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Abstract: Harmonic sinusoidal models are an essential tool for audio signal analysis.
Bayesian harmonic models are particularly interesting, since they allow the joint exploitation
of various priors on the model parameters. However existing inference methods often rely
on specific prior distributions and remain rather slow for realistic data. In this article,
we investigate a generic inference method based on approximate factorization of the joint
posterior into a product of independent distributions on small subsets of parameters. We
discuss the conditions under which this factorization holds true and propose two criteria to
choose these subsets adaptively. We evaluate the resulting performance experimentally for
the task of musical score transcription using different levels of factorization.
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Inférence bayésienne efficace pour les modeles
harmoniques par factorisation adaptative de la
distribution a posteriori

Résumé : Les modeles sinusoidaux harmoniques constituent un outil essentiel pour
I’analyse des signaux audio. Les modeles harmoniques bayésiens sont particulierement
intéressants, car ils permettent d’exploiter conjointement les différents a priori disponibles
sur les parametres des modeles. Cependant, les méthodes d’inférence existantes reposent
souvent sur des distributions a priori spécifiques et restent relativement lentes sur des
données réalistes. Dans cet article, nous étudions une méthode d’inférence générique basée
sur la factorisation approchée de la distribution a posteriori en un produit de distribu-
tions indépendantes sur des petits sous-ensembles de parametres. Nous discutons les con-
ditions sous lesquelles cette factorisation est vraie et nous proposons deux critéres pour
choisir ces sous-ensembles de facon adaptative. Nous évaluons la performance de cette
méthode expérimentalement pour la tache de transcription de la partition musicale pour
divers niveaux de factorisation.

Mots clés : Inférence bayésienne, modele harmonique, factorisation adaptative, dépendance
a posteriori



Efficient Bayesian inference for harmonic models 3

1 Introduction

Music and speech involve different types of sounds, including periodic, transient and noisy
sounds. Short-term stationary periodic sounds composed of sinusoidal partials at harmonic
or near-harmonic frequencies are perceptually essential, since they contain most of the energy
of musical notes and vowels. Harmonicity means that at each instant the frequencies of the
partials are multiples of a single frequency called the fundamental frequency. Estimating
the periodic sounds underlying a given signal, i.e. estimating their fundamental frequencies
and the amplitudes and phases of their partials, is required or useful for many applications,
such as speech prosody analysis [1], musical score transcription and instrument recognition
[2] and low bit-rate compression [3]. This problem is particularly difficult for polyphonic
signals, i.e. signals containing several concurrent periodic sounds, since different periodic
sounds may exhibit partials overlapping at the same frequencies.

Existing methods for polyphonic fundamental frequency estimation are often based on
one of two approaches [2]: either validation of fundamental frequency candidates given by
the peaks of a short-term auto-correlation function [4, 5, 6] or inference of the hidden states
of a probabilistic model of the signal short-term power spectrum based on learned template
spectra [7, 8, 9]. These approaches have achieved limited performance on complex polyphonic
signals so far [2, 6]. Moreover neither approach provides estimates for the amplitudes and
phases of the partials, which are needed for musical instrument recognition or low bit-rate
compression.

A promising way to address these issues is to rely on a probabilistic model of the signal
waveform incorporating various prior knowledge. Two families of such models have been
proposed in the literature for music signals. One family introduced in [10, 11] models each
musical note signal in state-space form by a discrete fundamental frequency and a fixed
number of damped oscillators at harmonic frequencies with independent transition noises.
Decoding is achieved either via linear Kalman filtering or variational approximation [12],
depending whether the damping factors are fixed or subject to additional transition noises.
These inference methods restrict the prior distribution of the transition noises to be Gaussian
or from a class of conjugate priors [13] respectively. Another family of models described in
[14, 15, 16] represents musical note signals by continuous fundamental frequency, amplitude
and phase parameters, inferred using Markov Chain Monte Carlo (MCMC) methods [13].
These methods are theoretically applicable to all prior distributions, but tend to be rather
slow in practice. Thus the chosen priors are partly motivated by computational issues [16].
In particular, the amplitudes of the partials are modeled by independent uniform priors or
by conjugate zero-mean Gaussian priors.

