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Abstract. Deduction modulo and Supernatural deduction are two ex-
tentions of predicate logic with computation rules. Whereas the applica-
tion of computation rules in deduction modulo is transparent, these rules
are used to build non-logical deduction rules in Supernatural deduction.
In both cases, adding computation rules may jeopardize proof normal-
ization, but various conditions have been given in both cases, so that
normalization is preserved. We prove in this paper that normalization
in Supernatural deduction and in Deduction modulo are equivalent, i.e.
the set of computation rules for which one system strongly normalizes is
the same as the set of computation rules for which the other is.

1 Introduction

Integrating a theory into a deduction system has several advantages over working
with axioms. It allows proof-search algorithms to avoid some redundancies, it
permits in some cases to get witnesses from constructive proofs and hence to
program with proofs, etc.

One way to do so is to formulate the theory of interest as a rewrite system and
identify congruent formulae. This is the idea of deduction modulo. For instance,
the axiom ∀X∀Y ((X ⊆ Y ) ⇔ ∀z (z ∈ X ⇒ z ∈ Y )) may be formulated as the
rewrite rule (X ⊆ Y )→ ∀z (z ∈ X ⇒ z ∈ Y ) and

(∀I)
Γ ` x ∈ A⇒ x ∈ B

Γ ` A ⊆ B

is then a valid deduction step. Thus the natural deduction rules have to be
reformulated in order to take the congruence into account.

An more deterministic alternative to deduction modulo is Supernatural De-
duction where the rewrite rules are translated into new deduction rules in the
logic. For instance, the rewrite rule (X ⊆ Y )→ ∀z (z ∈ X ⇒ z ∈ Y ) yields the



following introduction and elimination rules

∀-intro
Γ ` (z ∈ X ⇒ z ∈ Y )

Γ ` X ⊆ Y
z /∈ FV(Γ ) ∀-elim

Γ ` X ⊆ Y
Γ ` t ∈ X ⇒ t ∈ Y

where all connectors and quantifiers have disappeared. It may be argued that
these rules are much closer to usual mathematical practice than either predicate
logic with axioms or Deduction Modulo.

Since soundness and completeness with respect to predicate logic with axioms
has been proved for both systems, they prove the same theorems but we are
interested in a stronger equivalence property.

To explain this strong equivalence property, we must first notice that in both
cases, proof normalization and cut elimination are jeopardized. However, various
conditions have been given so that normalization is preserved. For deduction
modulo, such criteria have been developed in [1,2,3]. For SND, criteria have
been developed in [4].

This raises the following problem: are there some rewrite system for which
one deduction system has the proof normalization property but not the other or
does proof normalization depend only on the rewrite system itself ? We prove
in this paper that this is indeed the case: given an orthogonal rewrite system R
rewriting atomic formulae to arbitrary formulae, proofs normalize in Deduction
Modulo(R) if and only if they normalize in Supernatural Deduction(R). As a
consequence, the semantic criteria developed for Deduction Modulo [3] may be
transferred to supernatural deduction.

Our result is limited to minimal logic (i.e. our connectives are restricted to
implication and universal quantification). The result can be extended to con-
jonction but the extension to the disjunction, the existential quantifier and con-
tradiction is more challenging. Indeed, Supernatural Deduction rules are already
trickier to define when such connectors and quantifiers are involved. A possible
solution may be to move from natural deduction to sequent calculus [5].

To prove this equivalence between Supernatural Deduction and Deduction
Modulo, we shall prove that they are both equivalent to a third and older system
due to Prawitz: Natural Deduction with folding and unfolding rules. Actually, the
equivalence of Deduction modulo and Prawitz’ system has already been proved
in [6]. Thus, all that remains to be done is to prove the equivalence between
Prawitz’ system and Supernatural Deduction. Fortunately, this can be achieved
by a simple syntactic translation of proofs.

This paper contributes to show that the choice of a formalism or another
seems to be a rather superficial choice, as properties such as strong normalization
are quite stable when one switches from one system to another.



