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Abstract— We are presenting new and efficient methods for
numerical differentiation, i.e., for estimating derivatives of a
noisy time signal. They are illustrated, via convincing nunerical
simulations, by the analysis of an academic signal and by the
feedback control of a nonlinear system.

noises, which are viewed as highly fluctuating phenomena
(see [6] for more details). A quite short time window is
sufficient for obtaining accurate values @f, a;.

The extension to polynomial functions of higher degree is
straightforward. For derivatives estimates up to somefinit
order of a given smooth functioffi : [0,+c0) — R, take
a suitable truncated Taylor expansion around a given time
instantty, and apply the previous computations. Utilizing
sliding time windows permit to estimate derivatives of vari
ous orders at any sampled time instant.

I. INTRODUCTION
A. Numerical differentiation

Numerical differentiation, i.e., the derivatives estiioat
of noisy time signals, is an important but difficult ill-pake
theoretical problem. It has attracted a lot of attention amgn
fields of engineering and applied mathematics (see, e.g., §h Difficulties and improvements

the recent control literature [2], [3], [4], [14], [15], [1.17], The above method becomes more and more ill-conditioned
[18], [19], [23], and the references therein). Our purpaseh for higher order truncation of the Taylor expansion. This
is to improve a new approach which started in [8], [13], angs a major impediment for obtaining good estimates for
in [7], [9], [10], for solving various questions in controhd  higher order derivatives in a noisy setting. Using elimit
in signal and image processing. Let us briefly describe owéchniques and Jacobi orthogonal polynomials (see, &lg., [
differentiators which are obtained via iterated time imé#g [24]), we propose here individual and independent deriv-
of the noisy signal. atives estimators for each given order. A judicious choice
of the point at which the derivatives are estimated in each
sliding time window permits to take advantage of the extra-
Start with the first degree polynomial time functionmodeling capability afforded by a higher order truncation.
p1(t) = ap + a1t, t > 0, ap,a; € R. Rewrite thanks to
classic operational calculus (cf. [25)) as P = “* + 2.
Multiply both sides bys?:

B. Short summary of our approach

D. Organization of our paper

Section Il discusses the mathematical foundations of our
differentiators. The first illustration in Section Il apgd the
above techniques for estimating the derivative of a noisy
academic signal. The second illustration in Section 1V,chhi

(1)

Take the derivative of both sides with respectstowhich

$2P, = ags + a;

corresponds in the time domain to the multiplication-by
(cf. [25]):
24P

ds + 2sP; = ag

)

is borrowed from [5], deals with the nonlinear feedback con-
trol of a DC motor joined to an inverted pendulum through
a torsional spring. We provide in both cases convincing
computer simulatiorts

The coefficientsiy, a; are obtained via the triangular system  1)icrested readers may obtain the corresponding computirams

of equations (1)-(2). We get rid of the time derivatives,, iof

from one of the authorscedri c. j oi n@r an. uhp- nancy. fr). Ref-

sPy, 32P1, andﬁﬁ, by multiplying both sides of equations erence [11], from which the second example is taken, comtaiany more

ds

(1)-(2) by s™, n > 2. The corresponding iterated time

applications to various topics in nonlinear control. Moseful discussions
and comparisons may be found in [21] where an interestingrets case-

integrals are low pass filters which attenuate the corrgptinstudy is analyzed.



II. DERIVATIVES ESTIMATION B. Individual estimation

Let y(t) = z(t) + n(t) be a noisy observation on a finite The_ matrix P, (T) in (5) is _in general iII-_cond_itioned,_
time interval of a real-valued signai(t), the derivatives of @nd yields therefore poor estimates especially in a noisy
which we want to estimate. Assume thet) is analytic on setting. A solution to this problem is to obtain an indepamde

this time interval. Consider without any loss of generalipfStimator for each order of derivatfnReconsider (3).
the convergent Taylor expansioftt) = 3", et att = 0. Examine for0 < n < N then'” order derivative. Annihilate
> il

i o () ; nlvi
The truncated Taylor expansiany (t) = ZZJ.V:O czi—, satisfies the remaining coefficientsy'(0). j 7= n by multiplying by