For both families of models, the above priors exhibit some differences with the empirical
parameter distributions. In particular, they do not penalize partials with zero amplitude.
This can lead to missing estimated notes for signals composed of several notes at simple
rational fundamental frequency ratios [14, 16], or to erroneous fundamental frequency esti-
mates, typically equal to a multiple or a submultiple of the true fundamental frequencies
[16]. To help solving these limitations, we recently proposed a harmonic model including
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probabilistic priors motivated by empirical parameter distributions and used a variant of
the diagonal Laplace method for fast parameter inference [3].

In this article, we propose a more accurate fast inference method for probabilistic har-
monic models, based on approximate factorization of the joint posterior into a product of
independent distributions on subsets of parameters. This method is designed for models of
the form described in [14, 15, 16, 3], involving explicit frequency, amplitude and phase pa-
rameters. It is generic, in that it can be applied to a wide range of priors, and adaptive, since
the level of factorization depends on the observed signal and the hypothesized notes. This
constitutes a crucial difference compared to variational approximation methods, where the
terms of the factorization are fixed a priori and their parameters can only be computed for
certain classes of priors. We complete our preliminary work [17] by discussing the extension
of this method to nongaussian residuals and alternative model structures, investigating a
new criterion for the choice of the parameter subsets and providing a detailed experimental
evaluation.

The structure of the rest of the article is as follows. In section 2, we present a possible
Bayesian network structure for harmonic models and make some mild assumptions about
the parameter priors. Then, we describe the proposed inference method in section 3 and
extend it to alternative model structures. In section 4, we evaluate its performance for the
task of musical score transcription on short time frames. We conclude in section 5 and
suggest some perspectives for future research.

2 Assumptions about the model

The harmonic models in [14, 15, 16, 3] are variations of the same concept. They all repre-
sent the observed music signal as a sum of note signals, each composed of several sinusoidal
partials parametrized by a sequence of random variables spanning successive time frames.
However, the chosen variables and their conditional dependency structure are slightly dif-
ferent for each model. For the sake of clarity, we first discuss our approach for the model
structure in [3], which involves fewer variables.

2.1 Bayesian network structure

On each time frame, the model described in [3] exhibits the four-layer Bayesian network
structure shown in Figure 1. Each layer models the observed signal frame xz(¢) of length T
at a different abstraction level.

The bottom layer represents the underlying musical score. In western music, the nor-
malized fundamental frequency f, of each note may vary across frames but remains close to

a discrete pitch of the form
440
Hp =

e (1)

S
where Fy is the sampling frequency in Hz and p an integer value on the MIDI semitone scale.
Assuming no unison, i.e. several notes corresponding to the same discrete pitch cannot be
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Efficient Bayesian inference for harmonic models 5

present at the same time, each point p on the MIDI scale is associated with a binary activity
state S, determining whether a note with that discrete pitch is active or not.
The signal s,(t) corresponding to each active note is then defined in the middle layers
for0<t<T—1hby
MP
sp(t) = w(t) Z Apm, cOS2Tm fpt + Ppm,) (2)
m=1
where w(t) is the framing window and f,, apm and ¢, are respectively its normalized
fundamental frequency and the amplitude and the phase of its m-th partial. The amplitudes
of the partials are assumed to depend on an amplitude scale factor r, accounting for the
total power of note p. The number of partials M, is constrained as a function of the note
pitch p to

1
M, = min [ —, Myax 3
po (2up’ ) ®)

so that the partials fill the whole observed frequency range up to a maximal number of
partials My,.x. Finally, the observed signal is modeled in the top layer as

z(t) = Y sp(t) +e(t) (4)

ps.t.Sp=1

where e(t) is the residual.

e x: observed signal frame

sp: signal of note p

e fp: fundamental frequency

rp: amplitude scale factor
e G a @ Qpm,: amplitude of partial m
‘ ®pm: phase of the partial m

Sp: activity state of note p

Figure 1: Bayesian network structure of the harmonic model in [3]. Circles denote vector
random variables (some of variable size) and arrows conditional dependencies.

