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Abstract— We present in this article a simple method to
estimate an IPM view from an embedded camera. The method
is based on the tracking of the road markers assuming that the
road is locally planar. Our aim is the development of a free-
space estimator which can be implemented in an Autonomous
Guided Vehicle to allow a safe path planning. Opposite to most
of the obstacle detection methods which make assumptions on
the shape or height of the obstacles, all the scene elements
above the road plane (particularly kerbs and poles) have to be
detected as obstacles. Combined with the IPM tranformation,
this obstacle detection stage can be viewed as the �rst stage of
a free-space estimator dedicated to AGV in the complex urban
environments.

I. I NTRODUCTION

A. Related works

For two years now, most of the automotive manufacturers
propose on their new cars Advanced Driving Assistance
Systems that allow active security like Automatic Cruise
Control, Lane Crossing Detection, obstacle avoidance, etc.
The obstacle detection systems can be divided into different
groups according to the types of obstacle the system detects,
the ranges, the refresh rate, the reliability.

The range-�nders based on radars, Laser or Lidar provide
high spatial resolutions data at high scanning speeds for
long ranges but remain too much expensive for automotive
applications. Furthermore, the interpretation of the beamim-
pacts on the environment is dif�cult in dynamic and complex
environments. Cheaper sensors like sonars are nevertheless
used for dif�cult maneuver as parking but are useless at
higher speed. The drawbacks of range-�nder methods are
improved as soon as they are coupled with a vision system
to perform a segmentation of the scene.

The vision sensor appears particularly well adapted to
segment complex scenes thanks to the rich information
it captures in a single frame. Several methods have been
implementing for years now: they essentially differ according
to the applications. From highways to urban environment,
many factors vary like the density of traf�c, the �eld of view,
the types of obstacles (vehicles, trucks, cycles, pedestrians,
others), the numbers of road lanes, the presence or not of
road markers. In [1], where an exhaustive recent review of
the vehicle detection is presented, all the methods are vision-
based except those that are coupled with a range �nder.

Methods using a mono camera are generally based on a-
priory knowledge of the scene and particularly on the type
of obstacles. These methods are dedicated to detect either
vehicles according their vertical edges, shadows, symmetry,

lights [2] or pedestrians and crowd according to human shape
and behaviour constraints. Some original methods track sets
of features points ([3]) or edges ([4]) on obstacles because
their relative motion is different from the camera motion. In
a general way, the segmentation of the elements of a scene
can be performed with a dense estimation of the optical �ow
[5] and the introduction of colour, texture constraints ([6])
or a parametrization of the static world [7].

An other technique common to mono and stereo-vision
consist on considering all the elements which are lying above
the road as obstacles. In a �rst step, the projection of the road
surface is segmented according to a-priory knowledges (road
model, planarity assumption). The estimation of camera
motion between two poses (relative motion of the static road)
in a second step, allows, in a third step, the detection of
obstacles according to their elevations which don't verify
the road surface motion (optical �ow) or they are distorted
(homography).

The stereo-vision allows by triangulation the estimation of
the depth of homologous pixels matched in a pair of images if
the stereo-rig is calibrated. When the images are recti�ed, the
computation of the V-disparity, an original method developed
by Labayrade in [8], allows with real-time constraints the
segmentation of obstacles whatever the longitudinal pro�le
of the road and the discrimination between vehicles and
trucks. Many authors perform the method with introducing
U-disparity [9], infrared sensors to detect pedestrians [10] or
multi-baseline sensors for off-road environment [11].

B. Motivations

The method we present in this paper is dedicated to
Autonomous Guided Vehicles where the estimation of the
free-space in front of the mobile robot is more crucial than
the identi�cation of the obstacles. In other words, all the
elements which are lying above the road surface represent
an obstacle, whatever their shape or height. Hence, the kerbs
and the green strips which generally highlight the roads
boundaries have to be segmented as obstacles if they have a
non-null elevation.

Our aim is also the detection of all the obstacles which
reduce the free-space to allow an overtaking maneuver if
it is necessary. This study represents the last improvement
of a feature-based method we have been developing for
some years ([12]) to locate a mobile robot when GPS data
are corrupted. The method is inspired by the works of
Okutomi [13], which proposed to identify the road surface



with the homography induced in images captured by a
calibrated stereo-rig. The computation is performed with a
dense method whereas we use points and lines extracted with
a Harris and a Canny detector.

