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Conditions nécessaires et suffisantes pour une
désynchronisation déterministe

Résumé : Les formalismes réactives synchrones utilisent une notion d’horloge globale
pour préciser 'ordonnancement d’opérations concurrentes. Cela mene a une définition non-
ambigue de I'absence d’un signal, qui peut etre utilisée ensuite pour prendre des décisions
au cours de l'exécution.

Quand & une spécification synchrone on donne une implantation asynchrone (potentiel-
lement répartie), ’absence des signaux doit étre signalée explicitement, sauf pour les cas
ou les comportements sont prouvés indépendents et asynchrones (une propriété introduite
précédemment sous le nom d’“endochronie”). Dans cet article, nous caracterisons la classe
de systemes dont 'implantation asynchrone sans encodage de ’absence est déterministe.

Mots-clés : Synchrone, Asynchrone, GALS, Desynchronisation, Implantation, Machine
d’exécution, Reaction a I’absence d’un signal



1 Introduction

Synchronous reactive formalisms [T}, 4] are modeling and programming languages used in the
specification and analysis of safety-critical embedded systems. They comprise (synchronous)
concurrency features, and are based on the Mealy machine paradigm: Input signals can occur
from the environment, possibly simultaneously, at the pace on a given global clock. Output
signals and state changes are then computed before the next clock tick, grouped as one
atomic reaction. Because common computation instants are well-defined, so is the notion
of signal absence at a given instant. Reaction to absence is allowed, i.e., a change can be
caused by the absence of a signal on a new clock tick. Since component inputs may become
local signals in a larger concurrent system, absent values may have to be computed and
propagated, to implement correctly the synchronous semantics.

When an asynchronous implementation is meant, where possibly distributed components
communicate via message passing, the explicit propagatation of all absent values may clog
the system to a certain extend. Thus a natural question is: when can one dispose of such
“absent signal” communications?

Sufficient conditions, known as (weak) endochrony [3l [10, [19, [IR], have been introduced
in the past to figure when the absent values can be replaced in the implementation by actual
absence of messages without affecting its correctness and determinism. Weak endochrony
determines that compound reactions that are apparently synchronous can be split into in-
dependent smaller reactions that are asynchronously feasible in a confluent way (one after
the other instead of simultaneously), so that the first one does not discard the second. This
is also linked to the Kahn principles for networks [I3], where only internal choice is allowed
to ensure that overall lack of confluence cannot be caused by input signal speed variations.

In this paper, we rephrase these issues to better show their mutual relations, we strengthen
the theory by asserting necessary and sufficient conditions, and we discuss the structure of
the execution machines needed to give a globally asynchronous implementation to a syn-
chronous specification.

Outline. Section B explains what we understand by synchronous specification, asyn-
chronous implementation, and signal absence. Section Bl covers the representation of signal
absence in various languages. Section Hlis on reaction to signal absence. It gives its formal
definition, implementation details, and examples. Section [l takes into account concurrency
and gives our main result, We give examples in Section [f] and conclude in Section [1

2 Basic notions

2.1 Asynchronous components

Our goal is to facilitate the construction of globally asynchronous systems from synchronous
specifications. By globally asynchronous we understand both (1) fully asynchronous sys-
tems and components and (2) globally asynchronous, locally synchronous (GALS) systems



where each component consists of a synchronous core driven by a wrapper in the globally
asynchronous environment.

More specifically, the goal is to allow the construction of asynchronous components that
fit inside a model of computation close to that of the Kahn Process Networks (KPN) [I3].
Such components communicate through message passing along asynchronous lossless com-
munication lines (FIFO channels). Incoming messages remain on the FIFOs until they are
read. No other communication or synchronization mechanism exists. No logical or physical
time can be used to make decisions and trigger computations (only the arrival of messages,
and their values).

To simplify the presentation of this paper, we require that the behavior of an asyn-
chronous component is monotonous and deterministic as an 1/O stream function, in the
sense of Kahn []:&]E We also require that the asynchronous component is confluent: from a
given state and for given inputs, the implementation ends up in the same internal state.

The components must remain deterministic when given arbitrary inputs. This is different
from approaches based on don’t cares, which assume that the environment never produces
incorrect input sequences, and provide no means of rejecting them. By comparison, in
the endochrony variant of LeGuernic, Talpin, and Le Lann [I0], the system must only
be deterministic and produce correct output for “correct” sets of inputs, which leads to
composition problems and more complex analysis techniques.