2.2 Assumptions about the parameter priors

The inference method proposed below is valid given some mild assumptions about the pa-
rameter priors. Classically, we assume that the fundamental frequencies f,, of different notes
p and the phases ¢, of different partials (p,m) are independent a priori and that the am-
plitudes a, of different partials are independent a priori given the amplitude scale factors
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rp. We also assume that the prior distribution of each fundamental frequency f, enforces
proximity to the underlying discrete pitch j1,,. Finally, we make the hypothesis that the resid-
ual e(t) has a continuous distribution and that its values at distinct frequencies are almost
independent a priori, i.e. its prior distribution P(e) = P(z|f,a,®) can be approximately
factored as

P(e) ~ 1:[ P(E,) (5)
v=0

where E,, are the discrete Fourier transform coefficients of e(t).

Note that the ubiquitous time-domain Gaussian i.i.d. prior satisfies this hypothesis, since
it is equivalent to a Gaussian i.i.d. prior on the Fourier coefficients. A more general prior
of particular interest in the following is the frequency-weighted Gaussian distribution [3]

T-1 9
P(e) _ (27T0_2)7T/2 H exp (’VVEU| ) (6)
v=0

202

where 7, are constant positive weights. This prior can be rewritten as P(e) = (2r0?)~7/2

exp(—|le]|2/(20?)) where |l = S AU Ey|? is the squared weighted Euclidean norm of

the Fourier coefficients.

3 Bayesian inference via adaptive posterior factoriza-
tion

Harmonic models are typically employed to solve the score transcription task, which consists
of estimating the Maximum A Posteriori (MAP) vector of activity states S = arg max P(S|z).
The posterior probability of S equals

P(S|z) = / P(S, f.r, a, 6|x) df dr dado (7)

where f, r, a, ¢ denote the vectors of parameters fy,, 7p, Gpm, @pm, and the joint posterior
is given by Bayes law

P(S, f;r,a,¢lz) oc P(e)Plalr, S)P(¢|S)P(r|S)P(f|S)P(S). (®)

The computation of the integral in (7) is known as the Bayesian marginalization problem
[12].

A number of sampling techniques are available to compute such integrals [12]. How-
ever they appear unsatisfactory in this context. Numerical integration on a uniform grid is
intractable, since the number of parameters is typically of the order of one hundred. Inte-
gration via importance sampling [18] is slow, since the variance of the importance weights,
which is proportional to that of the estimate, increases sharply with the number of pa-
rameters [12]. Sampling of the joint posterior via reversible jump MCMC [13] is also slow
[16].

Irisa



Efficient Bayesian inference for harmonic models 7

Fast inference can be achieved instead by estimating the MAP parameter values ( f , T, a, g?))
= argmax P(S, f,r,a, $|z) using any standard nonlinear optimization algorithm and ap-
proximating the joint posterior around these values by a simpler distribution which can be
integrated analytically or by tabulation. Relevant techniques include the diagonal Laplace
approximation [19], which factors the posterior into a product of parameter-wise univariate
Gaussian distributions, and its variant proposed in [3] with a specific nongaussian distribu-
tion for the phase parameters. The full Laplace approximation [19] performs poorly due to
unbounded integration over the phase parameters [17].

The proposed inference method can be seen as a compromise between sampling-based
and full factorization-based techniques, since it relies on partial factorization of the posterior
and sampling over subsets of parameters. Various levels of factorization can be achieved
depending on the MAP parameter values.

3.1 Conditional posterior factorization over the partials

Let us assume initially that the residual follows the frequency-weighted Gaussian prior (6)
and that the harmonic partials of the hypothesized fundamental frequencies have “different
enough” frequencies. This is true for a single hypothesized note, but generally not for several
notes. Mathematically, this translates into the fact that the windowed complex sinusoidal

signals ‘
Zpm (1) = w(t)e> ™It (9)

corresponding to different partials are mutually orthogonal
<Z;Dma Zp’m’)’y =0 V(p, m) 7é (p/am/) (10)

according to the dot product (.,.), consistent with the weighted Euclidean norm ||.||,. This
dot product is defined for two signals z(t) and 2’(t) by