2 From fold/unfold to supernatural deduction

2.1 Natural deduction

Our starting point is natural deduction for minimal logic with five rules: (Ax),
(⇒I), (⇒E), (∀I), (∀E). We use a lambda calculus notation for proofs:

T ::= α | λα : A.T | T T | λx.T | T t

The deduction rules enriched with proof-terms are the following: but these rules
are typed with different typing rules

(Ax)
Γ, α : A ` α : A

(⇒I)
Γ, α : A ` π : B

Γ ` (λα : A.π) : A⇒ B
(⇒E)

Γ ` π1 : A⇒ B Γ ` π2 : A
Γ ` (π1 π2) : B

(∀I)
Γ ` π : A

Γ ` (λx.π) : ∀xA
x /∈ FV(Γ ) (∀E)

Γ ` π : ∀xA
Γ ` (π t) : A{x := t}

The reduction rules on these proof-terms are the two kinds of β-reduction

((λα : A π1) π2) B π1{α := π2}

((λx π) t) B π{x := t}

2.2 Natural deduction with folding and unfolding rules

Consider an orthogonal rewrite system R rewriting atomic formulae to formulae.
For a rewrite rule P → ϕ, we may add Prawitz’ folding and unfolding rules

[7] replacing ϕ by P and P by ϕ. To do so, we enrich the proof-terms language.

T ::= α | λα : A.T | T T | λx.T | T t |↑R T |↓R T

And we introduce two deduction rules.

fold
Γ ` π : ϕ
Γ `↑Rπ : P and

unfold
Γ ` π : P
Γ `↓Rπ : ϕ

We also inroduce the following reduction rule.

↓R↑Rπ B π

2.3 Supernatural deduction

Supernatural deduction is to goes one step further and incorporates in these rules
the introductions and eliminations for all the connectives of ϕ. More formally,
we define the super-rules as follows.



Super-rules computation

Definition 1 (Computation of the introduction super-rules). Consider
a rewrite rule R : P → ϕ. Consider a sequence of variables l = x1, x2, . . . that
do not occur in the rule. We associate to R an introduction rule of the form

premiseI(Γ, ϕ, l)
Γ ` P

cond(Γ ,ϕ,l)

Where the sequent premiseI(Γ, ϕ, l) and the condition cond(Γ, ϕ, l) are defined
by induction on the stucture of ϕ as follows

– if ϕ is atomic, then premiseI(Γ, ϕ, l) = (Γ ` ϕ) and cond(Γ, ϕ, l) = ∅,
– if ϕ = ϕ1 ⇒ ϕ2 then premiseI(Γ, ϕ, l) = premiseI((Γ, ϕ1), ϕ2, l) and
cond(Γ, ϕ, l) = cond((Γ, ϕ1), ϕ2, l)

– if ϕ = ∀x ϕ1 then premiseI(Γ, ϕ, y.l) = premiseI(Γ, ϕ1{x := y}, l) and
cond(Γ, ϕ, y.l) = cond(Γ, ϕ1{x := y}, l) ∪ {y 6∈ FV(Γ )}

Definition 2 (Computation of the elimination super-rules). Consider
a rewrite rule R : P → ϕ. Consider a sequence of names l = t1, t2, . . .. We
associate to R an elimination rule of the form

Γ ` P premisesE(Γ, ϕ, l)
conclusion(Γ, ϕ, l)

Where the multiset of sequents premisesE(Γ, ϕ, l) and the sequent conclusion(Γ, ϕ)
are defined by induction on the stucture of ϕ as follows

– if ϕ is atomic then premisesE(Γ, ϕ, l) = ∅ and conclusion(Γ, ϕ) = (Γ ` ϕ)
– if ϕ = ϕ1 ⇒ ϕ2 then premisesE(Γ, ϕ, l) = {Γ ` ϕ1} ∪ premisesE(Γ, ϕ2, l)

and conclusion(Γ, ϕ, l) = conclusion(Γ, ϕ2, l)
– if ϕ = ∀x ϕ1 then let premisesE(Γ, ϕ, t.l) = premisesE(Γ, ϕ1{x := t}, l)

and conclusion(Γ, ϕ, t.l) = conclusion(Γ, ϕ1{x := t}, l)
Example 1 (Super-rules for inclusion definition). Given the rewrite rule ⊆: X ⊆
Y → ∀z.(z ∈ X ⇒ z ∈ Y ), the associated super deduction rules are:

(⊆I)
Γ, z ∈ X ` z ∈ Y
Γ ` X ⊆ Y

z /∈ FV(Γ ) (⊆E)
Γ ` X ⊆ Y Γ ` t ∈ X

Γ ` t ∈ Y

A proof-term language for Supernatural deduction The proof-term lan-
guage is that of proof-terms for predicate logic, enhanced with a pattern language
and the corresponding abstraction:

T ::= α | λα : A.T | T T | λx.T | T t | λR(m).T | T R(t)

The variables x, y, . . . are variables of the theory while α, β, . . . are proof
variables. The two last constructs allow to interprete the super-rules. In the
pattern R(m) the constructor R is applied to a sequence of variables that may
be either term or proof variables and in the term R(t) it is applied to a sequence
of terms that may be either terms of the theory or proof-terms.

We can now define the typing rules that correspond to the super-rules above.



Definition 3. The arity of a formula ϕ is a sequence of ∀ and⇒ symbols defined
by induction on ϕ as follows

– if ϕ is atomic arity(ϕ) = [ ],
– if ϕ = ϕ1 ⇒ ϕ2 then arity(ϕ) = (⇒ .(arity(ϕ2))),
– if ϕ = ∀x ϕ1 then arity(ϕ) = (∀.(arity(ϕ1))).

Let ϕ be a formula, a sequence for ϕ is a sequence of distinct variables such that
the n-th variable of the sequence is a proof variable if the n-th element of the
arity of ϕ is ⇒ and a term variable otherwise.

Definition 4 (Computation of the abstraction rules). Consider a rewrite
rule R : P → ϕ. Consider a sequence l for ϕ of variables that do not occur in
the rule. We associate to R an abstraction rule of the form

premiseI(Γ, ϕ, l)
Γ ` (λR(l).π) : P

cond(Γ ,ϕ,l)

Where the sequent premiseI(Γ, ϕ, l) and the condition cond(Γ, ϕ, l) are defined
by induction on the stucture of ϕ as follows

– if ϕ is atomic, then premiseI(Γ, ϕ, l) = (Γ ` π : ϕ) and cond(Γ, ϕ, l) = ∅,
– if ϕ = ϕ1 ⇒ ϕ2 then premiseI(Γ, ϕ, α.l) = premiseI((Γ, α : ϕ1), ϕ2, l) and
cond(Γ, ϕ, α.l) = cond((Γ, ϕ1), ϕ2, l)

– if ϕ = ∀x ϕ1 then premiseI(Γ, ϕ, y.l) = premiseI(Γ, ϕ1{x := y}, l) and
cond(Γ, ϕ, y.l) = cond(Γ, ϕ1{x := y}, l) ∪ {y 6∈ FV(Γ )}

Definition 5 (Computation of the application rules). Consider a rewrite
rule R : P → ϕ. Consider a sequence l for ϕ of names. We associate to R the
application rule of the form

Γ ` π : P premisesE(Γ, ϕ, l)
conclusion(Γ, (π R(l)), ϕ, l)

Where the multiset of sequents premisesE(Γ, ϕ, l) and the sequent conclusion(Γ, π′, ϕ, l)
are defined by induction on the stucture of ϕ as follows

– if ϕ is atomic then premisesE(Γ, ϕ, l) = ∅ and conclusion(Γ, π′, ϕ, l) =
(Γ ` π′ : ϕ)

– if ϕ = ϕ1 ⇒ ϕ2 then premisesE(Γ, ϕ, τ.l) = {Γ ` τ : ϕ1}∪premisesE(Γ, ϕ2, l)
and conclusion(Γ, π′, ϕ, τ.l) = conclusion(Γ, π′, ϕ2, l)

– if ϕ = ∀x ϕ1 we let premisesE(Γ, ϕ, t.l) = premisesE(Γ, ϕ1{x := t}, l) and
conclusion(Γ, π′, ϕ, t.l) = conclusion(Γ, π′, ϕ1{x := t}, l)

Example 2 (Proof-terms for the inclusion). Our definition of ⊆ uses a witness
and charges an assumption into the context. Thus, the associated proof-terms
are those given by the following typing rules:

(⊆I)
Γ, α:(x ∈ X) ` A : (x ∈ Y )
Γ ` λ⊆(x, α).A : (X ⊆ Y )

(⊆E)
Γ ` A : (X ⊆ Y ) Γ ` B : (t ∈ X)

Γ ` A⊆(t, B) : (t ∈ Y )



Definition 6 (Generalized cut elimination). The elimination of a gener-
alized cut is represented by a reduction which transmits the witnesses and the
lemmas to the proof.