2.2 Synchronous specifications

The various synchronous formalisms are used to develop specifications that can be inter-
preted as incomplete synchronous Mealy machines. This is the model we use throughout
this paper to represent our synchronous specifications. A specification is therefore any fi-
nite automaton whose transitions are labeled with reactions. An execution (trace) of the
specification is a sequence of reactions indexed by the global clock.

A reaction is a valuation of the input and output signals of the specification. All signals
are typed. We denote with Dg the domain of a signal S. Not all signals need to have a
value in a reaction, to model cases where only parts of the specification compute. We will
say that a signal is present in a reaction when it has a value in Dg. Otherwise, we say that
it is absent. Absence is simply represented with a new value L, which is appended to all
domains D& = Dg U {L}. With this convention, a reaction is a valuation of all the signals
S of the specification in their extended domains ’Dg:. We say that two reactions r; and ry
are non-contradictory, denoted rq1 > ro, when there exists no signal S that is present, but
different in the two reactions L # r1(S) # r2(S) # L. The support of a reaction r, denoted
supp(r), is the set of present signals. Given a set of signals X, we denote with Vx the set
of all reactions over X.

To represent reactions, we use a set-like notation and omit signals with value 1. For
instance, the reaction associating 1 to A, T to B, and L to C is represented with <

L As explained in [I9], monotony can be relaxed into predictability, which allows for non-deterministic
internal choices of the component as long as they are published through the outputs, allowing the environment
to change its behavior accordingly. But we will not cover this aspect here.



A =1,B =T >. The delimiters can be dropped if there is no confusion. On non-contradictory
reactions we define the union (U) and difference (\) operators, with their natural meanings
from set theory. Forinstance, < A=1,B=T >U<A=1,C=7T>=<A=1,B=T,C=7>.
When representing a reaction r, we shall usually separate the valuations of the input
and output signals r = i/o, where ¢ is the restriction of r on input signals, and o is the
restriction on output signals. All the operators defined above (>, U, \, supp()) can be
applied on components. With these conventions, the stuttering reaction assigning L to all
input and output signals is denoted /.

Definition 1 (incomplete synchronous Mealy machine) A synchronous automaton is
a tuple ¥ = (Z,0,8,7T), where T and O are the non-void, finite, and disjoint sets of input
and output signals, S is the set of states, and TF : S8 X Vg —o—= 8 X Vo 1is the function
representing the transitions. The function is partial to represent the fact that the system
may not accept any input.

We will write s e, s’ instead of T (s,i) = (s,0) to represent system transitions. Note
that the functional definition of the transitions implies determinism (at most one transition
for given state and input), a property we require for all our specifications throught this
paper.

A Mealy machine can stutter in state s if the stuttering transition g /. g is defined.

We say that a Mealy machine has no input-less transition if the only transitions s i> s
with supp(z) = @ are stuttering transitions. In other words, no state change can be realized
and no output can be produced without new inputs. To facilitate the definitions and pre-
sentation of this paper, we require all synchronous automata to have no input-less transition
(but similar results exist for deterministic systems with input-less transitions).

2.3 The implementation problem

The main issue in specifying asynchronous components using synchronous specifications is
the treatment of signal absence. In the synchronous model, the absence of a signal in a
given reaction can be sensed and tested in order to make decisions. It is a special absent
value, denoted L. In the considered asynchronous implementation model, the absence of a
message on a channel cannot be sensed or tested.

When transforming the synchronous specification into a globally asynchronous implemen-
tation, the sequences of present and absent values on each signal are mapped into sequences
of messages sent or received on the associated communication channels. To simplify the prob-
lem, we assume one asynchronous FIFO is associated with each signal of the synchronous
model.

We have to define the encoding of signal values with messages on channels. When a
signal S has value v # L during a reaction, the most natural encoding associates one
message carrying value v on the corresponding channel. The message is sent or received,



module PREEMPT:
input A,C ; output B,D ;
abort

await immediate A ; emit B
when immediate C do emit D end
end module

A/B

/C/D\‘

/{ start done

a0

Figure 1: The PREEMPT example (top), and its Mealy machine representation (bottom)

depending on whether S is an output or an input signal. We shall assume this encoding
throughout the paper.

