E. H. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines, 1989.

P. J. Angeline, Adaptive and self-adaptive evolutionary computations, Computational Intelligence, pp.152-161, 1995.

J. Arabas, Z. Michalewicz, and J. Mulawka, GAVaPS-a genetic algorithm with varying population size, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, pp.73-78
DOI : 10.1109/ICEC.1994.350039

A. Auger, Contributions thoriques et numriques l'optimisation continue par algorithmes volutionnaires, 2004.

A. Auger, C. L. Bris, and M. Schoenauer, Dimension-Independent Convergence Rate for Non-isotropic (1, ??) ??? ES, Proceedings of the Genetic and Evolutionary Conference 2003, pp.512-524, 2003.
DOI : 10.1007/3-540-45105-6_64

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Bäck, The interaction of mutation rate, selection and self-adaptation within a genetic algorithm, Männer and Manderick, pp.85-94

T. Bäck, Self adaptation in genetic algorithms, Toward a Practice of Autonomous Systems: Proceedings of the 1st European Conference on Artificial Life, pp.263-271, 1992.

T. Bäck, Optimal mutation rates in genetic search, Forrest [32], pp.2-8

T. Bäck, Evolutionary Algorithms in Theory and Practice, 1995.

T. Bäck, Self-adaptation, Evolutionary Computation 2: Advanced Algorithms and Operators, chapter 21, pp.188-211, 2000.
DOI : 10.1201/9781420034349.ch21

T. Bäck, A. E. Eiben, N. A. Van-der-vaart-in, M. Schoenauer, K. Deb et al., An empirical study on GAs " without parameters, Proceedings of the 6th Conference on Parallel Problem Solving from Nature, number 1917 in Lecture Notes in Computer Science, pp.315-324, 2000.

T. Bäck, M. Schütz, and S. Khuri, A comparative study of a penalty function, a repair heuristic, and stochastic operators with the set-covering problem
DOI : 10.1007/3-540-61108-8_47

W. Banzhaf, Genetic Programming: An Introduction, 1998.

J. C. Bean and A. B. , Hadj-Alouane. A dual genetic algorithm for bounded integer problems, 1992.

L. Davis, Adapting operator probabilities in genetic algorithms, Schaffer [65], pp.61-69

E. De-jong, R. Watson, and J. Pollack, Reducing bloat and promoting diversity using multi-objective methods, Proceedings of the Genetic and Evolutionary Computation Conference, pp.11-18, 2001.

K. A. De and . Jong, An Analysis of the Behaviour of a Class of Genetic Adaptive Systems, 1975.

K. Deb and H. Beyer, Self-Adaptive Genetic Algorithms with Simulated Binary Crossover, Evolutionary Computation, vol.3, issue.2, pp.197-221, 2001.
DOI : 10.1016/0303-2647(95)01534-R

A. E. Eiben, Evolutionary Algorithms and Constraint Satisfaction: Definitions, Survey, Methodology, and Research Directions, Theoretical Aspects of Evolutionary Computing, pp.13-58, 2001.
DOI : 10.1007/978-3-662-04448-3_2

A. E. Eiben, R. Hinterding, and Z. Michalewicz, Parameter control in evolutionary algorithms, IEEE Transactions on Evolutionary Computation, vol.3, issue.2, pp.124-141, 1999.
DOI : 10.1109/4235.771166

URL : https://hal.archives-ouvertes.fr/inria-00140549

A. E. Eiben, B. Jansen, Z. Michalewicz, and B. Paechter, Solving CSPs using self-adaptive constraint weights: how to prevent EAs from cheating, pp.128-134

A. E. Eiben, P. Raué, and Z. Ruttkay, GA-easy and GA-hard constraint satisfaction problems, Proceedings of the ECAI-94 Workshop on Constraint Processing, number 923 in LNCS, pp.267-284, 1995.
DOI : 10.1007/3-540-59479-5_30

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. E. Eiben and Z. Ruttkay, Self-adaptivity for constraint satisfaction: learning penalty functions, Proceedings of IEEE International Conference on Evolutionary Computation, pp.258-261
DOI : 10.1109/ICEC.1996.542371

A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computation, 2003.

A. E. Eiben and J. K. Van-der-hauw, Solving 3-SAT with adaptive genetic algorithms, ICEC-97, pp.81-86

A. E. Eiben and J. I. Van-hemert, SAW-ing EAs: adapting the fitness function for solving constrained problems, New Ideas in Optimization, chapter 26, pp.389-402, 1999.

D. B. Fogel and J. W. Atmar, Comparing genetic operators with gaussian mutations in simulated evolutionary processes using linear systems, Biological Cybernetics, vol.17, issue.2, pp.111-114, 1990.
DOI : 10.1007/BF00203032

B. Friesleben and M. Hartfelder, Optimisation of genetic algorithms by genetic algorithms, Artifical Neural Networks and Genetic Algorithms, pp.392-399, 1993.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1989.

