
HAL Id: inria-00142987
https://inria.hal.science/inria-00142987v5

Submitted on 12 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bifurcation analysis of a general class of non-linear
integrate and fire neurons.

Jonathan Touboul

To cite this version:
Jonathan Touboul. Bifurcation analysis of a general class of non-linear integrate and fire neurons..
[Research Report] RR-6161, INRIA. 2008, pp.47. �inria-00142987v5�

https://inria.hal.science/inria-00142987v5
https://hal.archives-ouvertes.fr


appor t  
de recherche 

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
61

61
--

F
R

+
E

N
G

Thème BIO

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Bifurcation analysis of a general class of non-linear
integrate and fire neurons.

Jonathan Touboul

N° 6161

March 4, 2008





Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Bifuration analysis of a general lass of non-linearintegrate and �re neurons.Jonathan Touboul ∗Thème BIO � Systèmes biologiquesProjet Odyssée †Rapport de reherhe n° 6161 � Marh 4, 2008 � 47 pagesAbstrat: In this paper we de�ne a lass of formal neuron models being omputationallye�ient and biologially plausible, i.e. able to reprodue a wide gamut of behaviors observedin in-vivo or in-vitro reordings of ortial neurons. This lass inludes for instane twomodels widely used in omputational neurosiene, the Izhikevih and the Brette�Gerstnermodels. These models onsist in a 4-parameters dynamial system. We provide the full loalbifurations diagram of the members of this lass, and show that they all present the samebifurations: an Andronov-Hopf bifuration manifold, a saddle-node bifuration manifold,a Bogdanov-Takens bifuration, and possibly a Bautin bifuration. Among other globalbifurations, this system shows a saddle homolini bifuration urve. We show how thisbifuration diagram generates the most prominent ortial neuron behaviors. This studyleads us to introdue a new neuron model, the quarti model, able to reprodue amongall the behaviors of the Izhikevih and Brette�Gerstner models, self-sustained subthresholdosillations, whih are of great interest in neurosiene.Key-words: neuron models, dynamial system analysis, nonlinear dynamis, Hopf bi-furation, saddle-node bifuration, Bogdanov-Takens bifuration, Bautin bifuration, saddlehomolini bifuration, subthreshold neuron osillations
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Analyse de bifurations d'une lasse générale deneurones intègre-et-tire non-linéaires.Résumé : Dans et artile nous dé�nissons une lasse formelle de neurones à la fois e�aesen termes de simulation et biologiquement plausibles, 'est-à-dire apables de reproduireune large gamme de omportements observés dans des enregistrements in-vivo ou in-vitrode neurones ortiaux. Cette lasse inlut par exemple deux des modèles les plus utilisésdans les neurosienes omputationnelles: le modèle d'Izhikevih et le modèle de Brette�Gerstner. Ces modèles onsistent en un système dynamique à 4 paramètres. Nous alulonsle diagramme de bifuration loales omplet des membres de ette lasse et prove qu'ilsprésentent tous les mêmes bifurations: une variété de bifurations d'Andronov-Hopf, unevariété de bifurations saddle-node, une bifuration de Bogdanov-Takens, et éventuellementune bifuration de Bautin. Parmis d'autres bifurations globales, es systèmes présententaussi une ourbe de saddle homolini bifurations. Nous montrons que e diagramme debifurations génère les prinipaux omportements de neurones ortiaux. Cette étude nousmène à introduire un nouveau modèle, le quarti model, apable de reproduire en plus desomportements des modèles d'Izhikevih et de Brette�Gerstner, des osillations sous le seuilauto-entretenues, qui sont d'un grand intérêt en neurosienes.Mots-lés : modèles de neurones, systèmes dynamiques, dynamique non-linéaire, bifur-ation de Hopf, bifuration saddle-node, bifuration de Bogdanov-Takens, bifuration deBautin, saddle homolini bifuration, osillations sous le seuil entretenues



Bifuration analysis of non-linear IF neurons. 3IntrodutionDuring the past few years, in the neuro-omputing ommunity, the problem of �nding aomputationally simple and biologially realisti model of neuron has been widely studied,in order to be able to ompare experimental reordings with numerial simulations of large-sale brain models. The key problem is to �nd a model of neuron realizing a ompromisebetween its simulation e�ieny and its ability to reprodue what is observed at the elllevel, often onsidering in-vitro experiments [15, 18, 25℄.Among the numerous neuron models, from the detailed Hodgkin-Huxley model [11℄ stillonsidered as the referene, but unfortunately omputationally intratable when onsideringneuronal networks, down to the simplest integrate and �re model [8℄ very e�etive ompu-tationally, but unrealistially simple and unable to reprodue many behaviors observed, twomodels seem to stand out [15℄: the adaptive quadrati (Izhikevih, [14℄, and related modelssuh as the the theta model with adaptation [6, 10℄) and exponential (Brette and Gerstner,[5℄) neuron models. These two models are omputationally almost as e�ient as the inte-grate and �re model. The Brette-Gerstner model involves an exponential funtion, whihneeds to be tabulated if we want the algorithm to be e�ient. They are also biologiallyplausible, and reprodue several important neuronal regimes with a good adequay withbiologial data, espeially in high-ondutane states, typial of ortial in-vivo ativity.Nevertheless, they fail in reproduing deterministi self-sustained subthreshold osillations,behavior of partiular interest in ortial neurons for the preision and robustness of spikegeneration patterns, for instane in the inferior olive nuleus [4, 23, 24℄, in the stellate ellsof the entorhinal ortex [1, 2, 17℄ and in the dorsal root ganglia (DRG) [3, 20, 21℄. Somemodels have been introdued to study from a theoretial point of view the urrents involvedin the generation of self-sustained subthreshold osillations [26℄, but the model failed inreproduing lots of other neuronal behaviors.The aim of this paper is to de�ne and study a general lass of neuron models, ontainingthe Izhikevih and Brette-Gerstner models, from a dynamial systems point of view. Weharaterize the loal bifurations of these models and show how their bifurations are linkedwith di�erent biologial behaviors observed in the ortex. This formal study will lead usto de�ne a new model of neuron, whose behaviors inlude those of the Izhikevih-Brette-Gerstner (IBG) models but also self-sustained subthreshold osillations.In the �rst setion of this paper, we introdue a general lass of nonlinear neuron mod-els whih ontains the IBG models. We study the �xed-point bifuration diagram of theelements of this lass, and show that they present the same loal bifuration diagram, witha saddle-node bifuration urve, an Andronov-Hopf bifuration urve, a Bogdanov-Takensbifuration point, and possibly a Bautin bifuration, i.e. all odimension two bifurations indimension two exept the usp. This analysis is applied in the seond setion to the Izhike-vih and the Brette-Gertsner models. We derive their bifuration diagrams, and prove thatnone of them show the Bautin bifuration. In the third setion, we introdue a new simplemodel -the quarti model - presenting, in addition to ommon properties of the dynamialsystem of this lass, a Bautin bifuration, whih an produe self-sustained osillations.Lastly, the fourth setion is dediated to numerial experiments. We show that the quartiRR n° 6161



4 Jonathan Touboulmodel is able to reprodue some of the prominent features of biologial spiking neurons.We give qualitative interpretations of those di�erent neuronal regimes from the dynamialsystems point of view, in order to give a grasp of how the bifurations generate biologiallyplausible behaviors. We also show that the new quarti model, presenting superritial Hopfbifurations, is able to reprodue the osillatory/spiking behavior presented for instane inthe DRG. Finally we show that numerial simulation results of the quarti model show agood agreement with biologial intraellular reordings in the DRG.1 Bifuration analysis of a lass of non-linear neuronmodelsIn this setion we introdue a large lass of formal neurons whih are able to reprodue a widerange of neuronal behaviors observed in ortial neurons. This lass of models is inspired bythe review made by Izhikevih [15℄. He found that the quadrati adaptive integrate-and-�remodel was able to simulate e�iently a lot of interesting behaviors. Brette and Gerstner[5℄ de�ned a similar model of neuron whih presented a good adequay between simulationsand biologial reordings.We generalize these models, and de�ne a new lass of neuron models, wide but spei�enough to keep the diversity of behaviors of the IBG models.1.1 The general lass of non-linear modelsIn this paper, we are interested in neurons de�ned by a dynamial system of the type:
{dvdt = F (v) − w + Idwdt = a(bv − w)where a, b and I are real parameters and F is a real funtion12.In this equation, v represents the membrane potential of the neuron, w is the adaptationvariable, I represents the input intensity of the neuron, 1/a the harateristi time of theadaptation variable and b aounts for the interation between the membrane potential andthe adaptation variable 3.This equation is a very general model of neuron. For instane when F is a polynomialof degree three, we obtain a FitzHugh-Nagumo model, when F is a polynomial of degree1The same study an be done for a parameter dependent funtion. More preisely, let E ⊂ Rn be aparameter spae (for a given n) and F : E×R→ R a parameter-dependent real funtion. All the propertiesshown in this setion are valid for any �xed value of the parameter p. Further p-bifurations studies an bedone for spei� F (p, ·).2The �rst equation an be derived from the general I-V relation in neuronal models: C dVdt

= I − I0(V )−
g(V − EK) where I0(V ) is the instantaneous I-V urve.3See for instane setion 2.2 where the parameters of the initial equation (2.2) are related to biologialonstants and where we proeed to a dimensionless redution.