Things are more complicated for absent (L) values. The most natural solution is to repre-
sent them with actual message absence (i.e. no message at all). Unfortunately, forgetting all
absence information does not allow the construction of deterministic globally asynchronous
implementations for general synchronous specifications. Consider, for instance, the Esterel
program of Fig. [l The program awaits for the arrival of at least one of its two input signals.
If A arrives alone, then the program terminates by emitting B. If C arrives alone or if A and
C arrive at the same time, then then the program terminates by emitting D.

Assume that A arrives in the start state. Then, we need to know whether C is present
or absent, to decide which of B or D is emitted. We will say that the program reacts to
signal absence, because the presence or absence of C must be tested. An asynchronous
implementation of PREEMPT needs absence information in order to deterministically decide
which transition to trigger in state start.

To generate deterministic asynchronous implementations for such synchronous programs,
messages must be added to represent the necessary absence information. This can be done
either by transmitting absent (L) values through messages, or by adding other synchroniza-
tion messages on new or already existent communication channels.

In this paper, our objective is to characterize the class of synchronous speci-
fications that can be transformed into deterministic asynchronous implementa-
tions without adding such new messages to encode absence. We then advocate for
a 2-step implementation process, where all absence encoding problems are dealt with inside
the synchronous model, thus facilitating the analysis of large specifications:

Step 1: Signal absence encoding. Transform the synchronous specification into one where
reaction to signal absence is not needed. This is done by either (1) deciding which L
values are relevant and must be transmitted, and represent them with a new value L*,
or (2) adding new signals and messages to the specification.



Step 2: Implementation synthesis. Give a deterministic asynchronous implementation
to the transformed synchronous specification. This implementation follows the natu-
ral encoding defined above: no message for the remaining absent L values, and one
message for each other signal value.

Our characterization has important practical consequences, establishing the limits of the
two-phase approach and allowing the choice of the best absence encoding.

2.4 Related work

Our work is closely related to work on various variants of endochrony, and we show that the
various formulations of (weak) endochrony aim at expressing a more fundamental property
of a concurrent synchronous specification: the fact that it does not react to signal absence.
Moreover, our two-step implementation process reflects the process of the Polychrony [I0]
environment developed around the Signal language.

Our work generalizes previous work on weakly endochronous systems by Potop, Caillaud,
and Benveniste [T9,[T8]. The main difference is that we do not assume here all the goals of the
approach based on weak endochrony and weak isochrony. More precisely, we do not address
the preservation of the synchronous composition semantics throughout desynchronization.
In particular, the decomposition into primitive reactions (extensively used in the proofs of
[19]) will not be ensured in our approach, so that the characterization is closer to that of
microstep weak endochrony [18].

Along the same lines, our work extends or is closely related to work on the various
variants of endochrony. Compared with the endochronous systems of Benveniste, Caillaud,
and Le Guernic [3], which is used in the compilation of the Signal language [IJ, our work
generalizes by allowing concurrent reactions and a more relaxed input reading policy (more
informations in Section EZIl). We already explained, in Section Xl that LeGuernic, Talpin,
and Le Lann [I0] take a don’t care-based approach, different from ours.

The latency-insensitive systems of Carloni, McMillan, and Sangiovanni-Vincentelli, the
Lustre language [I2], and the AAA/SynDEx methodology [] take a very simple solution to
the absence encoding problem, by prohibiting the absence of interface signals. This means
that the programmer must perform the absence encoding step, and that all concurrency is
lost in the system (the approach is not very efficient). The generalized latency-insensitive
systems of Singh and Theobald [20] try to relax these constraints.

Our results do not cover the distributed implementation of reactive systems, as do Caspi,
Girault, and Pilaud [7, nor have the same global approach. We only deal with the construc-
tion of one deterministic asynchronous component from one synchronous component.

From another perspective, the synchronous systems, as defined in distributed computing
[2] correspond in our case to synchronous specifications without reaction to signal absence.

Our work has different goals from Boussinot and de Simone’s work on instantaneous
reaction to signal absence [B]. There, the issue is that of determining signal absence while
avoiding causality problems.



3 Signal absence in various languages

Programs written in the three main synchronous languages are easily represented with Mealy
machines.

For the Signal language, we consider its trace semantics, as defined in [I]. A reaction of
the program is a partial assignment of the signals that satisfies the constraints represented
by the statements of the program. When a reaction does not assign a signal, we say that the
signal is absent. This absence representation is naturally mapped to our absence encoding
which uses explicit 1 values. We shall denote with T the unique present value of the signals
of type event. A Signal program has no explicit global clock, so that all Signal programs are
stuttering-invariant (the stuttering transition is defined in all states), but all Signal programs
are not deterministic. For the scope of this paper, we shall only consider deterministic Signal
programs. Stuttering-invariance and determinism imply that the programs have no input-
less transition.

