A rational extension of Piegl's method for filling n-sided holes

Yi-Jun Yang 1 Jun-Hai Yong 1 Hui Zhang 1 Jean-Claude Paul 1 Jia-Guang Sun 1
1 CAD - Computer Aided Design
LIAMA - Laboratoire Franco-Chinois d'Informatique, d'Automatique et de Mathématiques Appliquées, Inria Paris-Rocquencourt
Abstract : N-sided hole filling plays an important role in vertex blending. To deal with the case that the corner is surrounded by rational surfaces (i.e. NURBS surfaces), an algorithm to fill n-sided holes with "-G1 continuous NURBS patches that interpolate the given boundary curves and approximate the given cross-boundary derivatives is presented based on Piegl's method. The NURBS surfaces joining along inner or boundary curves have normal vectors that do not deviate more than the user-specified angular tolerance ". The boundaries as well as cross-boundary derivatives can all be NURBS curves. No restrictions are imposed on the number of boundary curves, and the cross-boundary derivatives can be specified independently.
Type de document :
Article dans une revue
Computer-Aided Design, Elsevier, 2006, 38 (11), pp.1166-1178. 〈10.1016/j.cad.2006.07.001〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00139001
Contributeur : Chine Publications Liama <>
Soumis le : mercredi 28 mars 2007 - 16:31:52
Dernière modification le : mercredi 10 octobre 2018 - 14:28:07

Identifiants

Collections

Citation

Yi-Jun Yang, Jun-Hai Yong, Hui Zhang, Jean-Claude Paul, Jia-Guang Sun. A rational extension of Piegl's method for filling n-sided holes. Computer-Aided Design, Elsevier, 2006, 38 (11), pp.1166-1178. 〈10.1016/j.cad.2006.07.001〉. 〈inria-00139001〉

Partager

Métriques

Consultations de la notice

210