The main restriction of the method remains on the as-
sumption of �at road that seems not so restrictive in real
conditions due to the limited �eld of view in case of urban
traf�c. We hence assume that the free space in front of the
vehicle does not exceed some meters, that corresponds to the
security distance with the preceding vehicle. Nevertheless,
the proposed method has the signi�cant interest not to depend
to the calibration of the stereo-rig.

This paper is organized as follows: in Section II, we
propose a method to compute easily a bird eye view of the
road plane. The expression in the IPM image of the features
lying above the road plane is presented in section III. Some
results obtained on video sequences are shown in Section IV.
The conclusion and a list of possible research directions are
given in Section V.

II. I NVERSEPERSPECTIVEMAPPING

A. Interest

We present in this part a simple methodology to compute
an Inverse Perspective Mapping (IPM) image [14] or a
Virtual Projection Plane, as it is called by some authors. The
IPM transformation consist on modifying the angle of view
under which a scene is acquired to remove the perspective
effect. In a practical way, the IPM transformation consist
to set the angles of rotation (mainly the tilt one) to values
such as the normal to the planen and the focal axis of the
virtual camerazv are opposite:n:zv = � 1, according to the
Fig. 1. The virtual camera follows the vehicle path but has a
constant ordinatezv along itsz axis, whatever the slope of
the roads.

Fig. 1. Principle of the IPM transformation: the virtual camera R v has a
constant elevationzv along the thirdzv axis which is parallel to the normal
to the planen whatever the camera poseR i and the road slopes while the
aperture angle� is maintained.

The method only requires the extraction of two coplanar
parallel lines. Due to the perspective effect, the 3D lines
which are parallel have projections in image which converge
to a Vanishing Point. The IPM transformation also consist
on determining the point of view of a virtual camera where
the projections of the two lines appear parallel.

In case of structured road, the navigation lanes are usu-
ally highlighted with parallel painted markers. Hence, the

extraction of two parallel lines along a straight path is
relatively easy. Many authors propose several models of
the road projection that mainly differ on the free �eld of
view, the presence of road markers or not, the number of
degrees of liberty the road model assumes. We personally
use the simplest model: the road borders are linearized at the
foreground and converge to theDominant Vanishing Point
(DVP) x whatever the road curvature is. The reader can
retrieve in [15] the tracking process we have developed to
segment the projection of the road in images.

In the following, we detail the method to compute an IPM
while in the second part, we discuss on the interest of the
method.

B. Methodology

Lets now consideringR i andR v the frameworks relative
to the camera and the virtual camera. We assume in the
following that the original and virtual images have the same
dimensions [W; L ] and 256 gray levels.

We also introduce two horizontal linesl t and lb which
have respectivelyvt andvb v-ordinates. In the original image,
the intersections of these two lines with the pencil of road
markers (restricted to the �rst and the last median) and the
image vertical boundaries generate two quadruplets of points.
The �rst one p � ik with k 2 f 1; 2; 3; 4g forms a trapezoid,
as in Fig. 2, while the second onepeik which is the bottom
part of the original image forms a rectangle.

If the road has a constant width in the scene, its projection
in the virtual framework is also constantw�v 0, that means
the four pointsp � vk form a parallelogram inR v whereas
the image is represented with a truncated cone. The IPM
transformation can hence be resumed as a homographyHvi

such as:

p � vk ' Hvip � ik (1)

pevk ' Hvipeik (2)

where' represents a projective equality.
1) Initialization of the IPM process:At this point, the

coordinates of the two quadruplets in the virtual framework
R v are unknown. We only suppose that the aperture angle of
the camera lens� is supposed to be known and the elevation
zv of the virtual camera relative to the plane is constant.
That means if we �xed the location of the cone summit
c, the projection of the original image inR v is invariant
whatever the camera pose inR i . To maintain a coherence in
the projective transformation, we consider that the top and
the bottom lines are invariant:

lbv ' H� t
vi lbi ' lb (3)

l tv ' H� t
vi l ti ' l t (4)

The quadrupletpevk also forms an isosceles trapezoid whose
the little base is supported bylb and the vertical axis
represents a symmetry axis.

In an other hand, the cross-ratio and the incidence are the
lonely properties left invariant by a projective transformation.



Fig. 2. Principle of the IPM transformation: the road boundaries converge to the DVPx in R i and appear parallel inR v . The intersections of
the image boundaries and the road borders with the two parallel lines lb and l t respectively generate the quadrupletsf p e1 ; p e2 ; p e3 ; p e4 g and
f p � 1 ; p � 2 ; p � 3 ; p � 4 g.