J. J. Grefenstette, Optimization of Control Parameters for Genetic Algorithms, IEEE Transactions on Systems, Man, and Cybernetics, vol.16, issue.1, pp.122-128, 1986.
DOI : 10.1109/TSMC.1986.289288

N. Hansen, S. Mller, and P. Koumoutsakos, Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), Evolutionary Computation, vol.11, issue.1, 2003.
DOI : 10.1162/106365601750190398

N. Hansen and A. Ostermeier, Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation, Proceedings of IEEE International Conference on Evolutionary Computation, pp.312-317, 1996.
DOI : 10.1109/ICEC.1996.542381

N. Hansen and A. Ostermeier, Completely Derandomized Self-Adaptation in Evolution Strategies, Evolutionary Computation, vol.9, issue.2, pp.159-195, 2001.
DOI : 10.1016/0004-3702(95)00124-7

N. Hansen, A. Ostermeier, and A. Gawelczyk, On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation, Proceedings of the 6 th International Conference on Genetic Algorithms, pp.57-64, 1995.

J. Hesser and R. Manner, Towards an optimal mutation probablity in genetic algorithms, Proceedings of the 1st Conference on Parallel Problem Solving from Nature, number 496 in Lecture Notes in Computer Science, pp.23-32, 1991.

R. Hinterding, Z. Michalewicz, and A. E. Eiben, Adaptation in evolutionary computation: a survey, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)
DOI : 10.1109/ICEC.1997.592270

R. Hinterding, Z. Michalewicz, and T. C. Peachey, Self-adaptive genetic algorithm for numeric functions, pp.420-429
DOI : 10.1007/3-540-61723-X_1006

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Jain and D. B. , Case studies in applying fitness distributions in evolutionary algorithms. II. Comparing the improvements from crossover and Gaussian mutation on simple neural networks, 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks. Proceedings of the First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks (Cat. No.00EX448), pp.91-97, 2000.
DOI : 10.1109/ECNN.2000.886224

J. A. Joines and C. R. Houck, On the use of non-stationary penalty functions to solve nonlinear constrained optimisation problems with ga's, ICEC-94 [43], pp.579-584

B. A. Julstrom, What have you done for me lately?: Adapting operator probabilities in a steady-state genetic algorithm, Proceedings of the 6th International Conference on Genetic Algorithms, pp.81-87, 1995.

Y. Kakuza, H. Sakanashi, and K. Suzuki, Adaptive search strategy for genetic algorithms with additional genetic algorithms, Männer and Manderick [59], pp.311-320

S. Kirkpatrick, C. Gelatt, and M. Vecchi, Optimization by Simulated Annealing, Science, vol.220, issue.4598, pp.671-680, 1983.
DOI : 10.1126/science.220.4598.671

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Koza, Genetic programming as a means for programming computers by natural selection, Statistics and Computing, vol.4, issue.2, 1992.
DOI : 10.1007/BF00175355

N. Krasnogor, J. E. Smith, and . Whitley, A memetic algorithm with self-adaptive local search: TSP as a case study, pp.987-994

N. Krasnogor and J. E. Smith, Emergence of profitable search strategies based on a simple inheritance mechanism, Spector et al. [81], pp.432-439

M. Lee and H. Takagi, Dynamic control of genetic algorithms using fuzzy logic techniques, Forrest [32], pp.76-83

J. Levenick, Swappers: introns promote flexibility, diversity, and invention, Proceedings of the Genetic and Evolutionary Computation Conference GECCO '99, pp.361-368, 1999.

J. Lis, Parallel genetic algorithm with the dynamic control parameter, Proceedings of IEEE International Conference on Evolutionary Computation, pp.324-329
DOI : 10.1109/ICEC.1996.542383

J. Lis and M. Lis, Self-adapting parallel genetic algorithm with the dynamic mutation probability, crossover rate, and population size, Proceedings of the First Polish Evolutionary Algorithms Conference, pp.79-86, 1996.

S. W. Mahfoud, Boltzmann selection, pp.1-4
DOI : 10.1887/0750308958/b386c33

K. E. Mathias and L. D. Whitley, Remapping Hyperspace During Genetic Search: Canonical Delta Folding, Foundations of Genetic Algorithms, pp.167-186, 1993.
DOI : 10.1016/B978-0-08-094832-4.50017-9

K. E. Mathias and L. D. Whitley, Changing Representations During Search: A Comparative Study of Delta Coding, Evolutionary Computation, vol.3, issue.9, pp.249-278, 1995.
DOI : 10.1007/BF00175354

Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 1996.