INRIA



Bifuration analysis of non-linear IF neurons. 5two, the Izhikevih neuron model [14℄, and when F is an exponential funtion, the Brette-Gerstner model [5℄. However, in ontrast with ontinuous models like the FitzHugh-Nagumomodel [8℄, the two later ases diverge when spiking, and an external reset mehanism is usedafter a spike is emitted.In this paper, we want this lass of models to have ommon properties with the Izhikevih-Brette-Gerstner (IBG) neuron models. To this purpose, let us make some assumptions onthe funtion F . The �rst assumption is a regularity assumption:Assumption (A1). F is at least three times ontinuously di�erentiable.A seond assumption is neessary to ensure us that the system would have the same numberof �xed points as the IBG models.Assumption (A2). The funtion F is stritly onvex.De�nition 1.1 (Convex neuron model). We onsider the two-dimensional model de�ned bythe equations:
{dvdt = F (v) − w + Idwdt = a(bv − w)

(1.1)where F satis�es the assumptions (A1) and (A2) and haraterizes the passive properties ofthe membrane potential.Many neurons of this lass blow up in �nite time. These neuron are the ones we areinterested in.Remark. Note that all the neurons of this lass do not blow up in �nite time. For instaneif F (v) = v log(v), it will not. For F funtions suh that F (v) = (v1+α)R(v) for some α > 0,where lim
v→∞

R(v) > 0 (possibly ∞), the dynamial system will possibly blow up in �nitetime.If the solution blows up at time t∗, a spike is emitted, and subsequently we have thefollowing reset proess:
{

v(t∗) = vr

w(t∗) = w(t∗−) + d
(1.2)where vr is the reset membrane potential and d > 0 a real parameter. The equations (1.1)and (1.2), together with initial onditions (v0, w0) give us the existene and uniqueness of asolution on R+.The two parameters vr and d are important to understand the repetitive spiking prop-erties of the system. Nevertheless, the bifuration study with respet to these parametersis outside the sope of this paper, and we fous here on the bifurations of the system withrespet to (a, b, I), in order to haraterize the subthreshold behavior of the neuron.

RR n° 6161



6 Jonathan Touboul1.2 Fixed points of the systemTo understand the qualitative behavior of the dynamial system de�ned by 1.1 before theblow up (i.e. between two spikes), we begin by studying the �xed points and analyze theirstability. The linear stability of a �xed point is governed by the Jaobian matrix of thesystem, whih we de�ne in the following proposition.Proposition 1.1. The Jaobian of the dynamial system (1.1) an be written:
L := v 7→

(

F ′(v) −1
ab −a

) (1.3)The �xed points of the system satisfy the equations:
{

F (v) − bv + I = 0

bv = w
(1.4)Let Gb(v) := F (v) − bv. From (A1) and (A2), we know that the funtion Gb is stritlyonvex and has the same regularity as F . To have the same behavior as the IBG models, wewant the system to have the same number of �xed points. To this purpose, it is neessarythat Gb has a minimum for all b > 0. Otherwise, the onvex funtion Gb would have no morethan one �xed point, sine a �xed point of the system is the intersetion of an horizontalurve and Gb.This means for the funtion F that inf

x∈RF ′(x) ≤ 0 and sup
x∈RF ′(x) = +∞ . Using themonotony property of F ′, we write the assumption (A3):Assumption (A3).







lim
x→−∞

F ′(x) ≤ 0

lim
x→+∞

F ′(x) = +∞Assumptions (A1), (A2) and (A3) ensure us that ∀ b ∈ R∗
+, Gb has a unique minimum,denoted m(b) whih is reahed. Let v∗(b) be the point where this minimum is reahed.This point is the solution of the equation

F ′(v∗(b)) = b (1.5)Proposition 1.2. The point v∗(b) and the value m(b) are ontinuously di�erentiable withrespet to b.Proof. We know that F ′ is a bijetion. The point v∗(b) is de�ned impliitly by the equation
H(b, v) = 0 where H(b, v) = F ′(v) − b. H is a C1-di�eomorphism with respet to b, andthe di�erential with respet to b never vanishes. The impliit funtions theorem (see forinstane [7, Annex C.6℄) ensures us that v∗(b) solution of H(b, v∗(b)) = 0 is ontinuouslydi�erentiable with respet to b, and so does m(b) = G(v∗(b)) − bv∗(b). INRIA



Bifuration analysis of non-linear IF neurons. 7Theorem 1.1. The parameter urve de�ned by {(I, b); I = −m(b)} separates three behaviorsof the system (see �gure 1):(i). if I > −m(b) then the system has no �xed point;(ii). if I = −m(b) then the system has a unique �xed point, (v∗(b), w∗(b)), whih is non-hyperboli. It is unstable if b > a.(iii). if I < −m(b) then the dynamial system has two �xed points (v−(I, b), v+(I, b)) suhthat
v−(I, b) < v∗(b) < v+(I, b).The �xed point v+(I, b) is a saddle �xed point, and the stability of the �xed point

v−(I, b) depends on I and on the sign of (b − a):(a) If b < a then the �xed point v−(I, b) is attrative.(b) If b > a, there is a unique smooth urve I∗(a, b) de�ned by the impliit equation
F ′(v−(I∗(a, b), b)) = a. This urve reads I∗(a, b) = bva − F (va) where va is theunique solution of F ′(va) = a.(b.1). If I < I∗(a, b) the �xed point is attrative.(b.2). If I > I∗(a, b) the �xed point is repulsive.Proof. (i). We have F (v) − bv ≥ m(b) by de�nition of m(b). If I > −m(b), then for all

v ∈ R we have F (v) − bv + I > 0 and the system has no �xed point.(ii). Let I = −m(b). We have already seen that that Gb is stritly onvex, ontinuouslydi�erentiable, and for b > 0 reahes its unique minimum at the point v∗(b). This pointis suh that Gb(v
∗(b)) = m(b), so it is the only point satisfying F (v∗(b)) − bv∗(b) −

m(b) = 0.Furthermore, this point satis�es F ′(v∗(b)) = b. The Jaobian of the system at thispoint reads
L(v∗(b)) =

(

b −1
ab −a

)

.Its determinant is 0 so the �xed point is non hyperboli (0 is eigenvalue of the Jaobianmatrix). The trae of this matrix is b − a. So the �xed point v∗(b) is attrative when
b > a and repulsive when b > a. The ase a = b, I = −m(b) is a degenerate ase whihwe will study more preisely in the setion 1.3.3.(iii). Let I < −m(b). By the strit onvexity assumption (A2) of the funtion G togetherwith assumption (A3), we know that there are only two intersetions of the urve Gto a level −I higher than its minimum. These two intersetions de�ne our two �xedpoints. At the point v∗ the funtion is stritly lower than −I so the two solutionssatisfy v−(I, b) < v∗(b) < v+(I, b).

RR n° 6161



8 Jonathan TouboulLet us now study the stability of these two �xed points. To this end, we have toharaterize the eigenvalues of the Jaobian matrix of the system at these points.We an see from formula (1.3) and the onvexity assumption (A2) that the Jaobiandeterminant, equal to −aF ′(v)+ab, is a dereasing funtion of v and vanishes at v∗(b)so det(L(v+(I, b))) < 0 and the �xed point is a saddle point (the Jaobian matrix hasa positive and a negative eigenvalue).For the other �xed point v−(I, b), the determinant of the Jaobian matrix is stritlypositive. So the stability of the �xed point depends on the trae of the Jaobian. Thistrae reads: F ′(v−(I, b)
)

− a.(a) When b < a, we have a stable �xed point. Indeed, the funtion F ′ is an inreasingfuntion equal to b at v∗(b) so Trae(L(v−(I, b)
)

)

≤ F ′(v∗(b)) − a = b − a < 0and the �xed point is attrative.(b) If b > a then the type of dynamis around the �xed point v− depends on theinput urrent (parameter I). Indeed, the trae reads
T (I, b, a) := F ′(v−(I, b)

)

− a,whih is ontinuous and ontinuously di�erentiable with respet to I and b, andwhih is de�ned for I < −m(b). We have:






lim
I→−m(b)

T (I, b, a) = b − a > 0

lim
I→−∞

T (I, b, a) = lim
x→−∞

F ′(x) − a < 0So there exists a urve I∗(a, b) de�ned by T (I, b, a) = 0 and suh that:� for I∗(b) < I < −m(b), the �xed point v−(I, b) is repulsive.� for I < I∗(b), the �xed point v− is attrative.To ompute the equation of this urve, we use the fat that point v−(I∗(b), b) issuh that F ′(v−(I∗(b), b)) = a. We know form the properties of F that there isa unique point va satisfying this equation. Sine F ′(v∗(b)) = b, a < b and F ′ isinreasing, the ondition a < b implies that va < v∗(b).The input urrent assoiated satis�es �xed points equation F (va)−bva+I∗(a, b) =
0, or equivalently:

I∗(a, b) = bva − F (va)The point I = I∗(a, b) will be studied in detail in the next setion, sine it is abifuration point of the system.Figure 1 represents in the di�erent zones enumerated in theorem 1.1 and their stabilityin the parameter plane (I, b). INRIA



Bifuration analysis of non-linear IF neurons. 9
J

2 3 4 5 6 7 8 9 10

K6

K5

K4

K3

K2

K1

0

1

2

b

No fixed point

Two fixed points: 
  :One saddle point
  :One repulsive point

Two fixed points:
  :One saddle point
  FOne attractive point

I = -m(b)g

fI = b va - F(va)

I

Figure 1: Number of �xed points and their stability in the plane (I, b), for the exponentialadaptive model.Remark. In this proof, we used the fat that F ′ is invertible on [0,∞). The assumption(A3) ensures us that it will be the ase, and that F has a unique minimum. Assumption(A3) is the weakest possible to have this property.1.3 Bifurations of the systemIn the study of the �xed points and their stability, we identi�ed two bifuration urves wherethe stability of the �xed points hanges. The �rst urve I = −m(b) orresponds to a saddle-node bifuration, and the urve I = I∗(a, b) to an Andronov-Hopf bifuration. These twourves meet in a spei� point, b = a and I = −m(a). This point has a double 0 eigenvalueand we show that it is a Bogdanov-Takens bifuration point.Let us show that the system undergoes these bifurations with no more assumption than(A1), (A2) and (A3) on F . We also prove that the system an undergo only one otherodimension two bifuration, a Bautin bifuration.1.3.1 Saddle-node bifuration urveIn this setion we haraterize the behavior of the dynamial system along the urve ofequation I = −m(b) and we prove the following theorem:
RR n° 6161



10 Jonathan TouboulTheorem 1.2. The dynamial system (1.1) undergoes a saddle-node bifuration along theparameter urve:
(SN) : {(b, I) ; I = −m(b)} , (1.6)when F ′′(v∗(b)) 6= 0.Proof. We derive the normal form of the system at this bifuration point. Following theworks of Gukenheimer�Holmes [9℄ and Kuznetsov [19℄, we only hek the transversalityonditions to be sure that the normal form at the bifuration point will have the expetedform.Let b ∈ R+ and I = −m(b). Let v∗(b) be the unique �xed point of the system for theseparameters. The point v∗(b) is the unique solution of F ′(v∗(b)) = b. At this point, theJaobian matrix (1.3) reads:

L(v∗(b)) =

(

b −1
ab −a

)This matrix has two eigenvalues 0 and b − a. The pairs of right eigenvalues and righteigenvetors are:
0, U :=

(

1/b

1

) and b − a,

(

1/a

1

)Its pairs of left eigenvalues and left eigenvetors are:
0, V := (−a, 1) and b − a, (−b, 1)Let fb,I be the vetor �eld

fb,I(v, w) =

(

F (v) − w + I

a(bv − w)

)

.The vetor �eld satis�es :
V

(

∂

∂I
fb,I(v

∗(b), w∗(b))

)

= (−a, 1) ·
(

1

0

)

= −a < 0So the oe�ient of the normal form orresponding to the Taylor expansion along theparameter I does not vanish.Finally let us show that the quadrati terms of the Taylor expansion in the normal formdoes not vanish. With our notations, this ondition reads:
V
(

D2
xfb,−m(b)(v

∗(b), w∗(b))(U, U)
)

6= 0.This property is satis�ed in our framework. Indeed, INRIA



Bifuration analysis of non-linear IF neurons. 11
V
(

D2
xfb,−m(b)(v

∗(b), w∗(b))(U, U)
)

= V (

(U2
1

∂2f1

∂v2
+ 2U1U2

∂2f1

∂v∂w
+ U2

2

∂2f1

∂w2

U2
1

∂2f2

∂v2
+ 2U1U2

∂2f2

∂v∂w
+ U2

2

∂2f2

∂w2

)

)

= V (

( 1
b2 F ′′(v∗)

0

)

)

= (−a, 1) ·
( 1

b2 F ′′(v∗)

0

)

= − a

b2
F ′′(v∗) < 0So the system undergoes a saddle-node bifuration along the manifold I = −m(b).Remark. Note that F ′′(v∗(b)) an vanish only ountably many times sine F is stritlyonvex.1.3.2 Andronov-Hopf bifuration urveIn this setion we onsider the behavior of the dynamial system along the parameter urve

I = I∗(b) and we onsider the �xed point v−.Theorem 1.3. Let b > a, va be the unique point suh that F ′(va) = a and A(a, b) de�nedby the formula:
A(a, b) := F ′′′(va) +

1

b − a
(F ′′(va))

2
. (1.7)If F ′′(va) 6= 0 and A(a, b) 6= 0, then the system undergoes an Andronov-Hopf bifurationat the point va, along the parameter line

(AH) :=
{

(b, I) ; b > a and I = bva − F (va)
} (1.8)This bifuration is subritial if A(a, b) > 0 and superritial if A(a, b) < 0.Proof. The Jaobian matrix at the point va reads:

L(va) =

(

a −1
ab −a

)Its trae is 0 and its determinant is a(b − a) > 0 so the matrix at this point has apair of pure imaginary eigenvalues (iω,−iω) where ω =
√

a(b − a). Along the urve ofequilibria when I varies, the eigenvalues are omplex onjugates with real part µ(I) =
1
2Tr

(

L
(

v−(I, b)
)

) whih vanishes at I = I∗(a, b).We reall that from proposition 1.2, this trae varies smoothly with I. Indeed, v−(b, I)satis�es F (v−(I, b)) − bv−(I, b) + I = 0 and is di�erentiable with respet to I. We have:RR n° 6161



12 Jonathan Touboul
∂v−(I, b)

∂I
(F ′(v−(I, b)) − b) = −1At the point v−(I∗(b), b) = va, we have F ′(va) = a < b so for I lose from this equilibriumpoint, we have
∂v−(I, b)

∂I
> 0Now let us hek that the transversality ondition of an Andronov-Hopf bifuration issatis�ed (see [9, Theorem 3.4.2℄). There are two onditions to be satis�ed: the transversalityondition dµ(I)dI 6= 0 and the non-degeneray ondition l1 6= 0 where l1 is the �rst Lyapunovoe�ient at the bifuration point.First of all, we prove that the transversality ondition is satis�ed:

µ(I) =
1

2
Tr(L(v−(I, b)))

=
1

2
(F ′(v−(I, b)) − a)dµ(I)dI

=
1

2
F ′′(v−(I, b))

dv−(I, b)dI
> 0Let us now write the normal form at this point. To this purpose, we hange variables:

{

v − va = x

w − wa = ax + ωyThe (x, y) equation reads:
{

ẋ = −ωy + (F (x + va) − ax − wa) =: −ωy + f(x)

ẏ = ωx + a
ω (ax − F (x + va) + wa − I) =: ωx + g(x)

(1.9)Aording to Gukenheimer in [9℄, we state that the Lyapunov oe�ient of the systemat this point has the same sign as B where B is de�ned by:
B :=

1

16
[fxxx + fxyy + gxxy + gyyy] +

1

16ω
[fxy(fxx + fyy)− gxy(gxx + gyy)− fxxgxx + fyygyy]Replaing f and g by the expressions found in (1.9), we obtain the expression of A:

INRIA



Bifuration analysis of non-linear IF neurons. 13
B =

1

16
F ′′′(va) +

a

16ω2
(F ′′(va))2

=
1

16
F ′′′(va) +

1

16(b − a)
(F ′′(va))2

=
1

16
A(a, b)Hene when A(a, b) 6= 0, the system undergoes an Andronov-Hopf bifuration. When

A(a, b) > 0, the bifuration is subritial and the periodi orbits generated by the Hopfbifuration are repelling, and when A(a, b) < 0, the bifuration is superritial and theperiodi orbits are attrative (the formula of A has been also introdued by Izhikevih in[16, eq.15 (p.213)℄).Remark. The ase A(a, b) = 0 is not treated in the theorem and is a little bit more intriate.We fully treat it in setion 1.3.4 and show that a Bautin (generalized Hopf) bifuration anour if the A-oe�ient vanishes. Sine the third derivative is a priori unonstrained, thisase an our and we prove in setion 3 that this is the ase for a simple (quarti) model.1.3.3 Bogdanov-Takens bifurationWe have seen in the study that this formal model presents an interesting point in theparameter spae, orresponding to the intersetion of the saddle-node bifuration urve andthe Andronov-Hopf bifuration urve. At this point, we show that the system undergoes aBogdanov-Takens bifuration.Theorem 1.4. Let F be a real funtion satisfying the assumptions (A1), (A2) and (A3). Let
a ∈ R∗

+, b = a and va the only point suh that F ′(va) = a. Assume again that F ′′(va) 6= 0.Then at this point and with these parameters, the dynamial system (1.1) undergoes asubritial Bogdanov-Takens bifuration of normal form:
{

η̇1 = η2

η̇2 =
(

8F ′′(va) a I1
(a+b1)3

)

−
(

2(2 b1 a+I1 F ′′(va))
(a+b1)2

)

η1 + η2
1 + η1η2 + O(‖η‖3)

(1.10)where b1 := b − a and I1 = I + m(a).Proof. The Jaobian matrix (1.3) at this point reads:
L(va) =

(

a −1
a2 −a

)This matrix is non-zero and has two zero eigenvalues (its determinant and trae are 0).The matrix Q :=

(

a 1
a2 −a

) is the passage matrix to the Jordan form of the Jaobianmatrix:RR n° 6161
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Q−1 · L(va) · Q =

(

0 1
0 0

)To prove that the system undergoes a Bogdanov-Takens bifuration, we show that the normalform reads:
{

η̇1 = η2

η̇2 = β1 + β2η1 + η2
1 + ση1η2 + O(‖η‖3)

(1.11)with σ = ±1. The proof of this theorem onsists in (i) proving that the system undergoes aBogdanov-Takens bifuration, (ii) �nding a losed-form expression for the variables β1 and
β2 and (iii) proving that σ = 1.First of all, let us prove that the normal form an be written in the form of (1.11). Thisis equivalent to showing some transversality onditions on the system (see for instane in[19, Theorem 8.4℄).To this end, we enter the equation at this point and write the system in the oordinatesgiven by the Jordan form of the matrix. Let (y1

y2

)

= Q−1
(

v−va

w−wa

), at the point b = a+ b1, I =

−m(a) + I1. We get:
{

ẏ1 = y2 + b1
a (ay1 + y2)

ẏ2 = F (ay1 + y2 + va) − wa − m(a) + I1 − a2y1 − ay2 − b1(ay1 + y2)
(1.12)Let us denote v1 = ay1 + y2. The Taylor expansion on the seond equation gives us:

ẏ2 = F (v1 + va) − wa − m(a) + I1 − a2y1 − ay2 − b1(ay1 + y2)

= F (va) + F ′(va)v1 +
1

2
F ′′(va)v2

1 − wa − m(a)

+ I1 − a2y1 − ay2 − b1(ay1 + y2) + O(‖v1‖3)

= (F (va) − wa − m(a)) + I1 + (F ′(va) − a)v1 − b1v1 +
1

2
F ′′(va)v2

1

+ O(‖v1‖3)

= I1 − b1(ay1 + y2) +
1

2
F ′′(va)(ay1 + y2)

2 + O(‖y‖3) (1.13)Let us denote for the sake of larity α = (b1, I1) and write the equations (1.12) as:
{

ẏ1 = y2 + a00(α) + a10(α)y1 + a01(α)y2

ẏ2 = b00(α) + b10(α)y1 + b01(α)y2 + 1
2b20(α)y2

1 + b11(α)y1y2 + 1
2b02(α)y2

2 + O(‖y‖3)(1.14)INRIA



Bifuration analysis of non-linear IF neurons. 15From the equations (1.12) and (1.13), it is straightforward to identify the expressions forthe oe�ients aij(α) and bij(α).Let us now use the hange of variables:
{

u1 = y1

u2 = y2 + b1
a (ay1 + y2)The dynamial system governing (u1, u2) reads:

{

u̇1 = u2

u̇2 = (1 + b1
a ) − b1 a u1 + 1

2
a3F ′′(va)

a+b1
u2

1 + a2F ′′(va)
a+b1

u1 u2 + 1
2

aF ′′(va)
a+b1

u2
2The transversality onditions of a Bogdanov-Takens bifuration [9, 19℄ an easily beveri�ed from this expression:(BT.1). The Jaobian matrix is not 0.(BT.2). With the notations of (1.14), we have a20 = 0 and b11(0) = aF ′′(va) > 0 so a20(0) +

b11(0) = aF ′′(va) > 0.(BT.3). b20 = a2F ′′(va) > 0.(BT.4). We show that the map:
(

x :=

(

y1

y2

)

, α :=

(

I1

b1

))

7→
[

f(x, α),Tr(Dxf(x, α
)

,Det(Dxf(x, α)
)

]is regular at the point of interest.From the two �rst assumptions, we know that the system an be put in the form of(1.11). Gukenheimer in [9℄ proves that this ondition an be redued to the non-degeneray of the di�erential with respet to (I1, b1) of the vetor (β1

β2

) of the equation(1.11).In our ase, we an ompute these variables β1 and β2 following the alulation stepsof [19℄ and we get:
{

β1 = 8F ′′(va) a I1
(a+b1)3

β2 = − 2(2 b1 a+I1 F ′′(va))
(a+b1)2

(1.15)Hene the di�erential of the vetor (β1

β2

) with respet to the parameters (I1, b1) at thepoint (0, 0) reads:
Dαβ|(0,0) =

(

8F ′′(va)
a2 0

−2F ′′(va)
a2 −4/a

)This matrix has a non-zero determinant if and only if F ′′(va) 6= 0RR n° 6161



16 Jonathan TouboulTherefore we have proved the existene of a Bogdanov-Takens bifuration under theondition F ′′(va) 6= 0Let us now show that σ = 1. Indeed, this oe�ient is given by the sign of b20(0)
(

a20(0)+

b11(0)
) whih in our ase is equal to a3F ′′(va)2 > 0 so the bifuration is always of the type(1.10)(generation of an unstable limit yle) for all the members of our lass of models.The existene of a Bogdanov-Takens bifuration point implies the existene of smoothurve orresponding to a saddle homolini bifuration in the system (see [19, lemma 8.7℄).Corollary 1.3. There is a unique smooth urve (P ) orresponding to a saddle homolinibifuration in the system (1.1) originating at the parameter point b = a and I = −m(a)de�ned by the impliit equation:

(P ) :=
{

(I = −m(a) + I1, b = a + b1) ;

I1 =

(

− 25
6 a − 37

6 b1 + 5
6

√

25 a2 + 74 b1 a + 49 b1
2
)

a

F ′′(va)
+ o((| b1 | + | I1 |)2 (1.16)and b1 > −I1F

′′(va)

2a

}Moreover, for (b, I) in a neighborhood of (a,−m(a)), the system has a unique and hyper-boli unstable yle for parameter values inside the region bounded by the Hopf bifurationurve and the homolini bifuration urve (P ), and no yle outside this region.Proof. As notied, from the Bogdanov-Takens bifuration point, we have the existene ofthis saddle homolini bifuration urve. Let us now ompute the equation of this urve inthe neighborhood of the Bogdanov-Takens point. To this purpose we use the normal formwe derived in theorem 1.4 and use the loal haraterization given for instane in [19, lemma8.7℄ for the saddle homolini urve:
(P ) :=

{

(β1, β2) ; β1 = − 6

25
β2

2 + o(β2
2), β2 < 0

}Using the expressions (1.15) yields:
(P ) :=

{

(I = −m(a) + I1, b = a + b1) ;

8F ′′(va)aI1

(a + b1)3
=

24

25

(2 b1 a + I1 F ′′(va))2

(a + b1)4
+ o(| a1 | + | I1 |)and b1 > −I1F

′′(va)

2a

}We an solve this equation. There are two solutions, but the only one satisfying I1 = 0when b1 = 0. This solution is the urve of saddle homolini bifurations. INRIA



Bifuration analysis of non-linear IF neurons. 171.3.4 Formal onditions for a Bautin bifurationIn the study of the Andronov-Hopf bifuration, we showed that the sub or superritial typeof bifuration depended on the variable A(a, b) de�ned by (1.7). If this variable hangessign when b varies, then the stability of the limit yle along Hopf bifuration hanges ofstability. This an our if the point va satis�es the ondition:Assumption (A4). For va suh that F ′(va) = a, we have:
F ′′′(va) < 0Indeed, if this happens, the type of Andronov-Hopf bifuration hanges, sine we have:







lim
b→a−

A(a, b) = +∞
lim

b→+∞
A(a, b) = F ′′′(va) < 0In this ase the �rst Lyapunov exponent vanishes for

b = a − (F ′′(va))2

F ′′′(va)At this point, the system has the harateristis of a Bautin (generalized Hopf) bifuration.Nevertheless we still have to hek two non-degeneray onditions to ensure that the systematually undergoes a Bautin bifuration:(BGH.1). The seond Lyapunov oe�ient of the dynamial system l2, does not vanish at thisequilibrium point(BGH.2). Let l1(I, b) be the �rst Lyapunov exponent of this system and µ(I, b) the real part ofthe eigenvalues of the Jaobian matrix. The map
(I, b) 7→ (µ(I, b), l1(I, b))is regular at this point.In this ase the system would be loally topologially equivalent to the normal form:

{

ẏ1 = β1y1 − y2 + β2y1(y
2
1 + y2

2) + σy1(y
2
1 + y2

2)
2,

ẏ2 = β1y2 − y1 + β2y2(y
2
1 + y2

2) + σy2(y
2
1 + y2

2)
2We redue the problem to the point that heking the two onditions of a BGH bifurationbeomes straightforward.Let (va, wa) the point where the system undergoes the Bautin bifuration (when itexists). Sine we already omputed the eigenvalues and eigenvetors of the Jaobian matrixalong the Andronov-Hopf bifuration urve, we an use it to redue the problem. The basiswhere we express the system is given by:RR n° 6161
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Q :=

(

1
b

ω
ab

1 0

)

(

x
y

)

:= Q−1
(

v−va

w−wa

)Let us write the dynamial equations satis�ed by (x, y):
{

ẋ = ωy

ẏ = ab
ω

(

F
(

va + 1
b x + ω

aby
)

− wa − x + Ia − ay
)To ensure that we have a Bautin bifuration at this point we will need to perform aTaylor expansion up to the �fth order, so we need to make the assumption:Assumption (A5). The funtion F is six times ontinuously di�erentiable at (va, wa).First let us denote v1(x, y) = 1

b x + ω
aby, the Taylor expansion reads:

ẏ =
ab

ω

(

F (va) − wa + I) +
ab

ω
[F ′(va)v1(x, y) − ay] +

1

2

ab

ω

[

F ′′(va)v1(x, y)2
]

+
1

6

ab

ω
F ′′′(va)v1(x, y)3 +

1

4!

ab

ω
F (4)(va)v1(x, y)4

+
1

5!

ab

ω
F (5)(va)v1(x, y)5 + O(‖

(

x

y

)

‖6)This expression together with the omplex left and right eigenvetors of the Jaobianmatrix allow us to ompute the �rst and seond Lyapunov oe�ients and to hek theexistene of a Bautin bifuration.Nevertheless, we annot push the omputation any further at this level of generality,but, for a given funtion F presenting a hange in the sign of A(a, b), an easily be donethrough the use of a symboli omputation pakage. The interested reader is referred to theappendix A for heking the Bautin bifuration transversality onditions, where alulationsare given for the quarti neuron model.1.4 Conlusion: the full bifuration diagramWe now summarize the results obtained in this setion in the two following theorems:Theorem 1.5. Let us onsider the formal dynamial system
{

v̇ = F (v) − w + I

ẇ = a(bv − w)
(1.17)where a is a �xed real, b and I bifuration parameters and F : R 7→ R a real funtion.If the funtion F satis�es the following assumptions: INRIA



Bifuration analysis of non-linear IF neurons. 19(A.1). The funtion F is three times ontinuously di�erentiable(A.2). F is stritly onvex, and(A.3). F ′ satis�es the onditions:






lim
x→−∞

F ′(x) ≤ 0

lim
x→∞

F ′(x) = ∞Then the dynamial system (1.17) shows the following bifurations:(B1). A saddle-node bifuration urve:
(SN) : {(b, I) ; I = −m(b)} ,where m(b) is the minimum of the funtion F (v) − bv (if the seond derivative of Fdoes not vanish at this point)(B2). An Andronov-Hopf bifuration line:

(AH) :=
{

(b, I) ; b > a and I = bva − F (va)
}where va is the unique solution of F ′(va) = a, and if F ′′(va) 6= 0. The type of thisAndronov-Hopf bifuration is given by the sign of the variable

A(a, b) = F ′′′(va) +
1

b − a
F ′′(va)2.If A(a, b) > 0 then the bifuration is subritial and if A(a, b) < 0, the bifuration issuperritial.(B3). A Bogdanov-Takens bifuration point at the point b = a and I = −m(a), if F ′′(va) 6= 0.(B4). A saddle homolini bifuration urve haraterized in the neighborhood of the Bogdanov-Takens point by:

(P ) :=
{

(I = −m(a) + I1, b = a + b1) ;

I1 =

(

− 25
6 a − 37

6 b1 + 5
6

√

25 a2 + 74 b1 a + 49 b1
2
)

a

F ′′(va)
+ o((| b1 | + | I1 |)and b1 > −I1F

′′(va)

2a

}Theorem 1.6. Consider the system (1.1) where a is a given real number and b and I arereal bifuration parameters and F : E ×R 7→ R be a funtion satisfying the assumptions:RR n° 6161



20 Jonathan Touboul(A.5). The funtion F is six times ontinuously di�erentiable(A.2). F is stritly onvex, and(A.3). F ′ satis�es the onditions:






lim
x→−∞

F ′(x) ≤ 0

lim
x→∞

F ′(x) = ∞(A.4). Let va be the unique real suh that F ′(va) = a. We have:
F ′′′(va) < 0If we have furthermore:(BGH.1). The seond Lyapunov oe�ient of the dynamial system l2(va) 6= 0;(BGH.2). Let l1(v) denote the �rst Lyapunov exponent, λ(I, b) = µ(I, b)±iω(I, b) the eigenvaluesof the Jaobian matrix in the neighborhood of the point of interest. The map (I, b) →

