Reduced-Basis approach for homogenization beyond the periodic setting

Sébastien Boyaval 1
1 MICMAC - Methods and engineering of multiscale computing from atom to continuum
Inria Paris-Rocquencourt, ENPC - École des Ponts ParisTech
Abstract : We consider the computation of averaged coefficients for the homogenization of elliptic partial differential equations. In this problem, like in many multiscale problems, a large number of similar computations parametrized by the macroscopic scale is required at the microscopic scale. This is a framework very much adapted to model order reduction attempts. The purpose of this work is to show how the reduced-basis approach allows to speed up the computation of a large number of cell problems without any loss of precision. The essential components of this reduced-basis approach are the {\it a posteriori} error estimation, which provides sharp error bounds for the outputs of interest, and an approximation process divided into offline and online stages, which decouples the generation of the approximation space and its use for Galerkin projections.
Type de document :
[Research Report] RR-6130, INRIA. 2007, pp.29
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger
Contributeur : Rapport de Recherche Inria <>
Soumis le : lundi 26 février 2007 - 10:17:42
Dernière modification le : vendredi 25 mai 2018 - 12:02:03
Document(s) archivé(s) le : jeudi 23 septembre 2010 - 16:43:46


Fichiers produits par l'(les) auteur(s)



Sébastien Boyaval. Reduced-Basis approach for homogenization beyond the periodic setting. [Research Report] RR-6130, INRIA. 2007, pp.29. 〈inria-00132763v3〉



Consultations de la notice


Téléchargements de fichiers