Asymptotic expansion of the optimal control under logarithmic penalty: worked example and open problems - Archive ouverte HAL Access content directly
Reports (Research Report) Year : 2007

Asymptotic expansion of the optimal control under logarithmic penalty: worked example and open problems

(1) , (2) , (3)
1
2
3

Abstract

We discuss the problem of expansion of optimal control, state and costate when a logarithmic penalty is applied to constraints. We show that, in a simple case, that the variation of (a regular) junction point, and of the optimal control, state and costate is of order $\eps\log \eps$, where $\eps$ is the penalty parameter.
Fichier principal
Vignette du fichier
RR-6170.pdf (241.81 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

inria-00143515 , version 1 (25-04-2007)
inria-00143515 , version 2 (26-04-2007)

Identifiers

  • HAL Id : inria-00143515 , version 2

Cite

Felipe Alvarez, J. Frederic Bonnans, Julien Laurent-Varin. Asymptotic expansion of the optimal control under logarithmic penalty: worked example and open problems. [Research Report] RR-6170, INRIA. 2007. ⟨inria-00143515v2⟩
358 View
157 Download

Share

Gmail Facebook Twitter LinkedIn More