Lustre and the specification formalism of the SynDEx software can be seen as sub-sets
of Signal, the main differences being that the global clock is specified, and that no interface
signal is ever absent (by consequence, no input-less transition exists). Thus, we can use the
same encoding as for Signal.

In Esterel, every signal has a status of present (true) or absent (false) B Valued signals
also carry a value, that should be read only during reactions where the signal is present
(status=true). The mapping from the Esterel absence encoding to ours is again natural: a
signal which is present is represented by its value (if the signal is valued), or by T (if the
signal is not valued). A signal that is absent has value L.

The Esterel language defines a global clock. Time flow, and therefore the reactions
where a signal can be absent, is determined by the successive occurrences of the implicit
TICK signal. In particular, no other signal can be present if TICK is absent:

module TIMEFLOW:
output 0O;
loop
every 2 TICK do emit O end
end
end module

This program obviously has input-less transitions, because it can produce 0 without reading
a single input (TICK is not an input signal). However, meaningful classes of Esterel programs
do not have input-less transitions. Among them, all those containing no pause or suspend
statements and no reference to TICK, and where all preemption triggers are reduced to one
signal (without not operator).

To represent such behaviors with deterministic Signal programs (which have no input-
less transition), the TICK signal must be explicitly represented in the input interface of the
program, for instance:

2We consider here only correct programs, and ignore all causality issues.



process TIMEFLOW =
(? event TICK ; ! event O ;)
(|l State "= TICK
| State := preState $init (-1)
| preState := (State+l) modulo 2
| 0 := when State=1
|) where integer State,preState ; end ;

Line 3 specifies that the state is read and updated in all reactions (i.e. whenever TICK is
present).

Representing the behavior of TIMEFLOW in Lustre leads to different problems. Like in
Esterel, Lustre programs define a notion of global clock. However, the use of absence is
constrained. More precisely, all the inputs and outputs of a Lustre program (node) need to
be present at all instants where the node is executed. This means that the previous example
cannot be encoded while sticking to the absence encoding defined above. The only solution
is to explicitly encode absence using “present” signal values. One typical solution is to use a
Boolean signal with the same encoding as the one used for signal statuses in the compilation
of Esterel (present=true/absent=false):

node TIMEFLOW() returns (0:boolean);
var state : integer ;
let
state = (-1) -> (pre(state)+1) mod 2 ;
0 = state==1 ;
tel

Not having a dedicated signal absence representation for interface signals means that a Lustre
program uses one message per absent value. The specification formalism of the SynDEx
software has roughly the same constraints as Lustre. The Scade formalism — the graphical
counterpart of Lustre — relaxes this rule, but still does not allow the direct representation
of the previous example.

4 Reaction to signal absence

In this section, we formally define reaction to signal absence and we explain how synchronous
specifications without reaction to signal absence can be given deterministic asynchronous
implementations.

We say that a system reacts to signal absence when the choice between two transitions
in a state is based on the choice over the present/absent value of a signal. Formally, it is
simpler to define the dual property:

Definition 2 (No reaction to signal absence (NRSA)) LetX = (Z,0,S8,7) be a syn-
chronous Mealy machine. We say that 3 does not react to signal absence if for every state s



and every two non-stuttering transitions starting in s s Lk/ok) Sk, £/, k=1,2,

we have:
71 %TQ#HSEIJ_#M(S)#ZQ(S)#L

In other words, we can decide which transition to do by testing the value (and not the
presence/absence) of an input. This choice can be implemented as a deterministic choice in
our asynchronous framework.

4.1 Asynchronous implementation issues

The NRSA criterion preserves the spirit of endochrony, as defined in [3], but strictly gener-
alizes it. The following example shows the difference between NRSA and endochrony:

process NOABSENCE1 =

(? boolean A, B, C ;
! event 01, 02, 03;)

(I 01 "= when A=true ~= when B=true
| 02 "= when B=false "= when C=false
| 03 "= when A=false "= when C=true

1

The corresponding automaton in our model is the following:
A=false,C=true/O3=T
NS
§ [ ] Q
B=false,C=false/O2=T %

A=true,B=true/O1=T

Choosing between the three non-stuttering transitions can be done without signal absence
information, so deterministic implementation is possible in an asynchronous environment.