(µ(I, b), l1(I, b)) is regular at this point.Then the system undergoes a Bautin bifuration at the point va for the parameters b =

a − F ′′(va)2

F ′′′(va) and I = bva − F (va).Remark. Theorem 1.5 enumerates some of the bifurations that any dynamial system ofthe lass (1.1) will always undergo. Together with theorem 1.6, they summarize all the loalbifurations the system an undergo, and no other �xed-point bifuration is possible. Insetion 3 we introdue a model atually showing all these loal bifurations.2 Appliations: Izhikevih and Brette-Gerstner modelsIn this setion we show that the neuron models proposed by Eugene Izhikevih in [14℄ andBrette and Gerstner in [5℄ are part of the lass studied in setion 1. Using the results of thelater setion, we derive their bifuration diagram, and obtain that they show exatly thesame types of bifurations.2.1 Izhikevih quadrati adaptive modelWe produe here a omplete desription of the bifuration diagram of the adaptive quadratiintegrate-and-�re model proposed by Izhikevih [14℄ and [16, hapter 8℄. We use here thedimensionless equivalent version of this model, with the fewest parameters:
{

v̇ = v2 − w + I

ẇ = a(bv − w)
(2.1)
INRIA



Bifuration analysis of non-linear IF neurons. 21The equation (2.1) is learly a partiular ase of equation (1.1) with
F (v) = v2

F is learly stritly onvex and C∞. F ′(v) = 2v so it satis�es also the ondition (A3).Furthermore, the seond derivative never vanishes so the system undergoes the three bifur-ations stated in theorem 1.5(Izh.B1). A saddle-node bifuration urve de�ned by
{

(b, I) ; I =
b2

4

}

.For (I, b) ∈ R2, the �xed point is given by (v∗(b) = 1
2b, w∗(b) = 1

2b2).For I < b2

4 , the �xed point(s) are :
v±(b, I) =

1

2

(

b ±
√

b2 − 4I
)(Izh.B2). An Andronov-Hopf bifuration line:

{

(I, b) ; b > a and I =
a

2
(b − a

2
)
}

,whose type is given by the sign of the variable
A(a, b) =

4

b − aThis value is always stritly positive, so the bifuration is always subritial.(Izh.B3). A Bogdanov-Takens bifuration point for b = a and I = a2

4 , va = a
2 .(Izh.B4). A saddle homolini bifuration urve satisfying the quadrati equation near theBogdanov-Takens point:

(P ) :=
{

(I =
a2

2
+ I1, b = a + b1) ;

I1 =
a

2

(

−25

6
a − 37

6
b1 +

5

6

√

25 a2 + 74 b1 a + 49 b1
2

)

+ o((| b1 | + | I1 |)and b1 > −I1

a

}The �gure Fig.2 represents the �xed points of this dynamial system, and their stability,together with the bifuration urves.
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Figure 2: Representation of the v �xed point with respet to the parameters I and b inthe Izhikevih model. The red omponent is the surfae of saddle �xed points, the blue oneorresponds to the repulsive �xed points and the green one to the attrative �xed points Theyellow urve orresponds to a saddle-node bifuration and the red one to an Andronov-Hopfbifuration.
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Bifuration analysis of non-linear IF neurons. 232.2 Brette-Gerstner exponential adaptative integrate-and-�re neu-ronIn this setion we study the bifuration diagram of the adaptive exponential neuron. Thismodel has been introdued by Brette and Gerstner in [5℄. This model, inspired by theIzhikevih adaptive quadrati model, an be �tted to biologial values, takes into aountthe adaptation phenomenon, and is able to reprodue many behaviors observed in ortialneurons. The bifuration analysis we derived in setion 1 allows us to understand how theparameters of the model an a�et the behavior of this neuron. We show that this model ispart of the general lass studied in 1 and we obtain the �xed-points bifuration diagram ofthe model.2.2.1 Redution of the original modelThis original model is based on biologial onstants and is expressed with a lot of parameters.We �rst redue this model to a simpler form with the fewest number of parameters:The basi equations proposed in the original paper [5℄ read:














C dVdt = −gL(V − EL) + gL∆T exp
(

V −VT

∆T

)

−ge(t)(V − Ee) − gi(t)(V − Ei) − W + Im

τW
dWdt = κ(V − EL) − W

(2.2)First, we do not assume that the reversal potential of the w equation is the same as theleakage potential EL, and write the equation for the adaptation variable by:
τW

dWdt
= a(V − V̄ ) − WNext we assume that ge(·) and gi(·) are onstant (in the original paper it was assumed thatthe two ondutanes where null).After some straightforward algebra, we eventually get the following dimensionless equa-tion equivalent to (2.2):

{

v̇ = −v + ev − w + I

ẇ = a(bv − w)
(2.3)
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g̃ := gL + ge + gi

τm := C
g̃

B := κ
g̃

(

EL

∆T
+ log(gL

g̃ e−VT /∆T )
)

v(τ) := V (ττm)
∆T

+ log
(

gL

g̃ e−VT /∆T

)

w(τ) := W (ττm)
g̃∆T

+ B

a := τm

τW

b := κ
g̃

I := Im+gLEL+geEe+giEi

g̃∆T
+ log(gl

g̃ e−VT /∆T ) + B

(2.4)
and where the dot denotes the derivative with respet to τ .Remark. These expressions on�rm the qualitative interpretation of the parameters a, band I of the model (1.1). Indeed, a = τm

τw
aounts for the time sale of the adaptation (withthe membrane time sale as referene), the parameter b = κ

g̃ is proportional to the interationbetween the membrane potential and the adaptation variable and inversely proportional tothe total ondutivity of the membrane potential. Eventually, I is an a�ne funtion of theinput urrent Im and models the input urrent of the neurons.2.2.2 Bifuration diagramFrom equation (2.3) we an learly see that the Brette-Gerstner model is inluded in theformal lass studied in the paper with:
F (v) = ev − v.This funtion satis�es the assumptions (A1), (A2) and (A3). Furthermore, its seond orderderivative never vanishes.Theorem 1.5 shows that the system undergoes the following bifurations:(BG.B1). A saddle-node bifuration urve de�ned by

{(b, I) ; I = (1 + b)(1 − log(1 + b))} .So v∗(b) = log(1+ b). For I ≤ (1+ b)(1− log(1+ b)), the system has the �xed points:






v−(I, b) := −W0

(

− 1
1+be

I
1+b

)

+ I
1+b

v+(I, b) := −W−1

(

− 1
1+be

I
1+b

)

+ I
1+b

(2.5)where W0 is the prinipal branh of the Lambert's W funtion4 and W−1 the realbranh of Lambert's W funtion suh that W−1(x) ≤ −1, de�ned for −e−1 ≤ x < 1.4The Lambert W funtion is the inverse funtion of x 7→ xex. INRIA



Bifuration analysis of non-linear IF neurons. 25(BG.B2). An Andronov-Hopf bifuration line for:
{(b, I) ; b > a and I = I∗(a, b) = (1 + b) log(1 + a) − (1 + a)}at the equilibrium point (va = log(1 + a), wa = bva). The type of Andronov-Hopfbifuration is given by the sign of the variable

A(a, b) = F ′′′(va) +
1

b − a
F ′′(va)2 = (1 + a) +

4

b − a
(1 + a)2 > 0So the bifuration is always subritial and there is not any Bautin bifuration.(BG.B3). A Bogdanov-Takens bifuration point at the point b = a and I = log(1 + a).(BG.B4). A saddle homolini bifuration urve satisfying, near the Bogdanov-Takens point, theequation:

(P ) :=
{

(I = (1 + a)(log(1 + a) − 1) + I1, b = a + b1) ;

I1 =

(

− 25
6 a − 37

6 b1 + 5
6

√

25 a2 + 74 b1 a + 49 b1
2
)

a

(1 + a)
+ o((| b1 | + | I1 |)and b1 > −

(

1 +
1

a

)

I1

}In �gure Fig.3 we represented the �xed points of the exponential model and their stability,together with the bifuration urves, in the spae (I, b, v).3 The riher quarti modelIn this setion, we introdue a new spei� model having a riher bifuration diagram thanthe two models studied in setion 2. It is as simple as the two previous models from themathematial and omputational points of view. To this end, we de�ne a model whih ispart of the lass studied in setion 1, by speifying the funtion F .3.1 The Quarti model: De�nition and bifuration mapLet a > 0 a �xed real, and α > a. We instantiate the model (1.1) with the funtion F aquarti polynomial:
F (v) = v4 + 2avRemark. The hoie of the funtion F here is just an example where all the formulasare rather simple. Exatly the same analysis an be done with any F funtion satisfying

F ′′′(va) < 0 and the transversality onditions given in theorem 1.6. This would be the asefor instane for any quarti polynomial F (v) = v4 + αv for α > a.RR n° 6161
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Figure 3: Representation of the v �xed point of the Brette-Gerstner model with respetto the parameters I and b. The red omponent is the surfae of saddle �xed points, theblue one orresponds to the repulsive �xed points and the green one to the attrative �xedpoints The yellow urve orresponds to a saddle-node bifuration and the red one to anAndronov-Hopf bifuration.
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Bifuration analysis of non-linear IF neurons. 27The funtion F satis�es the assumptions (A1), (A2) and (A5). F ′(v) = 4v3 +2a satis�esthe assumption (A3).Nevertheless we have to bear in mind that the seond order derivative vanishes at v = 0.
{

v̇ = v4 + 2av − w + I

ẇ = a(bv − w)
(3.1)Theorem 1.5 shows that the quarti model undergoes the following bifurations:(B1). A saddle-node bifuration urve de�ned by

(SN) :=

{

(b, I) ; I = 3

(

b − 2a

4

)(4/3)
}Proof. Indeed, the funtion G reads: G(v) = v4 + (2a − b)v and reahes its minimumat the point v =

(

b−2a
4

)(1/3). So the minimum of G is m(b) = −3
(

b−2a
4

)(4/3).The point v∗(b) is ( b−2a
4

)(1/3) and we have losed form expressions (but rather om-pliated) for the two �xed points for I < 3
(

b−2a
4

)(4/3) sine the quarti equation issolvable in radials. The losed form expression an be obtained using a symboliomputation pakage like Maple© using the ommand:S:=allvalues( solve( x^4 + (2*a - b) * x + I0 = 0,x));(B2). An Andronov-Hopf bifuration urve for b > a along the straight line
(AH) :=