] ] Nt ) linear differential operators of the form
the differential equationyx=zn(t) = 0. It reads in the e 1 gN-n

operational domain as vy = L2 k>0
K _ =
dsntr s dsN-n

sN iy (s) = sVan(0) + sV Lin(0) ... +207(0) (3) It yields the following estimator for:(™ (0)

wherez v (s) is the operational analog ofy (¢). To ease the (0) N Gt O MRS Sy (s¥*12)  (8)
notation, we subsequently ignore the argument svAmntetl o (n 4+ k)N —n)l s "
which is strictly proper whenever is of the formv =
A. Simultaneous estimation N +1+p, p > 0. We obtain a family of strictly proper
Replacer v (t) by the noisy observed signgit). Then the estimators which is parametrized by p and N. Write
estimatesz(? (0) of the derivatives at the origin{? (0) £ 75" (s, ji; N) the corresponding estimator. I¥ = n. the

. . n+k .
differential operatofI¥-" reduces tdI” = ddnﬂ L we will
S S

then use the simplified notati ~(”)(/-e,u). The following
result is straightforward: o
,dm (. N _(N—1) () _ Lemma 1:For anyN > n andu > 0, 75" (k, ;3 N) in
Sl e {xN(O)S to iy (0)s+iy (0)} = (6) belongs to the set

57”;8;;1{31\7“@} (4) ]—':spanQ{ié”)(m,ue), £=0,...,min(n+xN—-n)} (7)

. whereky =k + N —n—£f¢andu, = u + 4.
m =0,...,N, wherev > N + 2 ensures strict properness. Proof: Setqg = N —n andp ﬁ n_ﬁé_ The proof follows
To obtain the numerical estimates, it suffices to expressy direct inspection, upon writingY " (sV+1%) in the form

(4) back in the time domain, using the classical rules of .
<q> (q + 1)' d {Sqfi(sni,)(qfi)}

j—;x(t)‘ are directly obtained from the linear triangular
system of equations (see [8], [13])

q
operational calculus ([25]). Denote liythe estimation time. 1" (s" ™ 'a) = ( © RGN
i) (q — 1)l ds

We end up with the following closed form expression =0
q min (p,g—1)

Ty (0) = ai s IR, {s" T E)
zn(0) T i=0  j=i
P.(T) . = / Q. (r)y(r)dr (5) (8)
: 0 where
~(N
i (0) wr= (7)ot
ij =\ . L - -
where the nonzero entries of the triangular maRjXT) are i)\j—1i)(q+1—1)(qg—j)
given, fori =0,...,N, j=0,...,N — i, by . u
o This lemma shows that arf”-order truncated Taylor expan-
(P (T)}i; = (N —j)! v Nt sion is appropriate for estimating thé"-order derivative.
v 1y — . A . B
(N—i=t = N+itj—1) C. Least squares interpretatidn
and . A common way for estimating the derivatives of a signal
’ , is to resort to a least squares polynomial fitting on an iratierv
_ v—N-—-2—0 _1—/{
{Qu(n)}i = Zq@’v’ (T =) T and then take the derivatives of the resulting polynomial
=0 function. The estimators derived here rely however on a
with different approach: the derivatives are estimated posgwi
_ N 1) 1yi-¢ This depature is furthermore apparent with the developsent
Qi = <Z) (N +1)! (=1) of the preceding subsection. Nonetheless, a least squares
t)(N+1=0'(v=N—-2-10)! interpretation may be attached to our approach, as shown

below.

Finally, for each estimation time interval of len Ir = . . . . L
y dth b+ Start with the estimation of the first order derivative.

[t, t + T], we obtain the derivatives estimates at timby
replacingy(t) in (5) byy(t+7). These estimates are however 2The system (5) being triangular, a closed-form expression the

not causal. To obtain causal estimates. i.e.. the estim»[esestimator ofz(9) (t) may be derived from it. The corresponding solutions
) R would however exhibit the same sensitivity to noise pedtidms.

timg t, based on the Signal Observationﬂﬁ = [t - T, t]’ it 3The authors would like to thank A. Sedoglavic for bringingsthuestion
suffices to replacg(t + 7) by —y(t — 1), 7 € [0, T. to their attention.



a) N =1: With v = p + 2, equation (6) becomes where P{"*(0) = —19 = x+2  We therefore deduce

" _,u+/-c+4'
. )Rt /(s 7 that o (x, p; 2) corresponds to an estimate of the first order
——do(k )—( ) 4+ (k+D)=——) O . "
Shtrra LOUS, ) = (k+ 1)1\ srtl shT2 derivativez(¢) att = 0. The estimation of:(¢) from a second
It reads in the time domain: order truncation of the Taylor expansion is therefore delay
free.