However, the program is not endochronous in the sense of [B]. In an endochronous
program, the signals can be organized in a decision tree (called clock tree). Input reading
starts with the signals at the top level of the tree, which are present in each reaction.
Depending on their values, some of their direct children are read, and the process continues
recursively from each present signal to its present children signals. A signal is present in
the current reaction iff its clock tree node has been traversed. Blocking reads can be used
to produce a fully deterministic top-down input reading process. This form of endochrony
stands at the basis of the Signal compiler [I].

In our example, the signals cannot be organized in a tree determining which signals are
present in an incremental fashion. Blocking reads can no longer be used. Instead, each input
FIFO must deliver messages as they arrive. Once an input message m arrives on the FIFO
head fs corresponding to signal S € Z, fg will accept no more messages until a reaction



C=false B=true A=true O1 A=false B=false 02

NN

reaction 1 reaction 2 reaction 3
A=true,B=true/O1=T €1 B=false,C=false/O02=T

Figure 2: Incremental ASAP asynchronous execution of NOABSENCE1

consumes the value v(m) of m (i.e. until a reaction i/o is executed so that i(S) = v(m)).
A fireable reaction i/o can be triggered as soon as its input values are available as messages
on the input FIFO heads corresponding to the present signals of i. Once this condition
is met, the actual transition can be triggered in a variety of ways, without affecting the
functionality and determinism of the implementation: by some external clock (periodic or
not), when enough input is available to trigger a non-stuttering reaction, etc.

4.1.1 Incremental ASAP input reading

One possible asynchronous execution of the previous example is given in Fig. It corre-
sponds to a GALS implementation where reactions are triggered by an external clock. The
input FIFO associated with signal C is the first to deliver a value (false). Then, new values
arrive for B and C. When a reaction is triggered by the external clock, the only non-stuttering
fireable reaction is A = true, B = true/O1 = T. This reaction is performed, 01 is emitted,
the FIFOs of A and B unblocked (new messages can be accepted), but the FIFO of C remains
blocked by the unconsumed message on it. After a new value arrives for A, a new reaction
is triggered by the external clock. Given the available inputs, the only fireable transition is
L, which changes nothing. The third reaction is B = false,C = false/O2 =T.

Note that, in our example, we always perform a reaction as soon as its inputs are available
at clock activation time (never delaying execution). This choice is natural, as it minimizes
the number of clock cycles needed to complete a computation. We shall say that reactions
are executed as soon as possible (ASAP).

Also note that the NRSA property allows an incremental reading of the inputs needed
to trigger a reaction r. As soon as the system enters a state where r = i/o is fireable, we
can start a process Wait; that waits for the values of i to arrive on the FIFOs. Once the
inputs are assembled, r can be executed ASAP. The input reading process Wait; is killed if
some input FIFO fg with S € supp(i) brings a message m with i(S) # v(m).

In Fig. B for instance, the input reading process Wait B=faise,c=faise Starts when exe-
cution starts. Then, it assembles C' = false, but B = true arrives and Wait p—faise,c=false
is be killed. However, the reaction B = false,C = false/O2 =T is again fireable af-
ter the execution of the first reaction. Therefore, WaitB=faise,c=fatse is restarted. It
assembles C = false, which is still unconsumed. Finally, B = false arrives and the
Waitp=faise,c=false completes its execution by triggering the associated reaction at the
third activation of the clock (as soon as possible). When ASAP execution is combined with



this incremental input reading mechanism, we shall say that we have an Incremental ASAP
input reading (and reaction triggering) policy.

Incremental ASAP input reading is more complex than endochronous input reading but
allows the deterministic asynchronous implementation of more synchronous systems. The
basic Incremental ASAP technique described here can be optimized, e.g. by using blocking
reads (like in the endochronous approach) every time this is possible. But we shall not cover
optimization aspects here.

5 Extension to concurrent systems

The NRSA property ensures that for given input messages, the program can choose deter-
ministically the non-stuttering reaction to trigger. However, this strong form of determinism
is not always necessary to ensure the I/O determinism of an asynchronous implementation.
Consider the following Signal program:

process WE1 =
(? event A, B ; ! event C, D ;)
(|l C:=A 1| D:=B )

The corresponding automaton in our model is the following:
B=T/D=T
\Sr
o2 =
A=T,B=T/C=T,D=T Ag
A=T/C=T

The automaton does not satisfy the NRSA property, because absence is needed to choose
between A=T/C=T,B=T/D=T,and A=T,B=T/C=T,D=T. However, the
program can be asynchronously implemented, without added signalling, if we use an Incre-
mental ASAP input reading and reaction triggering policy. Indeed, as soon as A is received,
the reaction A = T/C = T can be executed, whether B has been received or not.