{

(I, b) ; b > a and I = −
(a

4

)1/3

b −
(a

4

)4/3
}The �xed point where the system undergoes this bifuration is va = −(a

4 )1/3 The kindof Andronov-Hopf bifuration we have is governed by the sign of
α = −24

(a

4

)1/3

+
144

b − a

(a

4

)4/3Finally, the type of bifuration hanges when b varies.� When b < 5
2 a, then α > 0, hene l1 > 0, and the Andronov-Hopf bifuration issubritial.� When b > 5
2 a then α < 0, hene l1 < 0, and the Andronov-Hopf bifuration issuperritial.
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28 Jonathan TouboulWe prove below that the hange in the type of Hopf bifuration is obtained via aBautin bifuration.(B3). A Bogdanov-Takens bifuration point is loated at b = a and I = −3
(

a
4

)(4/3).(B4). A saddle homolini bifuration urve satisfying, near the Bogdanov-Takens point, theequation:
(P ) :=

{

(I = −3
(a

4

)(4/3)

+ I1, b = a + b1) ;

I1 =
1

12

(

−25

6
a − 37

6
b1 +

5

6

√

25 a2 + 74 b1 a + 49 b1
2

)

a1/3

+ o((| b1 | + | I1 |)and b1 > −6I1a
−1/3

}(B5). A Bautin bifuration at the point (b = 5
2a, I = −3

(

a
4

)4/3
(2 a− 1)

), and a saddle nodebifuration of periodi orbits oming along (see setion 3.2).The �gure Fig.4 represents the bifuration urves and the �xed point of the quarti modelin the spae (I, b, v).3.2 The Bautin bifurationAs we have seen in the last setion, at the point:










va = −
(

a
4

)1/3

I = −3
(

a
4

)4/3
(2 a − 1)

b = 5
2a

(3.2)the Jaobian matrix of the system has a pair of purely onjugate imaginary eigenvalues, anda vanishing �rst Lyapunov exponent.To prove the existene of a Bautin bifuration, we start our omputations from the pointof 1.3.4. In this ase the alulations an be lead till the end, but the expressions are veryintriate and we do not reprodue it here. In the appendix A we show the alulations toperform. We prove that the system atually undergoes a Bautin bifuration exept for twopartiular values of the parameter a5.With this method we obtain a losed-form expression for the seond Lyapunov exponent.We show that this seond Lyapunov exponent vanishes for two values of a, whose expressionsare ompliated. These alulations are rigorous, but nevertheless, the interested reader an5All the omputations have been performed using Maple© but the expressions are very involved and arenot reprodued here.
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Figure 4: v-�xed points and their stability in funtion of I and b. The red omponent isthe surfae of saddle �xed points, the blue one orresponds to the repulsive �xed points andthe green one to the attrative �xed points The yellow urve orresponds to a saddle-nodebifuration, the red urve to a subritial Andronov-Hopf bifuration and the pink one tothe superritial Andronov-Hopf bifuration. The intersetion point between the yellow andthe red urve is the Bogdanov-Takens bifuration point and the intersetion point of the redand pink urves is the Bautin bifuration point.
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30 Jonathan Touboul�nd numerial expressions of this exponent to get a grasp on its behavior in the appendix(eq.(A.7)), and and of the two numerial values of a suh that l2(a) vanishes.Things are even more involved when we are interested in the regularity of the map
(I, b) 7→ (µ(I, b), l1(I, b)). Nevertheless, we obtain that this determinant never vanish.Eventually, for all a di�erent of the ritial values where the seond Lyapunov exponentvanishes, the system undergoes a Bautin bifuration.Note �nally that the Bautin bifuration point separates two branhes of sub- and super-ritial Hopf bifurations. For nearby parameter values, the system has two oexisting limityles, an attrative one and a repelling one, whih ollide and disappear via a saddle-nodebifuration of periodi orbits.4 Numerial SimulationsIn the previous setions we emphasized the fat that the lass of models we de�ned in setion1 was able to reprodue the behaviors observed by Izhikevih in [15℄. In this setion, �rstwe show that the quarti model indeed reprodues the behaviors observed by Izhikevihand whih orrespond to ortial neuron behaviors observed experimentally. We also pro-due some simulations of self-sustained subthreshold osillations whih our only when thedynamial system has attrating periodi orbits, whih is not the ase in the IBG models.Izhikevih in [15℄ explains the main features we obtain in numerial simulations from theneuro-omputational point of view. In this paper, we omment these same features from thedynamial systems point of view. This analysis gives us also a systemati way of �nding theparameters assoiated to one of the possible behaviors.4.1 Simulation resultsWe provide now simulation results of the quarti model introdued in setion 3. In thesimulated model, the spike is not represented by the blow up of the potential membrane v,but we onsider the neuron emits a spike when its membrane potential rosses a onstantthreshold6.Let θ be our threshold. The simulated model onsidered in this setion is the solution ofthe equations:

{

v̇ = v4 + 2av − w + I

ẇ = a(bv − w)
(4.1)together with the spike-and-reset ondition:If v(t−) > θ ⇒

{

v(t) = vr

w(t) = w(t−) + d
(4.2)6Note that the numerial simulations are very robusts with respet to the hoie of the threshold, if takenlarge enough, sine the underlying equation blows up in �nite time. INRIA



Bifuration analysis of non-linear IF neurons. 31
(i) Tonic Spiking (ii) Phasic Spiking (iii) tonic bursting

(iv) phasic bursting (v) Mixed mode (vi) Spike freq. adaptation

(vii) Class 1 excitability (viii) Class 2 excitability (ix) Spike latency

(x) Damped subthr. oscill. (xi) resonator (xii) integrator

(xiii) rebound spike (xiv) rebound burst (xv) Threshold variability

(xvi) bistability (xvii) depol. after−pot. (xviii) self−sustained oscill.

(xix) Mixed chatter/C1 exc. (xx) Purely Oscill. mode

Figure 5: Di�erent remarkable neuro-omputational interesting behaviors of the neu-ron model (4.1) with the reset ondition (4.2), for di�erent hoies of the parameters
(a, b, I, vr, d). The blue urve represents the membrane potential v and the red one theinput urrent I (see annex B for the numerial values of eah simulations).
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32 Jonathan TouboulSimulations have been done using an Euler numerial sheme, with a time step rangingfrom 10−1 to 10−2 depending on the preision needed, and with time intervals rangingfrom 10 to 500. This method is very e�ient numerially and remains preise. Otherintegration methods ould be used, and the qualitative results we obtained do not dependon the integration sheme, as soon as the time step is small enough.Remark (On �gure Fig.5). Note that we did not reprodue the last three behaviors presented byIzhikevih in [15, Figs 1.(R),1.(S) and 1.(T)℄. Indeed, these behaviors are not in the sope of thepresent paper, and do not orrespond to the model we studied.More preisely, in the study of the general model (1.1), we onsidered for phenomenologialreasons a > 0, modelling the leak of the adaptation variable: the adaptation would onverge toits rest value if it was not in�uened by the membrane potential v. If we onsidered a < 0, thisadaptation variable would diverge exponentially from this rest value if it was not ontrolled by themembrane potential v. The inhibition-indued behaviors [15, Figs. 1.(S) and 1.(T)℄ require a to bestritly negative, so we will not omment on these behaviors any further.Similarly, the aommodation behavior presented by Izhikevih in [15, Fig. 1.(R)℄ is a limitase when w is very slow and the adaptation e�ieny b very high. Mathematially speaking, itorresponds to a ase where a → 0 and ab → λ 6= 0. This ase is not taken into aount in ourstudy, and amounts replaing (1.1) by an equation of the type:
( dvdt

= F (v) − w + Idwdt
= ab(v − v0)

(4.3)and the study of this equation is not in the sope of the present paper.The simulated behaviors we obtained in Fig.5 have been obtained playing with the bi-furation parameters in the phase plane. The way the parameters were set was based ona qualitative reasonning on the phase plane and the bifuration diagram, in a way we nowdesribe.4.2 Bifurations and neuronal dynamisIn this setion we link the neuronal behaviors shown in Fig. 5 with the bifurations of thesystem.� (i) Toni spiking: this behavior orresponds to the saddle-node bifuration. Thesystem starts from a (stable) equilibrium point near the saddle-node bifuration urve(see Fig.6). Then we apply a greater onstant urrent I and the new dynamial systemhas no �xed point (we �ross� the saddle node bifuration urve). So the neuron beginsspiking. The stabilization of the spiking frequeny is linked with the existene of whatwe will all a limit spiking yle. Indeed, we an see that the phase plane trajetoryonverges to a kind of yle. This yle inludes a spike point (v = ∞, or v = thresholdin the numerial ase), so it is not a lassial limit yle. The v is always reset to thesame value, and we an see that the adaptation variable w onverges to an attrating
INRIA
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Figure 6: Toni spiking: phase plane trajetory. The blak urve is the v nullline at theinitial time. It is shifted to the red one when applying a onstant input urrent. The newdynamial system has no �xed point and spikes regularly. We an see the spiking yleappearing.stable value wspike. This value satis�es ws(tspike) + b = wspike where ws(·) is solutionof the equations (4.1) with the initial onditions:
{