1
Zo(ky 1) = MTHCL:—I:F?’) /Op(f)r“(l —7)*y(TT)dr  We now show how this interpretation can be exploited to

(10) obtain better estimates. According to Lemma 1 and using

wherep(t) = (u+x+2)7—(k+1), andT is the estimation (14), it is easy 1o verify that the relation

time (the estimation interval if&). We replace of course To(k, 132) = Mook, g+ 1) 4+ Mo (ke + 1, 1) (16)
the signalx by its noisy observationy.

Consider now the Jacobi orthogonal polynomials (cf10ds fordo = & + 3 and Ay = —(x + 2). Let us now
[24], [1]) {P/"(t)},5,, associated to the weight function extend the sef in (7), by allowing the coefficients of the
Wy (t) = tn}rl(l - ;)/#H on the interval0, 1] linear combinations therein to be real, rather than ratidna

Kyl - ) . . . .

Lemma 2: The first order derivative estimate, given inParticular, given a point; & [0, 1], one may always choose
equation (10), reads as the \;'s such that (16) becomes

- 1 ! ~ PR (1), 9(T7)) %

e T R L e SUVERES Tzzs%w »

0 0
K . (11) Pﬁ,u . T
& (P, Gy 1 Py DT D) e (47
1257 ()P [P
Proof: Observe thaf’;™"(t) = 1 andp(r)7"(1-7)" = |n this case,d, (x,;;2) will represent the estimate of

— g T = )y Integration Hby parts shows that ;(7r), obtained from the truncated Taylor expansion
the integral in (10) rg%lg(cisb,tWPo’ (T) 9T} ThE ) (1) = w(r) +a(7) (t—7) + 2 (t—7)2 = 29(0) + () —

I (K ! ..

) vt D” completes the proof. m (7|t + @ﬁ atT = T'ry. A direct verification will show

equality || Py #||? = e tes
This estimate of the first order derivative appears as tr}ﬁat the values foh, and \;, associated to; are given by
(k+3)—(u+rK+5)m andry =1 — Ao.

orthogonal projection of the unobserved signal derivam‘,ive)\0 _
Let us now turn to the question pertaining to the selection

on Py*(t). Expandingz(T'r), 7 € [0,1] in the basis of the

Jacobi polynomials of a value forr;. Expansion (12) shows that a good choice
2(T1) = ag Py (1) + ar Py (1) + ae Py (1) + - -+ (12)  for 71 is given by the smallest (resp. largest) root of the

polynomial P;°* when the estimation interval igi’; (resp.

IT). Indeed, choosing; as a zero ofP;* annihilates the

contribution of the orthogonal projection of the signal on

P;" in the estimation error. On the other hand, recall that

shows that%o(n,u), which coincides withug, actually turns
out to correspond to an estimatefl'ry) for somery > 0.
Using a first order approximation af(7'7)

@(T10) = ao Py " (10) + a1 P (70) = ao 7 (resp.1 —7 for I ) represents a delay in the estimation.
allows one to identifyr, as the solution ofP]"*(ry) = 0. Choosing the smallest (resp. largest) root thus transtates
This value ofry, given by a lower delay. Note also that the delayis smaller thanq,

2 since the zeros oP;"" and P;"" interlace.
To= ——— (13) The above analysis may be easily generalized tonttie
. : s T . , . order derivative estimation; > 2.
is “experimentally” confirmed by the numerical simulations
below. The resulting derivative estimation is thus subject ~ Ill. FIRST ILLUSTRATION: DERIVATIVE OF A NOISY
a time delay. SIGNAL

b) N = 2: It allows to avoid such a delay, which may Lety(t) — x(t)+n(t)’ 0 <t< 5' be a noisy measurement
not be tolerable in real-time processing. Equation (8)dsel of the signal

ok p2) _ (=) f /30t gt 2(t) = tanh(t — 1) + e /12 sin(6¢t + )
- + (k+2)——
ghtrtd (k+1)! skl sht2 . . . .
The noise level, measured by the signal to noise ratio
(k1) 7:(r) i i _ Z\y(ti)IQ)
(s 43) (:v D kD) & 3)} 14y M dB, i.e., SNR = 1010510 (Zln(ti)P , corresponds to
sht sht SNR = 25 dB (see Figure 1). In ‘all the subsequent
It reads in the time domain after some algebraic manipul@umerical simulations, the integrals are computed via the
tions: classical trapezoidal rule.
K . Begin with the first order derivative and/ = 1. The
- PH TT))s ) - . .
B 1:2) = SO U T T) b estimatesdo(x, 1), obtained from (10) withs — u — 2,