Intuitively, reactions A =T/C =T and B=T/D =T are independent. The interleav-
ing between incoming messages on the A and B channels, and the associated interleaving
of reactions do not change the asynchronous I/O behavior of WE1. The same is true for the
corresponding Esterel program:

module WE1l: input A,B ; output C,D ;
[

every immediate A do emit C end
|l

every immediate B do emit D end

]

end module



More generally, the weak endochrony property introduced by Potop, Caillaud, and Ben-
veniste [I9] ensures that an Incremental ASAP input reading policy produces deterministic
asynchronous implementations.

While weak endochrony is a sufficient condition, we determine here the exact class of
synchronous programs (automata) that produce deterministic asynchronous implementa-
tions when an Incremental ASAP policy is used.

5.1 Concurrency and Incremental ASAP

The first step in this direction is to determine that the Incremental ASAP policy is compat-
ible with concurrent systems such as WE1. In systems with the NRSA property, at most one
non-stuttering reaction r is executed during a clock activation because at most one input
gathering process can complete between two clock activations. This is no longer the case
when concurrent reactions are accepted. For instance, assume that both inputs A and B
arrive before the first clock activation of example WE1. Three input gathering processes are
started (one for each non-stuttering fireable reaction), and all three are completed before
the first clock activation. In the end, to avoid ambiguity, only one should be executed. In
our case, the combined reaction A=T,B=T/C=T,D=T.

To obtain this behavior, we need to add two new rules allowing the Incremental ASAP
policy to handle non-contradictory concurrent reactions. Assume that two input reading
processes are started for reactions i1 /01 and i5/02, with i1 > 45 and supp(i1) Nsupp(iz) # 0.
When a clock activation arrives, the following supplementary rules apply:

SR1 (competition for resources) If Wait;, is completed and Wait;, is not, then i1/01 is
executed and Wait;, is killed.

SR2 (the bigger transition wins) If both Wait;, and Wait;, are completed and i1 C io,
then is/02 is executed and Wait;, is killed.

We shall call this extended input reading policy Concurrent Incremental ASAP.
Note that the correctness of an Incremental ASAP policy relies on two fundamental
properties:

FP1 The scheduling rules leave at most one transition executable at each activation of the
clock.

FP2 A reaction i/o1is still fireable when Wait; is completed. This means that the transitions
realized from the moment Wait; is started and until it completes (without being killed)
leave the reaction fireable.

These properties are implied by the NRSA property, and need to be preserved by its exten-
sion to concurrent systems.



5.2 Concurrent NRSA

Consider a synchronous specification ¥ = (Z, 0, S, T ) with the property that its implemen-
tation using a Concurrent Incremental ASAP input reading policy produces a monotonous
and deterministidl asynchronous automaton.

Assume that ¥ is in state s and that s M Sk ,k = 1,2 such that r; and ry are

not stuttering transitions and i1 > i5. Assume that all the inputs of i; U iy arrive through
messages before a new activation of the clock. Then, Wait;, and Wait;, are both completed,
but to comply with property FP1 only one reaction must be executed. Rule SR1 cannot
be used to make this choice, meaning that we have to use rule SR2. This means that the
reaction /o that is executed must satisfy i; C ¢ and is C i. At the same time, given the
available input, we also need ¢ C i Uis. Therefore, ¢ = i3 Uis. Also, from the I/O monotony
of the asynchronous implementation, and from the fact that ¥ has no input-less transitions,
we have 01 C 0 and oy C o, and therefore o1 U oy C o.

From the confluence property we demanded for the asynchronous implementations in
Section Bl we can deduce that there exist the reactions zf / oé? with j € {1,2} and 0 < k <
m; such that:

11/01 im
1 ——

(cnrsa)

i1/0/7 _W
(i1Ui2) /0
/OX* 12/02 J
m2 /o
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where the following equalities hold (their terms being defined):

ma mao

i\ in = [ J# iy \ia = J (1)
j=1 j=1

mi . mo )
0:01UU031202UU0% (2)
j=1 j=1
This is the property defining concurrent systems without reaction to signal absence.

