Radial Basis Functions and Kriging Metamodels for Aerodynamic Optimization

Praveen Chandrashekarappa 1 Regis Duvigneau 1
1 OPALE - Optimization and control, numerical algorithms and integration of complex multidiscipline systems governed by PDE
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR6621
Abstract : Population-based optimization methods like genetic algorithms and particle swarm optimization are very general and robust but can be costly since they require large number of function evaluations. The costly function evaluations can be replaced by cheaper models which are refered to as surrogate or meta models. Here we consider data-fitting models, particularly radial basis functions and kriging. We study the performance of these interpolation models on some analytical functions and aerodynamic data. Both the models have parameters which must be selected carefully to ensure good accuracy. For RBF, we implement a leave-one-out validation technique and for kriging, the parameters are determined by maximizing the probability density of the available data using a particle swarm optimization. The metamodels are then implemented in the shape optimization platform FAMOSA.
Type de document :
[Research Report] RR-6151, INRIA. 2007, pp.40
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

Contributeur : Rapport de Recherche Inria <>
Soumis le : jeudi 22 mars 2007 - 15:52:20
Dernière modification le : jeudi 3 mai 2018 - 13:32:55
Document(s) archivé(s) le : mardi 21 septembre 2010 - 12:12:58


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00137602, version 2


Praveen Chandrashekarappa, Regis Duvigneau. Radial Basis Functions and Kriging Metamodels for Aerodynamic Optimization. [Research Report] RR-6151, INRIA. 2007, pp.40. 〈inria-00137602v2〉



Consultations de la notice


Téléchargements de fichiers