For the two quadruplets of points, the consistency of the
cross-ratio is checked1:

CR(pei1 ; p ri1 ; p ri2 ; pei2 ) = CR(pev1 ; p rv1 ; p rv2 ; pev2 )(5)

CR(pei4 ; p ri4 ; p ri3 ; pei3 ) = CR(pev4 ; p rv4 ; p rv3 ; pev3 )(6)

To entirely constraint the system form with the two
quadrupletsp � vk and pevk , we now have to determine the
v-ordinatesvc of the cone summit (the u-ordinate is assumed
�xed uc = W=2) andvb of the line lb .

While there exist an in�nity of solutions to the IPM
problem, a trivial solution consist to �x the width of the plane
projectionw�v 0 that determines the elevationzv of the virtual
camera and induces the v-ordinatevc of the cone summit.
At this point, the pan angle between the camera axis
and the road direction is unknown. Therefore, we personally
prefer to �x w�v = 200 pixels to compute the locations
of c; pev3 ; pev4 . The width of the little baseweb of the
trapezoid is also computed thanks to the consistency of the
cross-ratio (6): the pointspev4 ; pev3 have invariant locations
and form an isosceles triangle with the cone summitc. The
v-ordinatevc is such as:

vc = vb +
web=2

tan(alpha=2)
(7)

wherevb = L is the height of the virtual image. The width
of the great basewet is computed thanks to the consistency
of the cross-ratio (5), according to:

w�v = w�vb = w�vt = p � v3 � p � v4 = p � v2 � p � v1 (8)

The v-ordinatevt of the top linel t can also be computed as:

vt =
w�v =2

tan(alpha=2)
� vb (9)

and the road widthw�v 0 is linked to the camera orientation
 as:

w�v 0 = w�v cos( ) (10)

1Whatever the quadruplet of aligned pointsf A; B; C; D g,
CR(A; B; C; D ) = B � A

C � B
=D � A

C � D
= cte

with p � v1 � p � v4 = ( vb � vt ) tan(  ).
The homographyHvi is now totally de�ned thanks to the

quadrupletpeik and their imagepevk . We show in Fig. 3
an IPM image computed with this procedure. Although the
camera is not calibrated, we compute up to a scale factor
the orientation and the lateral position relatively to the
road direction and width. We propose on our web site2 the
result of this transformation along a video sequence where
the pan and tilt rotation motions of the camera vary within
large ranges.
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Fig. 3. The IPM transformation is computed thanks to the intersections of
the �rst and the third blue medians of the road boundaries withthe green
lb and l t lines. The second median is shown for convenience.

2) Simpli�cations: The consistency of the cross-ratio is
still checked if an af�ne transformation is applied to the
quadruplet. For the lineslb and l t , the IPM transformation
corresponds to a translation with a scale factor. To compute
web thenwtb , we had better to check directly the following
ratio rather than use (5) and (6), which lead to quadratic
equation where we have to determine the right solution:

w�i

wei
=

w�v

wev
(11)

wherewei = W , the image width.
As soon as the location of the optical axis of the virtual

camerac is �xed, the determination of the top v-ordinate
vt highly depends on the location of the DVPx. The
Thales theorem applied to the trianglesf x; p � i4 ; p � i3 g and

2http://www.lara.prd.fr/Nicolas.Simond



f c; pev1 ; pev2 g, crossed by the parallel lineslb and l t ,
allows the following equalities:

w�it

w�ib
=

vt � vx

vb � vx
(12)

wevb

wevt
=

vc � vt

vc � vb
(13)

According to vc; vb; wevb are now �xed and w�ib ; vx

are measured in the original image. The other variables
w�it ; wevt depend on thevt ordinate. Parallely, a new
equality can be introduce from (8) and (11):

w�it

w�ib
=

w�it

weit
:
weib

w�ib
=

w�vt

wevt
:
wevb

w�vb
=

wevb

wevt
(14)

The introduction of (12) in the last equation implies:

vt � vx

vb � vx
=

vc � vt

vc � vb
(15)

Hence, the v-ordinate of thel t line originally �xed with (9)
becomes:

vt = vc + vx � vb: (16)

C. Discussion

The main drawback of the method is that the IPM image
doesn't have squared pixels. The method is simple and only
requires the aperture angle of the camera lens. But due to
the perspective projection, the bottom linelb doesn't have a
projection inR v on the same v-ordinatevt but rather some
pixels above. The trouble is we can't estimate how many.
Therefore a calibration stage is necessary to determine the
two different scale factors which have to be applied on each
axis to authorize metric measures.

