Bifurcation analysis of a general class of non-linear integrate and fire neurons.

Jonathan Touboul 1
1 ODYSSEE - Computer and biological vision
DI-ENS - Département d'informatique de l'École normale supérieure, CRISAM - Inria Sophia Antipolis - Méditerranée , ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, ENPC - École des Ponts ParisTech
Abstract : In this paper we define a class of formal neuron models being computationally efficient and biologically plausible, i.e. able to reproduce a wide gamut of behaviors observed in in-vivo or in-vitro recordings of cortical neurons. This class includes for instance two models widely used in computational neuroscience, the Izhikevich and the Brette--Gerstner models. These models consist in a 4-parameters dynamical system. We provide the full local bifurcations diagram of the members of this class, and show that they all present the same bifurcations: an Andronov-Hopf bifurcation manifold, a saddle-node bifurcation manifold, a Bogdanov-Takens bifurcation, and possibly a Bautin bifurcation. Among other global bifurcations, this system shows a saddle homoclinic bifurcation curve. We show how this bifurcation diagram generates the most prominent cortical neuron behaviors. This study leads us to introduce a new neuron model, the \emph{quartic model}, able to reproduce among all the behaviors of the Izhikevich and Brette--Gerstner models, self-sustained subthreshold oscillations, which are of great interest in neuroscience.
Type de document :
[Research Report] RR-6161, INRIA. 2008, pp.47
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger
Contributeur : Jonathan Touboul <>
Soumis le : mercredi 12 mars 2008 - 11:54:15
Dernière modification le : vendredi 25 mai 2018 - 12:02:04
Document(s) archivé(s) le : vendredi 24 septembre 2010 - 12:11:15


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00142987, version 5



Jonathan Touboul. Bifurcation analysis of a general class of non-linear integrate and fire neurons.. [Research Report] RR-6161, INRIA. 2008, pp.47. 〈inria-00142987v5〉



Consultations de la notice


Téléchargements de fichiers