T-1

<Z7 Z,>’Y = Z ’YVZVZ; (11)
v=0

where Z, and Z! are the discrete Fourier transform coefficients of z(t) and 2'(t) and Z/,
is the complex conjugate of Z!,. The orthogonality property (10) formalizes the fact that
partials with “different enough” frequencies have almost disjoint frequency supports and
can be assumed to hold true for all possible frequency weights 7. When the frequencies of
the partials are not too close to Nyquist, the negative frequency sinusoidal signals Z,,, (t) =
w(t)e=2™mIpt are also orthogonal to their positive counterparts: (zpm, Zpm/)y = 0 for all
(p,m) and (p’,m’). The observed signal x(t) can then be decomposed into a sum of sinusoidal
signals at the frequencies of the hypothesized partials by orthogonal projection onto the two-
dimensional subspaces spanned by (2pm, Zpm)

#(1) = 5 3 (€9 2 (1) + O 2 () + 200). (12)
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The projection coefficients given by

apmez’&pm —9 (2, 2pm)y

(13)

||meH%

represent the amplitude and phase values of each partial minimizing the norm of the residual
e(t). Given hypothesized values apy,, and ¢p,, the residual can be decomposed as a sum of
mutually orthogonal terms

1 e .
e(t) — 5 Z (apmel¢pm _ a/pmel¢pm) me(t)

p,m

o (@pme™ P = apme™ 4 ) 2 (1) + 6. (14)

The squared norm of the residual then equals by analytical computation

HeH'Qy :ZDan"’DO (15)
p,m
with Do = [|€]]2 and
1 . . . 2 Opm _(5 m
Dy = §Hzpm||i ((apm — Gpm)? + 4lpm Ay, sin? p2p> . (16)

Using (8) and the relationship between P(e) and |[e]|2, this decomposition leads to the
exact factorization of the joint posterior into a product of partial-wise bivariate conditional
distributions over amplitude and phase parameters

P(S, f,r,a,¢|lx) o< Po(z, f)P(r|S)P(f1S)P(S)
X HPpm(azﬂm¢pm;xafp)P(apm|7"p)P(¢pm) (17)

p.m

where Py(z, f) = (2r02)~T/2 ¢=Po/(20%) i5 a constant and Py, (apm, Gpm; 2, f5) = exp(—Dpm
/(20?)) a bivariate parametric distribution that can be quickly computed, since it depends
on three hyper-parameters only: ||me\|gy7 Gpm and ¢pp,. The top part of Figure 2 illustrates
the validity of this factorization.

Denoting by a and gZ; the MAP amplitude and phase vectors given f and r and by dpm

and gzgpm these vectors reduced by one coefficient corresponding to partial (p,m), the above
expression can be equivalently rewritten as

~ P my m |2 J, ,A ms 5 ms
P(S, f,r,a,élz) = P(S, f»r,&,gﬁ\x)n (apm, Gpm S f17ps Gpms Ppm, T)

il R .8
p,mMm P(a’Pm7¢pm|S7 f?rpaawa (bmax)
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Efficient Bayesian inference for harmonic models 9

This equation admits the following interpretation: the first term is the joint posterior value
for the MAP amplitude and phase parameters and each quotient term describes the relative
drop of this value with different parameters as proportional to the posterior distribution of
the parameters of each partial with other parameters being fixed. This equation remains
approximately valid in the more general case where the residual follows a nongaussian prior
satisfying (5), although quick computation of the quotient terms is not possible anymore.
Indeed, when the amplitude and phase parameters are close to their MAP values, the Fourier
coefficients of the signal associated with each partial (p, m) are near zero except for a few
bins v whose frequencies are close to mf,. Thus, if the partials have “different enough”
frequencies, each Fourier coefficient F, of the residual depends mostly on the parameters
of the partial with closest frequency. The probability of the residual P(e) can then be
approximately factored into a product of binwise terms, each involving the parameters of at
most one partial, which leads to (18) after simple analytical computation.