Definition 3 (Concurrent NRSA) Given a synchronous specification ¥ = (Z,0,8,T),
we shall say that it satisfies the no reaction to signal absence property for concurrent systems

ik/ok

(Concurrent NRSA) if for every two transitions s ————— Sk ,k = 1,2 such that i1 >
io, there exist s € S and o valuation of the output signals such that o1 U os C o0, as well
as the reactions z;“/o§C with j € {1,2} and 0 < k < m,; satisfying equations (cnrsa),(1), and

(2).

31n the sense of Kahn [I3].




The following theorem is our main result. It proves that the Concurrent NRSA prop-
erty indeed characterizes synchronous specifications that give deterministic asynchronous
implementations when a Concurrent Incremental ASAP input reading policy is used.

Theorem 1 (Characterization) Let¥ = (Z,0,S,7) be a synchronous specification. Then,
the Concurrent Incremental ASAP asynchronous implementation of 3 is monotonous and
determanistic if and only if &2 has the Concurrent NRSA property.

Proof sketch: =. Already done, in a constructive fashion, in this section.

<. Consider a finite set of inputs (a sequence of non-absent values for each input signal),
consider two arrival orders of these incoming inputs with respect to the clock triggering
instants, and consider the associated maximal Concurrent Incremental ASAP executions.
Given that every transition (stuttering ones excepted) consumes at least one input, the two
executions are finite.

The next step is to prove that the two executions read the same inputs. By assuming
that one execution reads one more input than another on some input channel, and by
using equation (cnrsa), we contradict the maximality hypothesis on the executions. This
reasonment also proves that the destination state is the same.

The last step is to prove that the same outputs are produced on both execution paths.
Similarly, by using the Concurrent NRSA property, the rewriting is confluent. End proof.

5.2.1 Relation with weak endochrony
Consider a synchronous system X satisfying the Concurrent NRSA property and two non-

contradictory transitions s Zk—/oi Sk ,k = 1,2. Assume the inputs of i; arrive before the
first activation of the clock, and that the inputs of is \ 41 arrive before the second activation
of the clock. From the determinism of the asynchronous implementation, we know that
all the inputs of ¢ will be read, and all the outputs of o produced. However, we have no
guarantee on the number of clock activations needed to consume the inputs of is \ 41, and
to produce the outputs of o\ 01.

If we restrict our class of specifications to those where the input arrival order does not
lead to an explosion in the number of clock cycles needed for consuming them, we can
further require that once a reaction i/o is fireable in a state, and as soon as the inputs of
i arrive through the input FIFOs, all the inputs of ¢ are consumed and all the outputs of
o are produced. In this class of specifications, those that have deterministic asynchronous
implementations are characterized by property (cnrsa), with the restriction that mq,ms <1
(the diagram (cnrsa) closes in at most one step). This property is similar to the microstep
variant of weak endochrony defined by Potop and Caillaud [I8].

Similarly, if we require that rule SR1 is never applied, which greatly simplifies the struc-
ture of the asynchronous implementation, we are lead to a decomposition of all executions
into atomic reactions. The result is macrostep weak endochrony [19].



6 Examples

All Lustre programs are endochronous in the sense of Benveniste [3], and therefore satisfy
property NRSA.

But it is more interesting to explain which common properties of a synchronous program
mean that it does not satisfy the NRSA or Concurrent NRSA properties. We give here intu-
itive examples where signal absence information necessary in the deterministic asynchronous
implementation of a synchronous system.

6.1 A simple example in Esterel, Signal, and Lustre
Consider the Esterel example PREEMPT, of Fig. [l We remind the program body:

abort
await immediate A ; emit B
when immediate C do emit D end

We explained in section Section that the program does not have the NRSA property. If
we use no message to encode signal absence, the resulting asynchronous implementation is
non-deterministic: For given input (one message on channel A, and one message on channel
B) 2 different outputs can be obtained.

The Signal language counterpart makes reaction to signal absence even more obvious,
under the form of “not CE”, used in the lines 8 and 11.

process PREEMPT =
(? event A,C,TICK ; ! event B,D ;)
(| state "= AE "= CE "= TICK
| A "+ C °< TICK
| AE := (true when A) default false
| CE := (true when C) default false
| state :=
(state and not AE and not CE)
$init true
| B :=
when (state=true and AE and not CE)
| D := when (state=true and CE)
|) where boolean state, AE, CE; end

By comparison, encoding the previous example into Lustre (or SynDEx) requires the
programmer to manually encode presence and absence with non-absent values of Boolean
signals. No signal absence subsists on the program interface.

node PREEMPT(A,C:boolean)
returns (B,D:boolean);
var active:boolean ;



let
active = true ->
pre(active and not A and not C) ;
B = state and A and not C ;
D = state and C
tel

6.2 Signal loss

Other properties that introduce encoding problems in the asynchronous implementation of
synchronous specifications can be traced back to reaction to signal absence.