λR(m).π R(t) Bρ π{m := t}

When seeing Supernatural deduction proof-terms as very simple ρ-terms of the
rewriting calculus, the generalized cut elimination is then a ρ-reduction step.
Hence the notation.

3 Normalization

We prove that strong normalization with respect to a rewrite system R is equiv-
alent in SND and in fold/unfold. To do so, we introduce translations beetween
from each system to the other, such that if π BS1 π

′, then JπK B+
S2

Jπ′K. The
existence of such a translation is a sufficient condition for the normalization in
S2 to imply that in S1.

3.1 From fold/unfold to SND

Definition 7. To each rule R : P → ϕ, we associate two proof-terms in Super-
natural deduction of type ϕ⇒ P and P ⇒ ϕ

χR↓ = λf λR(m1, . . . ,mn).(f m1 . . .mn)

and
χR↑ = λp λm1 . . . λmn.(p R(m1, . . . ,mn))

where m1, . . . ,mn is a sequence for ϕ.

Proposition 1. The term χR↑ (χR↓ x) reduces in two steps to λm1 . . . λmn.(x m1 . . .mn).

Definition 8 (Translation). To each proof π of a formula ϕ in fold/unfold,
we associate a proof of ϕ in Supernatural deduction by induction on the structure
of π as follows.

– if α is a variable then [α] = α
– [λα : A.π′] = λα : A.[π′]
– [λx.π′] = λx.[π′]
– [(π1 π2)] = [π1] [π2]
– [(π′ t)] = [π′] t
– [↑Rπ] = χR↑ [π]
– [↓Rπ] = χR↓ [π]

Definition 9 (another translation). Let π a proof of a formula ϕ and m1, . . . ,mn

a sequence for ϕ. We let JπK = [π] m1 . . .mn.

Proposition 2. If π is well-typed in Fold, then JπK is well-typed in Supernatural
deduction.



Proof. By induction on the structure of π we prove that [π] is well-typed and
has the same type than π. Let us detail the case of the fold. The type of π is A
and the type of ↑Rπ is P . [π] has type A. χR↑ has type A⇒ P . Then χR↓ [π] has
type P . Thus JπK is well-typed.

Proposition 3. Let π and π′ be two proofs in fold such that πBβ+fold π
′, then

JπK B+
ρ Jπ′K where m1 . . .mn is a sequence for the type of π.

Proof. The only non-trivial case is that of the fold-unfold cut. J↑R↓R πK =
χR↑ (χR↓ [π]) m1 . . .mn Bρ λm1 . . . λmn([π]m1 . . .mn) m1 . . .mn Bρ JπK.

3.2 From SND to DM

Definition 10 (Translation). To each proof π of a formula ϕ in SND, we
associate a proof of ϕ in fold/unfold by induction on the structure of π as follows.

– if α is a variable then JαK = α
– if t is a term then JtK = t
– Jλα : A.π′K = λα : A.Jπ′K
– Jλx.π′K = λx.Jπ′K
– J(π1 π2)K = Jπ1K Jπ2K
– J(π′ t)K = Jπ′K t
– JλR(x1, . . . , xn).πK =↑R (λx1 . . . xn JπK)
– J(π R(x1, . . . , xn))K = (↓R JπK x1 . . . xn)

We leave λ-terms as usual and call τ the translation which translates:

– an abstraction λR(m).π as the λ-proof-term corresponding to the same in-
troductions in Deduction modulo.

– an application π R(t) as the λ-proof-term corresponding to the same elimi-
nations in Deduction modulo.

Proposition 4. If π is well-typed in SND, then JπK is well-typed in fold/unfold.

Proof. By induction on the structure of π.

Proposition 5. If π Bρ π
′ then JπK B+

β Jπ′K.

Proof. The only non-trivial case is that of the SND cut. J(λR(x1, . . . , xn) π)R(t1, . . . , tn)K =
(↓R↑Rλx1 . . . xnJπK) Jt1K . . . JtnK which reduces to JπK in n+ 1 reduction steps.
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