3.2 Conditional posterior factorization over subsets of partials

In the general case where several partials may have close frequencies, the terms of (18)
can still be computed but this equation may not hold true, as shown in the middle part of
Figure 2. It is however possible to group partials into subsets such that partials from different
subsets have frequencies as different as possible. This can be mathematically formalized by
grouping partials (p,m) and (p’,m’) if and only if

‘mfp - mlfp’l S fmax (19)

where fnax is @ manual frequency threshold. Similar arguments as above lead to the
approximate factorization of the posterior into a product of multivariate conditional dis-
tributions over subsets of amplitude and phase parameters a, = {apm,(p,m) € g} and
g = {®pm, (p,m) € g}, whose terms can be quickly computed by orthogonal projection in
the particular case where the residual follows a frequency-weighted Gaussian prior

~ 7 P(ag7¢g‘safara&gaqgg7z)
P(Sva ) 7¢‘ )"N“P(Safv ) 7¢| ) N . .
nee Sl STy

(20)

A higher threshold fiax increases the accuracy of this equation, but also leads to larger
subsets. In practice, it is often possible to obtain a factored expression of similar accuracy
with smaller subsets. Indeed there exist some conditions where partials at close frequencies
may still be associated with different subsets. An example of such a condition is given in the
bottom part of Figure 2 and discussed in [17]. Denoting by the vectors y and 3y’ two disjoint
subsets of variables and by § and 7’ their MAP values given the rest of the variables 3", we
assess the accuracy of the approximation of the joint posterior distribution P(y,y’|y”) by
the factored distribution P(y|9’,y")P(y'|9,y") using the Kullback-Leibler divergence [12]

Py, y'ly") ,
dy dy'. 21
W )Py VY 2D

D(y,y') = /P(y,y’ly”)logz iz
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Figure 2: Shape of the joint posterior for a signal containing two partials (p, m) and (p’, m’)
with 60 dB amplitudes, using the priors defined in [3]. Dark areas denote high probability.
Top: partials at different frequencies with mean prior amplitudes of 50 dB and 60 dB.
Middle: partials at the same frequency with identical mean prior amplitudes of 60 dB.
Bottom: partials at the same frequency with mean prior amplitudes of 40 dB and 60 dB.
The posterior dependence between a,,, and a,,/ equals 0, 0.99 and 0.093 bits respectively.
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Efficient Bayesian inference for harmonic models 11

This quantity is always positive and equal to zero only when the approximation is exact. It
can be seen as a measure of the local posterior dependence between y and 3 expressed in bits.
Indeed, it is analogous to mutual information [12], except that the marginal distribution of
each variable is replaced here by its posterior distribution given the MAP value of the other.
This suggests that partials (p, m) and (p’, m’) should belong to the same subset if and only
if

D({apma ¢pm}a {a;)mv %m}) 2 Cmin (22)

where cpin is @ manual threshold.

Figure 3 shows that the posterior dependence between the parameters of two partials
tends to decrease as a function of their frequency difference. However, this decrease is not
monotonic: the posterior dependence is typically smaller for frequency differences corre-
sponding to certain zeroes of the discrete Fourier transform of the framing window w(t).
Also, for a given frequency difference, posterior dependence values differing by up to three
orders of magnitude can be observed. Figure 4 depicts the posterior dependence between
the parameters of two notes with a fundamental frequency ratio of 1.5, considering param-
eters one by one. The third and sixth partials of the lower note have the same frequency
as the second and fourth partial of the higher note. The posterior dependence between the
parameters of these pairs of partials equals between 10724 and 10'-® bits, while it is smaller
than 10~ bits between other pairs.