Kol (|2
1567 are displayed in Figure 2 (solid line). It corresponds to

(P (), 9(T7)) e (15) the estimation results in the successive intenidls with

+P77(0) :
! P2 T = 60T, and fort = iTy,i = 0,...,[ %L |. The exact
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Fig. 1. Noisy observation signaf N R = 25dB. Fig. 3. Estimation of the signal derivativéV = 2, no delay

This is illustrated in the following simulation (see Figure
4), where we keep the same settings Tgr« and . The
solid line curve in Figure 4 represents the estimates obdain

-6 — : : : : T T T
00 05 10 15 20 25 30 35 40 45 50 —2: :

Fig. 2. Estimation of the signal derivativeV = 1.

Qerive_\tive of the noise-free signgl is.also displayed (ddsh_ O oe 16 18 20 25 a0 as 40 a8 o
line) in order to gauge the estimation accuracy. For this,

in (13). Observe how this predicted value &f fits with _ . )

the experiment. Of course witiV = 1, the truncated from (16)-(17) wherer is the largest root of;™*. Using the

Taylor series model is linear, resulting in poor estimatega@me idea withV' = 3, we obtain the estimates (x, u; 3),
on the intervals where the signal’s dynamic is strong. Fdplotted with dashed line. The associated estimator reads as

high signal-to-noise ratio, the estimates may be improved 2
by reducing the estimation tim&. Alternatively, one may fvo(ﬁ, w;3) = Z )\Z.;fgo(gJ +2—d, pu+1)
consider a richer signal mode,g, with N = 2. This is the i—0

case of the next experiment. We now consider the slidi
windows I, with T = 1107,. The estimates:y(x, x; 2),
based on (14), (15), are plotted (solid line) in Figure 3 telo
for k = pu=0.

There is no estimation delay, as expected. However, t
performance significantly degrades as compared to the pre-
Ceding results although the signal model is more precise. If IV. SECOND ILLUSTRATION: NONLINEAR FEEDBACK
we now relax this delay-free constraint, it becomes possibl CONTROL
to take advantage of the more flexible second order modxl
for the signal. :

"Qhere the real coefficients;, 7 = 0,1, 2 are chosen so that

To(k, 1; 3) corresponds ta:(mT), with 7 being a root of

P! If k = pu, which is the case here, then = 0.5 is a

common root of all Jacobi polynomials of odd degree. The
shed line curve was obtained with this choicerpof

System description

Consider with [5] the mechanical system, which consists
of a DC-motor joined to an inverted pendulum through a
torsional spring:

Jmé(p = H(el - em) - Bém + K u
Ji0; —n(@l — Om) — mghsin(0;)
Yy 61



0., and 0, represent respectively the angular deviation off5] X. Fan, M. Arcak, “Observer design for systems with muilti
the motor shaft and the angular position of the inverted Vvariable monotone nonlinearitiesSystems Control Lettvol.

: 50, pp. 319-330, 2003.
pendulum.J,,, J;, h, m, k, B, K, and g are physical b ’ . .
parameters which are assumed to be constant and knoerEﬂ M. Fliess, "Analyse non standard du bruitG.R. Acad. Sci

. R . X . Paris Ser. 1 vol. 342, pp. 797-802, 2006.
This system, which is linearizable by static state feedbsck [77 M.  Fliess, C. Join, M. Mboup, A. Sedoglavic,

flat (cf. [12], [22]); y = 6, is a flat output, which is measured. “Estimation des dérivees d'un signal multidimensionnel
) avec applications aux images et aux vidéosActes
B. Control design 20° Coll. GRETS| Louvain-la-Neuve (available at
Asymptotic tracking of a given smooth reference trajectory  http//hal.inria.fr/inria-00001116). _
y*(t) = 0;(t) is achieved by the feedback controller [8] M. Fliess, C. Join, M. Mboup, H. Sira-Ramirez, “Compsies
differentielle de transitoires bruitésG.R. Acad. Sci. Paris Ser.
u = 2 (Im(Jo + wije + mah(ije cosye — (Ge) sin ve I, vol. 339, pp. 821-826, 2004.
KT( ® ( ! 4 (“Z) (@ e = (Je) 4 )) [9] M. Fliess, C. Join, M. Mboup, H. Sira-Ramirez, “Analyse
+Jijje + mghsinye Z (Jiye” + kge + mghije cos ye)) et représentation de signaux transitoires : applicatota
compression, au débruitage et a la détection de ruptures
where Actes20¢ Coll. GRETS] Louvain-la-Neuve, 2005 (available
v = ®]® = yuw® — [y ()®) athttp://hal.inria.fr/inria-00001115).

