Fast Non Local Means Denoising for 3D MR Images - Archive ouverte HAL Access content directly
Conference Papers Year : 2006

Fast Non Local Means Denoising for 3D MR Images

(1) , (1) , (1)
1

Abstract

One critical issue in the context of image restoration is the problem of noise removal while keeping the integrity of relevant image information. Denoising is a crucial step to increase image conspicuity and to improve the performances of all the processings needed for quantitative imaging analysis. The method proposed in this paper is based on an optimized version of the Non Local (NL) Means algorithm. This approach uses the natural redundancy of information in image to remove the noise. Tests were carried out on synthetic datasets and on real 3T MR images. The results show that the NL-means approach outperforms other classical denoising methods, such as Anisotropic Diffusion Filter and Total Variation.
Fichier principal
Vignette du fichier
MICCAI2006.pdf (342.34 Ko) Télécharger le fichier
Vignette du fichier
MRI3T_T1_Noise_Denoise_axial.avi (2.4 Mo) Télécharger le fichier
Vignette du fichier
MRI3T_T1_Noise_Denoise_sagital.avi (2.55 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Format : Other
Format : Other

Dates and versions

inria-00131287 , version 1 (15-02-2007)
inria-00131287 , version 2 (27-02-2007)

Identifiers

Cite

Pierrick Coupé, Pierre Yger, Christian Barillot. Fast Non Local Means Denoising for 3D MR Images. 9th International Conference on Medical Image Computing and Computer-Assisted Intervention, Oct 2006, Copenhagen, Denmark, pp.33-40, ⟨10.1007/11866763_5⟩. ⟨inria-00131287v2⟩
313 View
1006 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More