10°

posterior dependence (bits)
=
b

1 2 3 4 .
frequency difference (bins)

Figure 3: Posterior dependence between the parameters of two partials as a function of
their frequency difference, expressed in number of bins of the discrete Fourier transform.
The black curve and the gray area denote respectively the median and the two-tailed 95th
percentile of the values computed for all the data of Section 4.
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Figure 4: Posterior dependence between the parameters of two notes with pitches p = 79 and
86 for a signal consisting of these notes, using the priors defined in [3]. Upper partials are
not shown for legibility. Black squares on the diagonal denote infinite posterior dependence
values and white squares values below 10™% bits.
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3.3 An exploitable posterior factorization

The conditional factorization (20) can be exploited for numerical integration of the poste-
rior, either by sampling on a uniform grid or by importance sampling. Indeed integration
over amplitude and phase parameters can be achieved by multiplying lower dimension in-
tegrals over the parameters of each subset of partials. Using sampling on a uniform grid
and denoting by N the number of grid points for each scalar variable, P the number of
hypothesized notes, M = Zp M, their total number of partials and G' the size of the largest
subset of partials, this results in a maximal complexity of O(3 N2P+2¢) " This is smaller
than the complexity of O(N2P+2M) associated with straightforward integration of the joint
posterior, but still intractable.

In order to get faster integration, it is necessary to remove additional parameter depen-
dencies. An approximate solution is to replace the free fundamental frequency and amplitude
scale parameters by their MAP values within the conditional distributions of amplitude and
phase parameters. The remaining joint posterior distribution of fundamental frequency and
amplitude scale parameters can be similarly factored over each parameter. This gives

P(S, 1,10, 6le) % P(S, /7, ) [ oo T2 91 2)

D P(fP|S7fg7d?(£7x)
v HP(Tp|S,dp Hp(a97¢g|sa f,T’,CAlg,QBg,I)
b P9, ap) L Plag, ¢y|S, f,7, g, b9, )

This equation allows approximate numerical integration of the posterior with a maximal
complexity of O(%N2¢). Although it is not straightforward to justify mathematically,
it appears experimentally valid when the prior distribution of the fundamental frequency
parameters enforces proximity to the underlying discrete pitches, in the sense that the error
introduced by factorization of the joint posterior over fundamental frequency and amplitude
scale parameters is smaller than the one introduced by factorization over amplitude and
phase parameters for typical values of cpi,. This is illustrated in Figure 4, where the
posterior dependence between fundamental frequency and amplitude scale parameters and
other parameters lies below 10716 bits, which is smaller than the values of ¢pin chosen in
Section 4.

(23)

N2 N

3.4 Extension to alternative model structures

The proposed marginalization could be extended to alternative harmonic model structures,
such as those described in [14, 15, 16]. Indeed, the approximate posterior independence
property of partials at different frequencies remains valid.

Among all structural differences, these models consider the number of partials per note
M, as a random variable subject to a certain prior. With narrow fundamental frequency
priors as in [14, 15], the proposed method can be directly applied to compute the integrals
of the joint posterior for each value of M,. Note that this results in little additional cost
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compared to fixed M),. Indeed, when increasing or decreasing M,, by one, only one subset
of partials needs to be updated, while the integral over the other subsets remains constant.
With wider fundamental frequency priors as in [16], the posterior becomes multimodal with
local maxima at all fundamental frequencies present in the signal and rational multiples of
these. Amplitude and phase parameters then exhibit a strong dependence with fundamental
frequency parameters. The proposed method can still be applied by splitting the fundamen-
tal frequency range into disjoint narrow bands, similar to the semitone bands considered
above, and summing the integrals of the joint posterior within each band.

Another difference is that the models in [15, 16] involve additional parameters, namely
one global inharmonicity parameter and one spectral shape parameter per note in [15] and
one local inharmonicity parameter per partial in [16]. The proposed method can be directly
applied in the second case by grouping local inharmonicity parameters with amplitude and
phase parameters from the same partials, yielding a maximal complexity of O(%N 3¢Y. We
believe that it could also be applied in the first case after additional factorization of the joint
posterior over global inharmonicity and spectral shape parameters. Indeed these parameters
are physically similar to fundamental frequency and amplitude scale parameters and should
exhibit a similar level of posterior dependence with other parameters.

Finally, the models in [14, 15, 16] describe the residual by a Gaussian whose variance
is considered as a random variable. Although this prior does not satisfy (5), the proposed
method can still be applied after additional factorization of the posterior over this variance
parameter. We believe that this factorization remains approximately accurate provided that
the posterior distribution of the variance is unimodal and narrow.