Z. Michalewicz and M. Schoenauer, Evolutionary Algorithms for Constrained Parameter Optimization Problems, Evolutionary Computation, vol.13, issue.1, pp.1-32, 1996.
DOI : 10.1162/evco.1996.4.1.1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Oyama, S. Obayashi, and T. Nakamura, Real-coded adaptive range genetic algorithm applied to transonic wing optimization, Proceedings of the 6 th Conference on Parallel Problems Solving from Nature, pp.712-721, 1917.
DOI : 10.1007/3-540-45356-3_70

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and R. Das, A study of control parameters affecting online performance of genetic algorithms for function optimisation, pp.51-60

J. D. Schaffer and L. J. Eshelman, On crossover as an evolutionarily viable strategy, pp.61-68

D. Schlierkamp-voosen and H. Mühlenbein, Strategy adaptation by competing subpopulations, Proceedings of the 3rd Conference on Parallel Problem Solving from Nature, number 866 in Lecture Notes in Computer Science, pp.199-209, 1994.
DOI : 10.1007/3-540-58484-6_264

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Schwefel, Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie, 1977.
DOI : 10.1007/978-3-0348-5927-1

H. Schwefel, Numerical Optimisation of Computer Models, 1981.

J. E. Smith, Self Adaptation in Evolutionary Algorithms, 1998.

J. E. Smith, Modelling GAs with self-adaptive mutation rates, pp.599-606

J. E. Smith, On appropriate adaptation levels for the learning of gene linkage, Genetic Programming and Evolvable Machines, vol.3, issue.2, pp.129-155, 2002.
DOI : 10.1023/A:1015579825262

J. E. Smith, Parameter perturbation mechanisms in binary coded gas with selfadaptive mutation, Foundations of Genetic Algorithms, pp.329-346, 2003.

J. E. Smith and T. C. Fogarty, Adaptively parameterised evolutionary systems: Self adaptive recombination and mutation in a genetic algorithm, pp.441-450
DOI : 10.1007/3-540-61723-X_1008

J. E. Smith and T. C. Fogarty, Recombination strategy adaptation via evolution of gene linkage, Proceedings of IEEE International Conference on Evolutionary Computation, pp.826-831
DOI : 10.1109/ICEC.1996.542708

J. E. Smith and T. C. Fogarty, Self adaptation of mutation rates in a steady state genetic algorithm, Proceedings of IEEE International Conference on Evolutionary Computation, pp.318-323
DOI : 10.1109/ICEC.1996.542382

J. E. Smith and T. C. Fogarty, Operator and parameter adaptation in genetic algorithms, Soft Computing, vol.1, issue.2, pp.81-87, 1997.
DOI : 10.1007/s005000050009

R. E. Smith and E. Smuda, Adaptively resizing populations: Algorithm, analysis and first results, Complex Systems, vol.9, issue.1, pp.47-72, 1995.

W. M. Spears, Adapting crossover in evolutionary algorithms, Proceedings of the 4th Annual Conference on Evolutionary Programming, pp.367-384, 1995.

C. R. Stephens, I. Garcia-olmedo, J. M. Vargas, and H. Waelbroeck, Self-Adaptation in Evolving Systems, Artificial Life, vol.4, issue.2, pp.183-201, 1998.
DOI : 10.1287/mnsc.10.2.225

G. Syswerda, A Study of Reproduction in Generational and Steady-State Genetic Algorithms, Foundations of Genetic Algorithms, pp.94-101, 1991.
DOI : 10.1016/B978-0-08-050684-5.50009-4

N. Wagner and Z. Michalewicz, Genetic programming with efficient population control for financial times series prediction, Genetic and Evolutionary Computation Conference Late Breaking Papers, pp.458-462, 2001.

N. Wagner, Z. Michalewicz, M. Khouja, and R. R. Mcgregor, Forecasting with dynamic window of time: the dyfor genetic program model, Proceedings of the International Workshop on Intelligent Media Technology for Communicative Intelligence, 1314.

D. Whitley, The genitor algorithm and selection pressure: why rank-based allocation of reproductive trials is best, Proceedings of the Third International Conference on Genetic Algorithms, pp.116-121, 1989.

L. D. Whitley, K. E. Mathias, and P. Fitzhorn, Delta coding: An iterative search strategy for genetic algorithms, Belew and Booker [16], pp.77-84

D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation, vol.1, issue.1, pp.67-82, 1997.
DOI : 10.1109/4235.585893

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Zhang and H. Mühlenbeim, Balancing Accuracy and Parsimony in Genetic Programming, Evolutionary Computation, vol.7, issue.3, pp.17-38, 1995.
DOI : 10.1214/aos/1176350051