A. Agrachev and Y. Sachkov, Control theory from the geometric viewpoint Control Theory and Optimization, II, Encyclopaedia of Mathematical Sciences, vol.87, 2004.

E. Allgower and K. Georg, Numerical Continuation Methods, 1990.
DOI : 10.1007/978-3-642-61257-2

J. T. Betts, Practical Methods for Optimal Control using Nonlinear Programming, Applied Mechanics Reviews, vol.55, issue.4, 2001.
DOI : 10.1115/1.1483351

B. Bonnard, J. Caillau, and E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control, ESAIM: Control, Optimisation and Calculus of Variations, vol.13, issue.2, 2006.
DOI : 10.1051/cocv:2007012

URL : https://hal.archives-ouvertes.fr/hal-00086380

B. Bonnard and M. Chyba, Singular trajectories and their role in control theory, of Mathématiques & Applications, 2003.

B. Bonnard and I. Kupka, Generic properties of singular trajectories, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.14, issue.2, pp.167-186, 1997.
DOI : 10.1016/S0294-1449(97)80143-6

A. E. Bryson and Y. Ho, Applied optimal control, 1975.

R. Bulirsch, Die mehrzielmethode zur numerischen lösung von nichtlinearen randwertproblemen und aufgaben der optimalen steuerung, Deutsches Zentrum für Luft-und Raumfahrt (DLR), 1971.

P. Deuflhard, Newton Methods for Nonlinear Problems, 2004.
DOI : 10.1007/978-3-642-23899-4

R. H. Goddard, A Method of Reaching Extreme Altitudes, Smithsonian Miscellaneous Collections. Smithsonian institution, vol.71, issue.2, 1919.

B. S. Goh, Necessary Conditions for Singular Extremals Involving Multiple Control Variables, SIAM Journal on Control, vol.4, issue.4, pp.716-731, 1966.
DOI : 10.1137/0304052

E. Hairer and G. Wanner, Solving ordinary differential equations. II, 1996.

P. Martinon, Numerical resolution of optimal control problems by a Piecewise Linear continuation method, 2005.

H. J. Oberle, Numerical computation of singular control functions in trajectory optimization problems, Journal of Guidance, Control, and Dynamics, vol.13, issue.1, pp.153-159, 1990.
DOI : 10.2514/3.20529

L. Pontryagin, V. Boltyanski, R. Gamkrelidze, and E. Michtchenko, The Mathematical Theory of Optimal Processes, 1962.

H. M. Robbins, A Generalized Legendre-Clebsch Condition for the Singular Cases of Optimal Control, IBM Journal of Research and Development, vol.11, issue.4, pp.361-372, 1967.
DOI : 10.1147/rd.114.0361

W. Rudin, Real and complex analysis, 1987.

A. L. Schwartz, Theory and implementation of numerical methods based on Runge-Kutta integration for solving optimal control problems, 1996.

H. Seywald and E. M. Cliff, Goddard problem in presence of a dynamic pressure limit, Journal of Guidance, Control, and Dynamics, vol.16, issue.4, pp.776-781, 1993.
DOI : 10.2514/3.21080

J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 1993.

P. Tsiotras and H. J. Kelley, Drag-law effects in the goddard problem, Automatica, vol.27, issue.3, pp.27-3481, 1991.
DOI : 10.1016/0005-1098(91)90105-B

A. Waechter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, vol.10, issue.1, pp.25-57, 2006.
DOI : 10.1007/s10107-004-0559-y

I. Unité-de-recherche, . Lorraine, . Loria, and . Technopôle-de-nancy, Brabois -Campus scientifique 615, rue du Jardin Botanique -BP 101 -54602 Villers-lès-Nancy Cedex (France) Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu -35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l'Europe -38334 Montbonnot Saint-Ismier (France) Unité de recherche INRIA Rocquencourt, Domaine de Voluceau -Rocquencourt -BP 105 -78153 Le Chesnay Cedex (France) Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles -BP 93 -06902 Sophia Antipolis Cedex