4 Evaluation

The precision of the integral estimates obtained by the proposed marginalization method
cannot be assessed for realistic signals, since ground truth integral values are not available.
However, the aim of marginalization is often not to compute accurate estimates of the state
posteriors P(S|z), but rather to provide an accurate musical score by selecting the right
MAP state S. Therefore we evaluated the performance of the proposed method for the
score transcription task.

4.1 Data and evaluation procedure

The parameter priors were chosen as in [3], without assuming knowledge of the true number
of notes: the activity states .S, were modeled by Bernoulli priors, the fundamental frequencies
fp, the amplitude scale factors r, and the amplitudes of the partials a,,, by log-Gaussian
priors, the phases of the partials ¢, by uniform priors and the residual e(t) by a frequency-
weighted Gaussian prior. Note that the prior over a,, helps to avoid partials with zero
amplitude. The means and variances of these priors were learned on a subset of the RWC
Musical Instrument Database!, while test signals were generated by selecting and mixing

Thttp:/ /staff.aist.go.jp/m.goto/RWC-MDB/
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isolated note signals played by five different wind instruments from the University of Iowa
Musical Instrument Samples database?. More precisely, the test set included 100 one-note
signals spanning all discrete pitches from p = 40 to 87 and 100 two-note signals corresponding
to all possible pitch intervals between 1 and 25 semitones with four different lower pitches
p = 40, 47, 54 and 61. All signals were sampled at 22.05 kHz and framed with a Hanning
window w(t) of length T' = 1024 (46 ms).

In order to avoid testing all possible vectors of activity states S, 6 candidate vectors (3
with one active note and 3 with two active notes) were pre-selected for each test signal as
those minimizing the residual of the orthogonal projection of the observed magnitude spec-
trum onto the subspace spanned by the typical magnitude spectra of the active notes derived
from the amplitude prior, as explained in [3]. The MAP parameters values (f,#, @, $) were
computed for each candidate using the subspace trust region optimization algorithm imple-
mented in Matlab’s Isqnonlin function®. The factored expression (23) was then obtained
by grouping the partials using either the frequency difference criterion (19) or the posterior
dependence criterion (22). The latter was computed by numerical integration on a uniform
grid with 11 points per variable (or about 1.5 x 10* samples per pair of partials) for all pairs
of partials with frequency difference smaller than 2.5 bins. The thresholds fi,.x and cmin
were varied between 0 and 2 bins and between 10% and 10~1° bits respectively, resulting in a
variation of the maximal number of partials per subset from one to three. Each term of the
factored posterior was subsequently integrated by sampling on a uniform grid with N points
per variable, resulting in a total of Nioy = N2F + Zg N2I9 samples per candidate where |g|
denotes the number of partials in subset g. The average value of N, over all test signals
and all candidates was varied between 10° and 107. We also tried integration of these terms
via importance sampling [18], but this did not significantly affect performance, despite an
increased computation time. We also evaluated the variant of the diagonal Laplace method
employed in [3] for comparison.

Each estimated note was considered to be correctly transcribed if it was actually present
in the test signal. Performance was then classically assessed by the F-measure F' = 2RP/(R+
P) in percent, where the recall R is the ratio of the total number of correctly transcribed
notes divided by the true number of notes and the precision P is the proportion of correctly
transcribed notes among the estimated notes [20, 6]. The computation time was measured
for a Matlab implementation on a 1.2 GHz dual CPU computer.

4.2 Results

With one-note signals, the proposed method resulted in F=100% (R=100%, P=100%) for
all settings of finax, Cmin and Nioi. The method in [3] also gave perfect results with a faster
average computation time of 1.1 s per candidate, mostly due to the optimization of the MAP
parameters.