2T hh Y B s [10] M. Fliess, C. Join, H. Sira-Ramirez, “Closed-loop Ifau
8 (e = 47 (1)) = 12(Je — 97 (1) = M (ye —y" (1)) tolerant control for uncertain nonlinear systems”, in T.
The subscript &” denotes the estimated value. The design ~ Meurer, K. Graichen, E.D. Gilles (Eds.)Control and

parametersy,, ..., v4 are chosen so that the resulting char- Observer Design for Nonlinear Finite and Infinite Di-

L A . . . mensional SystemsLect. Notes Control Informat. Sci.,
a_ctens'uc polynomial is Hurwitz. The statg, is estimated vol. 322, pp. 217-233, Springer, 2005 (available at

via 1 http://hal .inria.fr/inria-00111208).
[Om]e = — (lee + mgh sin ye) + Ye [11] M. Fliess, C. Join, H. Sira-Ramirez, “Non-linear estion is
K easy”, to appear.
C. Numerical simulations [12] M. Fliess, J. Lévine, P. Martin, P. Rouchon, “Flatnessl de-

. . fect of non-linear systems: introductory theory and exasipl
The physical parameters have the same numerical values |ntermat. J. Contral vol. 61, pp. 1327-1361, 1995.

as in [5]: J,, = 3.7 x 1073 kgn?, J; = 9.3 x 1073 kgn?,  [13] M. Fliess, H. Sira-Ramirez, “Control via state estiioas
h=15x10"tm m = 0.21 kg B = 4.6 x 1072 m, of some nonlinear systems”Proc. Symp. Nonlinear Con-
K, = 8 x 102 NmV"1. The numerical simulations (see trol Systems (NOLCOS 200Q4ytuttgart, 2004 (available at

. . http://hal.inria.fr/inria-00001096).
also [11]), which are much better than in [13], where les 4] S. Ibrir, “Online exact differentiation and notion oyamptotic

efficient differentiators were employed, are presented in  gigebraic observers|EEE Trans. Automat. Controhol. 48,
Figures 5. Robustness has been tested with an additive white pp. 2055-2060, 2003.

Gaussian noisg/(0;0.01) on the outputy (this noise level [15] S. lbrir, “Linear time-derivatives trackersAutomatica vol.
is quite relevant in such applications). Note that the wié 40, pp. 397-405, 2004.

b . . “ " . [16] S. lbrir, S. Diop, “A numerical procedure for filteringnd
estimations ofj and?,,, where a “small” delay is allowed, efficient high-order signal differentiationinternat. J. Appl.

are more accurate than the on-line estimatior.of Math. Comput. Scivol. 14, pp. 201-208, 2004.
[17] R. Kelly, R. Ortega, A. Ailon, A. Loria, “Global regulain of
V. CONCLUSION flexible joint robots using approximate differentiatiodEEE
The basic elements of our differentiators are essentiadly i Trans. Automat. Controlvol. 39, pp. 1222-1224, 1994.
tegrators, the advantage of which is twofold: easy implemeht8] A Levant, “Robust exact differentiation via sliding ote

. . . . technique”,Automatica vol. 34, pp. 379-384, 1998.
tation and good robustness with respect to noise corrupti 9] A. Levant, “Higher-order sliding modes, differentit and

Our estimators may be given a least squares interpretation” output-feedback control”nternat. J. Cpntrol vol. 76, pp.
(see [20] for more details), although our approachis based 0 924-941, 2003. S .
quite different mathematical ingredients, which are maafl  [20] M. Mboup, “Parameter estimation via differential abga and

. - Lo : " operational calculus”, in preparation.
ﬁ:]g;rgﬁg ?‘i\ggrlgs interpretation is a key point leadiag [21] C. Nothen, “Beitrage zur Rekonstruktion nicht direk

gemessener GrolRen bei der Silizium-Einkristallziichtnach
dem Czochralski-VerfahrenDiplomarbeit Technische Uni-
versitat Dresden, 2007.
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