v(0) = vr

w(0) = wspikeand where tspike denotes the time of the spike.� (ii) Phasi spiking: this behavior ours on the stable �xed points portion of the phaseplane. The system starts at a �xed point. Then we apply a onstant urrent to theneuron greater than the initial urrent, but lower than the urrent assoiated to thesaddle-node bifuration. This stimulation fores the neuron to spike. Nevertheless,the reset point falls in the attration basin of the new �xed point and the trajetoryonverges to this point.� (iii) Toni bursting: This behavior is also linked to the saddle-node bifuration. Thesystem starts at a (stable) �xed point, and when we apply a onstant urrent, weross this bifuration. The new dynamial system has no �xed point and is in aspiking behavior. The only di�erene with the toni spiking behavior is that the point
(vr , wspike) is in the zone {(v, w); v̇ < 0}. So the system emits quikly a preise numberof spikes, and then rosses the v nullline. At this point, the membrane potentialdeays before spiking. We an see numerially that the system onverges to a stablespiking yle (see Fig.7(a)) ontaining a given number of spikes, a deay and then thesame sequene of spikes again. So the two-dimensions system is able to reproduethe diagrams presented by Izhikevih in [13℄ in an (at least) three-dimensions spae.RR n° 6161
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(a) Phase plane of the toni spiking(without the transient phase)
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(b) Controlling the number of spikes per burstFigure 7: Toni bursting: phase plane trajetory. The blak urve is the v nullline at theinitial time. It is shifted to the red one when applying a onstant input urrent. The newdynamial system has no �xed point. We an see the multiple spike limit yle here.
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Bifuration analysis of non-linear IF neurons. 35This is possible in two dimensions beause of the singularity of the model (explosionor threshold/reinitialization). If the system was regular, this behavior wouldn't havebeen possible beause it would have ontradited the Cauhy-Lipshitz theorem ofexistene and uniqueness of a solution.Note that we an hose exatly the number of spikes per burst by hanging the adap-tation parameter d, and that the bursting an be of paraboli or square-wave type asde�ned in Hoppensteadt and Izhikevih [12℄(see Fig.7(b)).� (iv) Phasi bursting This behavior is linked with what we disussed in (ii) and (iii):the system starts at a stable �xed point. When the input urrent turned on, thenullline is shifted and the initial point is now in the spiking zone, so a spike is emitted.Nevertheless, in ontrast with (ii), the reset does not fall in the attration basin ofthe new stable �xed point, but the point (v0, wspike) is inside this attration basin. Soa ertain number of spikes is emitted before returning to the new �xed point. Hereagain we are able to ontrol the number of spikes in the initial burst.� (v) Mixed mode: The dynamial system interpretation is mixed between the phasibursting and the toni spiking. A ertain number of spikes are neessary to onvergeto the spiking yle.� (vi) Spike frequeny adaptation: this behavior is a partiular ase of toni burstingwhere the onvergene to the stable spiking yle is slow.� (vii)/(viii) Class one/two exitability: The �gures 8(a) and 8(b) represent the spikingfrequeny of the neurons as a funtion of the input urrent. We an see that for the�rst hoie of parameter, the frequeny an be very small and inreases regularly, andfor the seond hoie of parameter, we an see that the system annot spike in a givenrange of frequeny ( this frequeny annot be lower than 1.2Hz). Those simulationsshow that, depending on the hosen parameters, the system an be lass 1 or lass 2exitable.� (ix)/(xvii) Spike lateny/ DAP: It is a partiular ase of phasi spiking when theequilibrium v∗ or the reset point vr is near a point suh that F (v) = F ′(v) = 0. Themembrane potential dynamis is very slow around this point. In the spike latenybehavior, the initial point is lose of this point, whih generates the observed lateny.In our ase, it is around the minimum of the funtion F (see Fig. 10(ix) ). In thedepolarized after-potential (DAP) ase, the reset ours near this point, whih is alsoin the attration basin of the stable �xed point.� (x) Damped subthreshold osillations This behavior ours in the neighborhood of thestable �xed point: the stimulation evokes a spike, and the reset falls in the attrationbasin of the stable �xed point, whih has omplex eigenvalues with negative real parts.This generates damped subthreshold osillations.
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(b) Class 2 exitabilityFigure 8: Spiking frequeny vs input urrent I for di�erent hoies of b. These urves havebeen obtained running simulations for di�erent values of the input urrent, omputing thefrequeny of the emitted spikes in a time range T = 10000.� (xi) Resonator : This behavior ours at the stable �xed point when the Jaobian ma-trix has omplex eigenvalues. The �rst spike indues damped subthreshold osillations.The spike is emitted if the seond spike is given at the period of those osillations,whih is given by the argument of the omplex eigenvalue. If it ours before or after,then no spike is emitted.� (xii) Integrator: This behavior ours when we stimulate the system from the stable�xed point when the Jaobian matrix has real (negative) eigenvalues. If the �rststimulation is not su�ient to make the neuron spike, then the stimulation is damped.Nevertheless, the membrane potential returns to equilibrium slowly, and if the samestimulation arrives to the �destabilized� neuron, it an generate a spike. The loser theseond stimulation is from the �rst one, the more probable the omission of the spike.� (xiii)/(xiv) Rebound spike or burst : The input impulse makes the neuron spike, andthe reset (or the seond, third, nth reset) falls in the attration basin of the stable�xed point.� (xv) Threshold variability: This phenomenon is exatly the same as the integrator,but instead of destabilizing the variable v we play on the adaptation variable.� (xvi) Bistability: This behavior starts from the stable �xed point. The attrating reset
(vr , wspike) is outside the attration basin of the �xed point, but still lose to this zone.The �rst impulse generates a spike, and initiates a toni spiking mode. Nevertheless,it is possible via a small perturbation of the trajetory to fall into the attration basinof the �xed point (see Fig.9). INRIA
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(b) BistabilityFigure 9: Bistability phenomenon: The �rst impulse indues a self-sustained toni spikingbehavior while the system has a stable �xed point. The seond impulse perturbs this regularspiking behavior and the system falls in the attration basin of the stable �xed point.� (xviii)/(xx) Self-sustained subthreshold osillations and purely osillating mode: theyare linked with the superritial Hopf bifuration and its stable periodi orbit. Thesetwo behaviors annot be obtained in the IBG models sine the Hopf bifuration arealways subritial.4.3 Self-sustained subthreshold osillations in ortial neuronsIn this study we gave a set of su�ient onditions to obtain an IBG-like model of neuron.In this framework we proposed a model that displays a Bautin bifuration the IBG neuronslak; as a onsequene our model an produe subthreshold osillations. In this setion,we explain form a biologial point of view the origin and the role of those osillations, andreprodue in vivo reordings.In the IBG models, the Andronov-Hopf bifuration is always subritial. The only os-illations reated in these models are damped (see Fig 11(a)), and orrespond in the phaseplane to the onvergene to a �xed point where the Jaobian matrix has omplex eigenvalues.Our quarti model undergoes superritial Andronov-Hopf bifurations, so there are attrat-ing periodi solutions. This means that the neurons an show self-sustained subthresholdosillations (Figs. 11(b) and 11()) whih is of partiular importane in neurosiene.Most biologial neurons show a sharp transition from silene to a spiking behavior, whihis reprodued in all the models of lass 1.1. However, experimental studies suggest that someneurons may experiene a regime of small osillations [22℄. These subthreshold osillationsan failitate the generation of spike osillations when the membrane gets depolarized or
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(i) Tonic Spiking (ii) Phasic Spiking (iii) tonic bursting

(iv) phasic bursting (v) Mixed mode (vi) Spike freq. adaptation

(vii) Class 1 excitability (viii) Class 2 excitability (ix) Spike latency

(x) Damped subthr. oscill. (xi) resonator (xii) integrator

(xiii) rebound spike (xiv) rebound burst (xv) Threshold variability

(xvi) bistability (xvii) depol. after−pot. (xviii) self−sustained oscill.

(xix) Mixed chatter/C1 exc. (xx) Purely Oscill. mode

Figure 10: Phase diagrams orresponding to the behaviors presented in Fig 5.
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100, dt = 0.01. The upper (blue) urve represents the solution in v, the middle (red) one wand the last one the trajetory in the plane (v, w). Self-sustained subthreshold osillationsof the quarti model (Figs 11(b) and 11()): the trajetory is attrated towards a limit yle(parameters: a = 1, b = 5/2, I = −3(a/4)4/3(2a − 1), Tmax = 150000, dt = 0.01, I =
(−3(a/4)4/3(2a − 1) + 0.001)hyperpolarized [23, 24℄. They also play an important role in shaping spei� forms ofrhythmi ativity that are vulnerable to the noise in the network dynamis.For instane, the inferior olive nuleus, a part of the brain that sends sensory informa-tion to the erebellum, is omposed of neurons able to support osillations around the restpotential. It has been shown by Llinás and Yarom [23, 24℄ that the preision and robustnessof these osillations are important for the preision and the robustness of spike generationpatterns. The quarti model is able to reprodue the main features of the inferior oliveneuron dynamis:i. autonomous subthreshold periodi and regular osillations. (see intraellular reord-ings of inferior olive neurons in brain stem slies in [24℄).ii. Rhythmi generation of ation potentials.The robust subthreshold osillations shown by in vivo reordings [4, 21, 24℄ orrespondin our quarti model to the stable limit yle oming from the superritial Hopf bifuration.The osillations generated by this yle are stable, and they have a de�nite amplitude andfrequeny. This osillation ours at the same time that the rhythmi spike generation inpresene of noisy or varying input. Note that other neuron models suh as those studiedabove, even if they do not undergo a superritial Hopf bifuration, an also exhibit osilla-tions in the presene of noise, for instane near a subritial Hopf bifuration. Nevertheless,these osillations have not the regularity in the amplitude and the frequeny linked with thepresene of an attrating limit yle. The results we obtain simulating the quarti modelare very similar to those obtained by in vivo reordings (see �g. 12).RR n° 6161