2http://theremin.music.uiowa.edu/MIS.html
3http://www.mathworks.com/access/helpdesk_r13/help/toolbox/optim/lsqnonlin.html
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The results with two-note signals are depicted in Figure 5. The performance of the
proposed method with a large number of integration samples Ny, = 107 increases from
F=93.7% (R=89.5%, P=98.4%) to F'=96.9% (R=94.5%, P=99.5%) for both grouping cri-
teria when the average number of partials per subset increases. This difference is statistically
significant, as confirmed by a McNemar’s p value [21] of 5x10~%. By comparison, the method
in [3] achieved a performance of F'=92.6% (R=88.0%, P=97.8%), which is not statistically
different from that of the proposed method with a single partial per subset. The posterior
dependence grouping criterion appears more robust towards a small number of integration
samples. Indeed the performance curve with Nio; = 10° wanders less around the curve with
Niot = 107 for this criterion. The largest value of ¢y, yielding maximal performance is
Cmin =~ 10° bits, resulting in as little as 7% of partials found within subsets of two partials
for two-note candidates and no partials found within subsets of three or more. The compu-
tation time with Nio, = 10° is then equal to 2.0 s per candidate on average. This can be split
into about 1.1 s for the optimization of the MAP parameters, 0.2 s for the computation of
the posterior dependence between the partials and 0.7 s for the numerical integration of the
terms of the factored posterior. This is much faster than previously reported computation
times for MCMC methods with similar models, e.g. 1080 s per note with 7" = 6000 using
a 2.6 GHz dual CPU computer in [16], corresponding to about 800 s per test signal for
two-note signals of length 7" = 1024 with our computer.

The remaining eleven errors made by the proposed method with the best setting are as
follows. The upper note is missing from the transcription of three chords with fundamental
frequency ratios of 2, two chords with fundamental frequency ratios of 3 and five chords from
1 to 5 semitones with lower pitch p = 40. In addition, the upper note is wrongly transcribed
within a 6-semitone chord with lower pitch p = 40, corresponding to a fundamental frequency
error ratio of 4. These errors correspond to situations well known to be difficult, where all the
partials of one note overlap with the partials of the other or where the frequency resolution is
too small to distinguish multiple notes at low fundamental frequencies. It is likely that these
errors are due to the inherent uncertainties of the model rather than the chosen inference
method. Note that correct transcription was nevertheless achieved for one chord with a
fundamental frequency ratio of 2, two chords with fundamental frequency ratios of 3 and all
(four) chords with fundamental frequency ratios of 4, while such situations typically result
in transcription errors for other models [14, 16].

5 Conclusion

We proposed a method for the approximate factorization of the joint posterior of a harmonic
model based on the use of a local posterior dependence criterion and exploited it for fast
Bayesian inference. Although factorization based on this criterion is theoretically feasible
for any Bayesian model, it does not necessarily provide small parameter subsets, which are
needed for subsequent numerical integration. The key property of harmonic models demon-
strated here is that the parameters of partials with different frequencies are approximately
independent a posteriori. The proposed method is generic and adaptive, in the sense that it
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Figure 5: Score transcription results for two-note signals using posterior factorization based
on posterior dependence (left) or frequency difference (right) and integration on a uniform
grid. Top: F-measure with various grid sizes (plain: Ny = 107, dashed: Ny, = 109,
dash-dotted: Niot = 105). Bottom: Percentage of partials from two-notes candidates within
subsets of one, two or three partials. The percentage of partials within subsets of three
equals 0.2% for cpin = 1071 bits, 1% for fmax = 2 bins and 0 in all other cases. All
partials from one-note candidates are within subsets of one.
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can be applied to a wide range of priors and that the level of factorization depends on the
observed signal and the hypothesized notes. This is an important difference with variational
approximation methods, which also rely on factorization of the posterior but are limited to
certain classes of prior distributions and often assume a fixed factored expression. Another
difference is that the proposed method relies on the computation of MAP parameter values
instead of the iterative update of variational parameters, which is intrinsically faster.

To improve the accuracy of the factorization, it would be interesting to investigate trans-
formations of the parameters resulting in a smaller posterior dependence. The minimization
of the dependence between subsets of random variables described by a sequence of samples
is known as the Independent Subspace Analysis (ISA) problem and can be solved in the case
of linear transformations by Independent Component Analysis (ICA) followed by grouping
of the transformed variables [22]. This approach could easily be combined with subsequent
integration based on importance sampling, and this may also allow other Bayesian mod-
els, which do not readily satisfy the posterior independence property, to benefit from the
proposed inteference method.
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