First of all, programs written in Esterel and Signal can lose incoming signals. By losing
signals we mean that signal valuations can be left unread (and thus discarded) without
influencing the behavior of the system in any way. This is generally not acceptable when
we want to achieve determinism in the chosen asynchronous framework, because we don’t
know the number of messages to read. We start with a simple Esterel example:

module LOSS1 :
input A, B ; output C,D ;
[

await immediate A ; emit C
[l

await immediate B ; emit D
]

end module

When A and B arrive simultaneously, the program instantly emits C and D and terminates.
Assume now that A arrives first, and that B arrives in a subsequent instant. After the
reception of A and before the reception of B, the first branch is terminated, so that the
program does not explicitly use incoming A signals. However, such signals can arrive (one
per reaction, at most), and are lost.

By consequence, LOSS1 does not have the NRSA property. In instants between the first
occurrence of A and the first occurrence of B, the program can choose between executing

TICK =T/, TICK=T,A=T/, TICK=T,B=T/D=T,andTICK=T,A=T,B=T/D=T.

The behavior of the previous Esterel example is modelled in Signal as follows.

process L0OSS1 =
(? event A,B,TICK ; ! event C,D ;)
(I A "< TICK | B "< TICK
| AE "= BE "= stateA "= stateB "= TICK
| AE := (true when A) default false
| BE := (true when B) default false
| stateA := stateAnxt $ init true
| stateAnxt := stateA and not AE



stateB := stateBnxt $ init true
stateBnxt := stateB and not BE
C := when stateA and AE
D := when stateB and BE
) where
boolean AE,BE,stateA,stateB,
stateAnxt,stateBnxt ;

end ;

The way signals are lost is more obvious here. The lines 5 and 6 show how inputs are read
at each reaction. At the same time, the input data is only used when stateA, respectively
stateB are true.

It is important to note that all useful Esterel programs lose messages. More precisely,
the only programs that do not lose inputs are those that read all their inputs at all instants.
This is due to the fact that Esterel programs do not constrain their environment, or do it in
elementary ways, whereas a Signal program specifies both the system and its environment.
To allow the use of Esterel for the specification of systems that do not react to signal absence,
we need to constrain the environment, using a constraint language such as Signal, so that
signals do not arrive when they are not awaited.

The previous Signal program, which can lose signals, can be “fixed” by requiring inputs
to come only in instants where they are awaited, for instance by changing line 3 as follows.

(| A "< TICK | B “< TICK
| A "< when stateA=true
| B "< when stateB=true

One could imagine combining Esterel programs with Signal environment constraints, to
obtain the same effect.

6.3 Signal merging and splitting

A special form of signal loss occurs when two or more statements simultaneously emit or
read a signal, while reading can also be done separately:
The simplest case is that of emission, illustrated by the following Esterel program:

module LOSS2 : input A, B ; output C ;
L

await immediate A ; emit C

await immediate B ; emit C
]

end module

Depending on the arrival of A and B, the asynchronous implementation of the program can
produce one or two messages on C.



The following example can read two messages for signal E (in two different reactions), or
just one (when A, B, and E arrive simultaneously), or none (when no A, nor B arrive):

module LOSS3 :
input A, B, E ; output C, D ;
L

await immediate [A and E] ; emit C
I

await immediate [B and E] ; emit D
]

end module

7 Conclusion

We have introduced a simple formal definition of reaction to signal absence. We have defined
an execution machine that allows the deterministic execution of synchronous programs with
no reaction to signal absence (NRSA) in an asynchronous environment. We have determined
a formal criterion characterizing the class of concurrent programs that are deterministic when
run using this execution machine. The Concurrent NRSA criterion generalizes various no-
tions of (weak) endochrony and establishes theoretical and practical limits for deterministic
desynchronization. Intuitive examples have been used to illustrate the various concepts.
Future work will concentrate on practical application of these results to the optimization
of the communication mechanisms of GALS implementations generated by systems such
as SynDEx. We will also develop analysis and synthesis techniques for the deterministic
asynchronous implementation of programs written in common synchronous languages.
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