As soon as two coplanar parallel lines can be detected,
the method provides a solution to the IPM transformation.
In the other cases, the IPM transformation can be computed
thanks to the estimation of the camera motion from the last
pose where the IPM was estimated. Lets considerHvi(k0) the
last IPM transformation available at the framek = k0. At the
framek = k0 + N , the camera motion can be computed from
the camera pose atk = k0 as the sum of theN elementary
motions between each camera pose:

Hk0+ N;k0 ' Hk0+ N;k0+ N� 1 � � � Hk0+ 2;k0+ 1 : Hk0+ 1;k0 (17)

The IPM transformation at the framek = k0 + N is also
computed as:

Hvi(k0 + N) ' Hk0+ N;k0 : Hvi(k0) : H� 1
k0+ N;k0

(18)

Thanks to the computation of the Super-Homography (cf.
[15]), we can afford to reconstruct the road plane with a
mosaicing of warped images all expressed in the �rst one.
The reference image was a bird-eye view of the �rst image
of the video sequence of 312 frames long that corresponds
to a path greater than 250m. We hence would like to stress
that if the vehicle path reach an unstructured road or an
intersection, the loss of the two parallel coplanar lines during
a short period is not crucial.

III. O BSTACLE DETECTION THANKS TO THE

SUPER-HOMOGRAPHY

A. Methodology

The accuracy of the homographies extracted from the
computation of the Super-Homography leads us to detect all
the elements which are above the considered plane. Thanks
to the feature-based method we have developed, which
identi�es coplanar homologous lines and points matched in
several views of the same plane, we had the choice to detect
the obstacles with points and/or lines. We nevertheless use
edges because the matching process for points correlation is
time consuming and the obstacles have sometimes uniform
textures.

We present in this section a two-stages method where the
coplanar edges are �rst identi�ed to be removed, then the
remaining edges are projected with an IPM transformation
to determine the regions free from obstacles. We also only
focus on edges which have at least one extremity under the
horizon line, assumed as the line which has the same v-
ordinate as the DVP.

B. Identi�cation of edges above the horizon line

The edges which are crossing the horizon line have pro-
jections in the IPM which are passing through the projection
center c of the virtual camera. With the real data all the
vertical edges don't converge to the same point but they
generally have extremities out of the image boundaries as
in Fig. 4. The identi�cation of the edges above the horizon
line is also straight forward thanks to the IPM transformation
we detailed in the last section.
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Fig. 4. Identi�cation with an IPM transformation of the edgeswhose
extremities are above and under the horizon line.

C. Identi�cation of coplanar edges with homography

Lets considering two views of a same planar scene andH21

the homography induced by the plane between the images
I 1 and I 2. The projection accordingH21 of the features of
one image into the other one allows the identi�cation of
the coplanar features because only the coplanar features are
overlapping with their homologous. The main dif�culty we
also face is the edges detected with a Canny detector are not
strictly overlapping. A 3D edge can be plotted with a long
segment in one image and with zero, one, two or more in
the other.

The matching of edges between two images thanks to the
homographyH21 can be nevertheless performed with a two
steps process. The pre-selection stage consist on assuming
as potential homologous the couples of edges whose the
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(a) Identi�cation of coplanar edges which are overlapping by retro-projection
between the left and right images.
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(b) Identi�cation of coplanar edges (blue) which have similar neighborhood
in original and warped images.

Fig. 5. Sequential search of the coplanar edges in the left (red) image thanks to the right (green) image and the stereo homographyHst.

extremities, computed by retro-projection, are close to their
homologous with a tolerance of 3 pixels. The pre-selection
is checked for edges ofI 1 in I 2 and inversely withH� 1

21 . As
soon as the couples have been identi�ed, the selection stage
consists on verifying the planarity assumption with checking
if the couple of edges have common u- or v-ordinates when
they are expressed in the same image.

The edges, shown in Fig. 5(a), issued from the left (red)
and right (green) cameras, check the overlapping criterion.
As expected, the majority of outliers (above the road plane)
are horizontal edges whose the pan angle between the camera
framework is not large enough to discriminate them with
such a method whatever the camera motion. The best way
is certainly do not take account the horizontal edges because
the determination of their coplanarity is not reliable.

We actually obtain similar results if we only consider the
camera motion between two consecutive poses. The trouble
is the rate of ouliers increases when the camera motion is
not large enough. With such a con�guration, the camera
frame-rate should be synchronized with the vehicle speed
to maintain a critical change of view. The best method
certainly consists on tracking the coplanar edges with two
couples of views: stereo and consecutive. But as far as we
are concerned, the results provided by the stereo-images are
suf�ciently right to allow a reliable discrimination even some
coplanar edges can't be be segmented as if when they are
occluded by an obstacle in one image.

