/(z[1]*z[2]"2*Z [%]) >);

212252 +1
P'=§ 2, 25%123 Z
' 21223+1

21222173

Cleaning the denominators of P, we obtain the fractional representation P = D,* Np of P, where
the matrices Dp 2 D? 2 and Np 2 D? 1 are de ned by:

> D_P:=LinearAlgebra[ScalarMatrix](Denom0f(P),2,2);

2
_ 2122713 0
D-P:= 0 71 2223
> N _P:=simplify(D_P.P);

_ 1nfn?+1
N_P := 2275 +1
Let us de ne the matrix Q = (Dp Np) 2 D? 3, namely:

> Q:=Matrix([D_P, -N_PI);

Q= 721 22%23 0 7,22,2 1
. 0 71 22223 21223 1

The set of the maximal minors of Q is de ned by:

> ml:=MaxMinors(Q);
ml =[2122,%23% 21 22%23 ( 22%23 1); ( 22%22% 1)7125° 73]
The greatest common divisor of the maximal minors of Q is:
> d:=fgcd(mi[1],mi[2]),gcd(mi[1],m1[3]),gcd(mi[2],m1[3])g;
d:=fz1 22239

Hence, P = DF,1 Np is not a weakly left-coprime factorization of P. Let us check whether or not the
rational transfer matrix P admits a weakly left-coprime factorization and, if so, compute one:
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> WLCF:=WLCFactorization(P,var);

21223 1 212252+ 21%232,2+1 @ 13%23 +17,°8

WLCF = ;
[ 7122223 21322% 25 21%72532,% 1

]

We obtain that P admits the weakly left-coprime factorization de ned by P = (D%) *Ng, where
DY 2 D? 2 js the rst matrix given in the previous output and N 2 D2 ! is the second one. In
particular, we can check that (D%) 1N is equal to P:

> LinearAlgebra[MatrixInverse] (WLCF[1]) .WLCF[2]);
212 222 +1
g 71 222123 Z
21223 +1
71222173
Moreover, if we de ne the matrix R = (D} NZ) 2 D? 3, namely,

> R:=Matrix([WLCF[1],-WLCF[2]11);

R = 21°73 1 722%22,°+71%732,%+1 21%23 743
) 71 22223 21322423 21423222+1
then, the set of the maximal minors of R is de ned by

> m2:=MaxMinors(R);
m2 =[z212%23; 721°73 1,212, +1]
and the greatest common divisor of the maximal minors of R is then equal to 1 as
> fgcd(m2[1],m2[2]),gcd(m2[1],m2[3]),gcd(m2[2],m2[3])g;
flg

and thus, P = (D%) NS is a weakly left-coprime factorization of P. Let us check whether or not
the transfer matrix P admits a left-coprime factorization:

> LCF:=LCFactorization(P,var);

LCF =] 1?3 1 n'zn’+un’n*+1 | uni@tz 1) ]
. 71 222123 21322% 25 ' 21425322 1
P = (DL) 1N} is a left-coprime factorization of P and R = (D% NJ) admits the following

right-inverse over D:

> Involutive[PolRightInverse](R,var);

3
212222 213

4 1 0 5
0 1

A weakly right-coprime factorization of P can be obtained in a similar way:

> WRC:=WRCFactorization(P, var);
212 222 +1

WRC = 711225 +1 ;

2122%23 ]

Hence, if we denote by Bp 2 D? 1 the rst matrix of the previous output and Bp 2 D the second
one, then we can check that we have P = Mp B, :
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> simplify(WRC[1] -MatrixInverse(WRC[2]));

212222 +1

g 71 222173 é

712253 +1
21 25° 123

Moreover, if we denote by R = (R BJ)T, namely,

- Rtilde:=Hatrix([[VRC[1][1, 111, JWRC[L][2, 11] . [IRCL2I (1, 111D):
7122,2+1
21%23 +1 Z

21 25°13
the maximal minors of R are then de ned by

> m3:=MaxMinors(Rtilde);
(222222 + 1, 21%25 + 1,71 25%23]

and their greatest common divisor is:

> fgcd(m3[1],m3[2]),g9cd(m3[1],m3[3]),gcd(m3[2],m3[3])g;
flg

Therefore, P = Rp I§P1 is a weakly right-coprime factorization of P. Let us check whether or not P
admits a right-coprime factorization:

> RC:=RCFactorization(P, var);
212222 +1

RC =] 21275 +1

. 212%23 ]

Hence, P admits a right-coprime factorization of P. We can nally check that last point as follows:

> Matrix(<op(RC)>);
> IsUnimod(%, var);
> Involutive[PolLeftInverse] (%%, var);
21%22,2+1
4 21223 +1 5
Z1 22223
true
1 2122,2 738

9.7 Decomposition of multidimensional linear systems

We refer the reader to [9, 0] for numerous examples of decomposition of classical systems of partial
di erential equations and of di erential time-delay equations appearing in mathematical physics and
control theory and for a description of the package Morphisms ([, [10]) as well as a library of examples.
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