40 Jonathan TouboulBut the inferior olive neurons are not the only neurons to present subthreshold membranepotential osillations. For instane, stellate ells in the enthorhinal ortex demonstrate thetafrequeny subthreshold osillations [1, 2, 17℄), linked with the persistant Na+ urrent INaP.We now onlude this setion on the spei� example of subthreshold self-sustained osil-lations given by the dorsal root ganglia (DRG) neuron. This neuron presents subthresholdmembrane potential osillations oupled with repetitive spike disharge or burst, for instanein the ase of a nerve injury [20, 3℄. The �gure Fig.12(d), are biologial in vivo intraellu-lar reordings performed by Liu et al [20℄ from a DRG neuron of an adult male rat. Thereorded membrane potential exhibit high frequeny subthreshold osillation in the preseneof noise, ombined with a repetitive spiking or bursting. These behaviors an be reproduedby the quarti model as we an see in the �gure Fig.12, around a point where the systemundergoes a superritial Hopf bifuration7.ConlusionIn this paper we de�ned a general lass of neuron models able to reprodue a wide rangeof neuronal behaviors observed in experiments on ortial neurons. This lass inludesthe Izhikevih and the Brette-Gerstner models, whih are widely used. We derived thebifuration diagram of the neurons of this lass, and proved that they all undergo the sametypes of bifurations: a saddle-node bifuration urve, an Andronov-Hopf bifuration urveand a odimension 2 Bogdanov-Takens bifuration. We proved that there was only one otherpossible �xed-point bifuration, a Bautin bifuration. Then using those theoretial resultswe proved that the Izhikevih and the Brette-Gerstner models had the same bifurationdiagram.This theoretial study allows us to searh for interesting models in this lass of neurons.Indeed, theorem 1.5 ensures us that the bifuration diagram will present at least the bifur-ations stated. This information is of great interest if we want to ontrol the subthresholdbehavior of the neuron of interest.Following these ideas, we introdued a new neuron model of our global lass undergo-ing the Bautin bifuration. This model, alled the quarti model, is omputationally andmathematially as simple as the IBG models, and able to reprodue some ortial neuronbehaviors whih the IBG models annot reprodue.This study foused on the subthreshold properties of this lass of neurons. The adaptativereset of the model is of great interest and is a key parameter in the repetitive spikingproperties of the neuron. Its mathematial study is very rih, and is still an ongoing work.7The amplitude and frequeny of the subthreshold osillations an be ontrolled hosing a point on thesuperritial Hopf bifuration urve.
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(d) Biologial reordingsFigure 12: Subthreshold membrane osillations, qualitatively reproduing the reordingsfrom [20℄ in dorsal root ganglion (DRG) neurons. Traes illustrate (12(a)) osillations with-out spiking, (12(b)) osillations with intermittent spiking and (12()) osillations with in-termittent bursting. (in the �gures, spikes are trunated). The noisy input is an Ornstein-Ulhenbek proess. The biologial reordings 12(d) are reprodued from [20, Fig.1℄ withpermission.
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(A.1)A.1 The �rst Lyapunov exponentIndeed, using a suitable a�ne hange of oordinates, the system at this point reads:
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(A.2)where v1(x, y) = 1
b x + ω

aby. We also denote F2(X, Y ), F3(X, Y, Z) and F4(X, Y, Z, T ) themultilinear symmetri vetor funtions of (A.2) (X, Y, Z, T ∈ R2).
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. . .To ompute the two �rst Lyapunov exponents of the system, we follow Kuznetsov'smethod [19℄. In this method we need to ompute some spei� right and left omplexeigenvetors, whih an be hosen in our ase to be:
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(A.3)We now put the system in a omplex form letting z = x + iy
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Bifuration analysis of non-linear IF neurons. 43We an now ompute the omplex Taylor oe�ients gij :


































































g20 =< p, F2(q, q) >

g11 =< p, F2(q, q̄) >

g02 =< p, F2(q̄, q̄) >

g30 =< p, F3(q, q, q) >

g21 =< p, F3(q, q, q̄) >

g12 =< p, F3(q̄, q̄, q̄) >

g03 =< p, F3(q̄, q̄, q̄) >

. . .

(A.4)
So the Taylor oe�ients (A.4) read:
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(A.5)Let now S(I, b) := F ′(v−(I, b)) be the value of the derivative of the funtion F , de�nedaround the bifuration point we are interested in.The Jaobian matrix in the neighboorhood of the point (A.1) reads:
L(v) =

(

S(I, b) 1
ab −a

)Let us denote α =
(

I
b

) the parameter vetor, λ(α) = µ(α) ± iω(α) the eigenvalues of theJaobian matrix. We have:
{

µ(α) = 1
2 (S(α) − a)

ω(α) = 1
2

√

−(S(α) − a)2 + 4abWith these notations, let c1(α) be the omplex de�ned by:
c1(α) =

g20g11(2λ + λ̄)

2|λ|2 +
|g11|2

λ
+

|g02|2
2(2λ − λ̄)

+
g21

2
.(in this formula we omit the dependane in α of λ for the sake of larity.
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44 Jonathan TouboulThe �rst Lyapunov exponent l1(α) eventually reads:
l1(α) =

Re(c1(α))

ω(α)
− µ(α)

ω(α)2
Im(c1(α)) (A.6)A.2 The seond Lyapunov exponentThe method to ompute the seond Lyapunov exponent is the same as the one we desribedin the previous setion. The expression is given by the following formula:
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3
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+ 3 Im[g20 g11]Im[g21]}
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1

ω(0)4
{Im[g11 ¯g02

(

¯g20
2 − 3 ¯g20g11 − 4 g2

11
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]

+ Im[g20 g11]
(

3 Re(g20 g11) − 2 |g02|2
)

}This expression is quite intriate in our ase. Nevertheless we have a losed-form ex-pression depending on the parameter a, vanishing for two values of the parameter a. Weevaluate numerially this seond Lyapunov exponent. We get the following expression:
l2(a) ≈ −0.003165 a−28

3 − 0.1898 a−22
3 + 0.3194 a−16/3

−0.05392 a−25
3 + 0.1400 a−19

3 − 0.3880 a−7/3 + 0.5530 a−10/3

+0.7450 a−13/3.

(A.7)We an see that this numerial exponent vanishes only for two values of the parameter
a whih are

{0.5304, 2.385}.The expression of the determinant of the matrix DI,b (µ(I, b), l1(I, b)) are even moreinvolved, so we do not reprodue it here (it would take pages to write down its numerialexpression!). Nevertheless, we proeed exatly as we did for the seond Lyapunov exponentand obtain again the rigorous result that this determinant never vanishes for all a > 0.
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Bifuration analysis of non-linear IF neurons. 45B Numerial values for the simulationsIn this annex we give the numerial values used to generate Fig. 5.(i) Toni Spiking (ii) Phasi Spiking (iii) Toni Bursting
a = 1; b = 0.49; vr = 0; a = 1; b = 0.76; vr = 0.2; a = 0.15; b = 1.68; vr = (−2a + b)

1
3 ;

I(t) = 1.561t>1(t); d = 1; I = 0.371t>1(t); d = 1; I = 4.671t>1(t); d = 1;
T = 10; dt = 0.01; θ = 10; T = 10; dt = 0.01; θ = 10; T = 30; dt = 0.01; θ = 10;(iv) Phasi Bursting (v) Mixed Mode (vi) Spike Freq. Adaptationa=1.58; b=1.70; vr =− a

4

1
3 ; a=0.07; b=0.32; vr =0; a=0.02; b=0.74; vr =0;

I(t) =0.731t>1(t); d = 0.01; I(t) =3.841t>1(t); d = 1.50; I(t) =4.331t>1(t); d = 0.36;
T =50; dt =0.01; θ =10. T =50; dt =0.01; θ =10. T =50; dt =0.01; θ =10.(vii) Class 1 Exitability (viii) Class 2 Exitability (ix) Spike Latenya=4; b=0.67; vr =-1.3; a=1; b=1.09; vr =-1.2; a=0.02; b=0.42; vr =0;

I(t) =−0.1 + 0.23t; d = 1; I(t) =0.06t; d = 5; I(t) =5δ7.5(t); d = 1;
T =30; dt =0.01; θ =10. T =50; dt =0.01; θ =20. T =15; dt =0.01; θ =10.(x) Damped Subthr. Osill. (xi) Resonator (xii) Integratora=2.58; b=4.16; vr =0.1; a=5.00; b=7.88; vr =-1.28; a=1.00; b=1.10; vr =-0.97;
I(t) =2δ2(t); d = 0.05; I(t) =δ6,6.8,15,16.5,24,26(t); d = 0.5; I(t) =δ2.5,3.3,17.5,19(t); d = 0.5;

T =20; dt =0.01; θ =10. T =30; dt =0.01; θ =10. T =25; dt =0.01; θ =10.(xiii) Rebound Spike (xiv) Rebound Burst (xv) Threshold variabilitya=1; b=2; vr =-0.63; a=1; b=2; vr =1.3; a=1; b=1.23; vr =-0.91;
I(t) =−0.48 − 5δ2.5(t); d = 1; I(t) =−0.48 − 30δ6.5(t); d = 1; I(t) =δ2,16.5 − δ15; d = 1;

T =50; dt =0.1; θ =10. T =20; dt =0.01; θ =10. T =20; dt =0.01; θ =10.(xvi) Bistability (xvii) Depol. after-pot (xviii) Self-sustained osill.a=1; b=1.2; vr =0.8; a=1; b=1.5; vr =0.06; a=1; b=2.5; vr =-0.63;
I(t) =−0.47 + 20 ∗ (δ10 − δ30); d = 0.5; I(t) =2δ3; d = 0.01; I(t) =−0.475 + 10 ∗ δ10 ; d = 1;

T =50; dt =0.01; θ =10. T =30; dt =0.01; θ =10. T =100; dt =0.01; θ =10.(xix) Mixed Chatter/ C1 ex. (xx) Purely osill.a=0.89; b=3.65; vr =1.12; a=1; b=2.6; vr =-0.63;
I(t) =0.07t; d = 1; I(t) =−0.471t>1; d = 1;

T =50; dt =0.01; θ =10. T =500; dt =0.01; θ =10.Remark. The δu(t) funtion is de�ned by:
δu1,...uN

(t) =

8

<

:

1 if t ∈
S

k∈{1,...N}

[uk, uk + 0.3]

0 elseReferenes[1℄ A. Alonso and R. Klink, Di�erential eletroresponsiveness of stellate and pyramidal-like ells of medial entorhinal ortex layer II, Journal of Neurophysiology, 70 (1993),pp. 128�143.[2℄ A. Alonso and R. Llinás, Subthreshold Na+-dependent theta-like rhythmiity instellate ells of entorhinal ortex layer II, Nature, 342 (1989), pp. 175�177.[3℄ R Amir, M. Mihaelis, and M. Devor, Membrane potential osillations in dorsalroot ganglion neurons: Role in normal eletrogenesis and neuropathi pain, The Journalof Neurosiene, 19 (1999), pp. 8589�8596.[4℄ L.S. Bernardo and R.E. Foster, Osillatory behavior in inferior olive neurons:mehanism, modulation, ell agregates, Brain researh Bulletin, 17 (1986), pp. 773�784.
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