D. Identi�cation of coplanar edges with correlation

The last sequential operations allow the detection of the
majority of the coplanar edges. The left coplanar edges don't
�t precisely the contours or don't have homologous in the
second view due to occlusion or illumination effects. The
rejection of these edges requires one additional process to
verify their planarity. Generally,Sum of Absolute Difference
(SAD) image computed from the difference between the
warping of one image into an other according to a trans-
formation, highlight the scene regions where the assumption
(planarity, same relative motion) is checked because their
gray levels are the darkest.

The discrimination between edges lying on or above the
road with SAD image is not easy due to the illumination
conditions the areas close to the edges often appear clear-
est, whatever the quality of the estimation of homography.
Therefore we prefer using normalized criteria on 3 pixels

large region centered on each remaining edge in the original
and warped images. We �x two new criteria based on the
correlation coef�cient to consider edges as coplanar: it has
to be either greater than 0.75 or greater than 0 with a variance
less than 400 and the meaning gray level have to be less than
24 for a 256 gray levels image.

Although some edges have no homologous in the other
image, all the (blue) coplanar edges are rejected with the
application of the correlation criterion. The (red) remaining
edges of the Fig. 5(b) have to be considered as lying above
the road plane.

IV. RESULTS

A. Camera rotation motions estimated with IPM

The decomposition of the homographyH� vi requires the
knowledge of the internal parameters of the cameraK, an
estimation of the normal to planen = [0; � 1; 0]t (close to
the vertical axis) and an estimation of the camera elevationd
in the absolute framework, linked to the road plane. A coarse
calibration of the stereo-rig allows us to estimate the three
rotationR and translationt motions required to compute the
IPM image and the evolution of the normal of the planen
along the vehicle path according to:

H� vi = K[R +
t :n t

d
]K� 1 (19)

During the Antibes sequence, the test-vehicle follows a
straight path, stops before a parked vehicle, overtakes it then
continues its straight motion. We present the decompositions
of the IPM homography in Fig. 6. The smoothness of the
different time diagrams is relevant: the IPM homography is
only computed with four couples of matched points. The
numerical values of the rotation motions are not correct:
assuming that the optical axisz is abroad20� under the
horizon line, we expect a rotation around thex axis higher
than � 17� . Such an error is mainly due to the scale factors
we introduce with our coarse calibration. The decomposition
of the translation motions seem reliable: to obtain an IPM
view, the translation is mainly support by thez and in a
second time by they, as in Fig. 1.

B. Free-space segmentation

In the preceding section, we explain how to discriminate
between edges lying on or above a plane. The best way to
interpret this result is using an IPM transformation to produce
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Fig. 6. Orientation of the camera (brown) and decomposition ofthe H� vi
homography along the Antibes sequence. The numerical values are given
up to a scale factor due to the pixels of the IPM image are not squared and
the camera is not calibrated (d = 1 m).

a polar chart of the obstacle edges. We can hence segment
in the 2D scene the areas which are free from obstacles in
front of the vehicle thanks to a bird-eye view. The constant
constraints (road width and aperture angle) on IPM images
allow a correct segmentation of the obstacles in the road
framework at two scale-factors due to the calibration of the
stereo-rig is not available.

Opposite to most of the methods developed on the recon-
struction of the 3D scene based on (V-)disparity, the proposed
method does not make assumption on the obstacles elevation.
The limitation of the method is the length of the edges which
have to be greater than 10 pixels, that allows us to detect the
majority of the white small bollards which are lying on left
road boundary of the Antibes sequence like in Fig. 7. That
is our goal for an implementation in an AGV.
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Fig. 7. The free-space in front of the camera is the lowest region of the
IPM image under the obstacles edges. The edges which are crossing the
horizon line are removed according to the methodology developed in III-B.

V. CONCLUSIONS ANDFUTURE WORKS

We present in this paper a methodology to compute
reliable IPM transformation as soon as two parallel lines can
be extracted from an image. The scene elements whose edges

don't check the planarity criteria are segmented as obstacles.
The expression of these remaining edges in the IPM view
allow a coarse segmentation of the obstacles location in front
of the vehicle.

The described methodology have to be improved to per-
form an estimation of the free-space. The stereo-vision
system has to be calibrated to represent the edges in a
polar chart and the region free from obstacles has to be
uni�ed and precisely segmented from the bottom image to
the intersection of the obstacles with the road plane.
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