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Abstract: The need to visualize large social networks is growing asiare capabilities make
analyzing large networks feasible and many new data seniea@vailable. Unfortunately, the
visualizations in existing systems do not satisfactoriigwer the basic dilemma of being readable
both for the global structure of the network and also for ifledaanalysis of local communities.
To address this problem, we present NodeTrix, a hybrid sgpration for networks that combines
the advantages of two traditional representations: nivdediagrams are used to show the global
structure of a network, while arbitrary portions of the netkwcan be shown as adjacency matrices
to better support the analysis of communities. A key coatiin is a set of interaction techniques.
These allow analysts to create a NodeTrix visualization tagding selections from either a node-
link or a matrix, flexibly manipulate the NodeTrix represaidn to explore the dataset, and create
meaningful summary visualizations of their findings. Fipalve present a case study applying
NodeTrix to the analysis of the InfoVis 2004 coauthorshipadat to illustrate the capabilities of
NodeTrix as both an exploration tool and an effective medmemmunicating results.
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NodeTrix: Reprsentation Hybride pour Analyser les Rseaux
Sociaux

Résun® : Alors que les donnes issues des communications electemipviennent de plus en plus
facilement accessible et comportent des information®tosjplus riches et nombreuses, le besoin
de visualiser ces rseaux sociaux se fait plus pressant.n@apt les systmes actuels ne permettent
pas aux analystes de

Mots-clés : Visualisation de graph, Rseaux sociaux, visualisatiomioialie, visualisation hybride,
aggregation, interaction.
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1 Introduction

Social network analysis is a growing area of the social sgen Vast new datasets are becoming
available as people conduct ever more of their social livestenically. Online projects such as
Wikipedia or open-source software development are crgaignv social networks on a global scale.
At the same time, the challenges of a more integrated wordigge new demands for analysis such
as monitoring terrorist networks or the spread of potelgtighndemic diseases. Social network vi-
sualization is becoming a popular topic in information akzation, generating more and more tools
for the analysts. In 2006, 10 network-related articles Hmeen presented at the InfoVis Symposium
(30% or the articles) and 6 at the VAST symposium. The largprita of the network visualiza-
tion systems use the node-link representation: 54 (out phé8e-link based systems referenced in
the Social Network Analysis Repository (http://www.insor@/), and 49 (out of 52) on the Visual
Complexity website(http://www.visualcomplexity.comfhis representation is well suited to show
sparse networks, but social networks are known to be gpbphrse and locally dense. Therefore,
social network visualization faces a major challenge: iolitg a readable representation for both
the overall sparse structure of a social network and itseleasimunities.
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Shneidefmart Eick et al
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Bederson et al

Figure 1: NodeTrix Representation of the largest compoagtite InfoVis Co-authorship Network

In this article, we propose a novel visualization calimtieTrix to address this challenge. Node-
Trix integrates the best of the two traditional graph repngations by using node-link diagrams to
visualize the overall structure of the network, within wihedjacency matrices show communities.

The article is organized as follows: after the related werdtion, it describes the NodeTrix rep-
resentation and the data structure it relies on. It thenildeke interaction techniques we designed
for creating a NodeTrix hybrid, either by starting from argtard node-link diagram or from a stan-
dard adjacency matrix. Finally, it describes a case stuthgusodeTrix to explore and present the
results of a co-authorship social network.

2 Related Work

2.1 Social Network Analysis

Social networks are graphs, where the nodes are actorsié@eoq the edges are relationships.
They vary from very sparse (genealogical trees) to very elémsports and imports between coun-
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4 Henry et al.

tries). Small-world networks belong to an intermediate category that occur very freduénsocial
networks, including many acquaintanceship networks atagethe global Internet. They are the
focus of many studieEIlQ] because of their interesthog@rties ]. For social network visu-
alization, the most relevant of these properties are a Highering coefficient, corresponding to the
presence of manipcally dense clusters, and a small cross-section, caused by a small mohbeb
nodes connecting a graph thagisbally sparse.

Social network analysis relies on three important taEHsZ3&

« identify communities, i.e. cohesive groups of actors that are strongly connected toataer;
« identify central actors, i.e. actors linked to many others or that bridge communitiesttogye

 analyze roles and positions — these are higher level taslggg on the interpretation of
groups of actors (positions) and connection patternsgjyole

We now consider each of these three tasks in more detailtipgiout the corresponding graph-
theoretic properties or graph analysis tasks using thentaxg of tasks in@].

To performcommunity analysis, an analyst should be able to group actors by attributes@nd t
study the connection patterns within each group. The aisadyattributes such as actors’ names or
interests is important to label the community in questiod iaterpret why these actors are grouped.
Studying the connection patterns reveals how actors ofdheunity are linked and the strength of
their relationships. Analysts need to evaluate the den§iycommunity in terms of connections and
also to quickly identifycliques (a group where each actor is linked to every other actor) aisd-m
ing relationships. Thus, community analysis relies orilatte-based tasks, involving attributes of
actors or relationships, and topology-based tasks, suekamsining adjacency (direct connections)
between nodes.

Identifying central actorsis revealed by performing essentially topology-basedsaginalysts
need to identify the most connected actors, as well as &tion points (actors bridging communi-
ties together). Such actors can be identified using measticentrality, several of which are based
on path-related tasks. For example, the betweeness dgnitndicates the number of times a node
is present in a shortest path between every pair of nodegindtwork. Identifying central actors
requires understanding the global structure of the netwakfinding communities, how they are
linked and what actors link them.

Analyzing roles and positionsis done by analyzing how actors are connected within a conitsnun
and outside a community. This task requires more interpogtand relies also on attributes of actors
and relationships.

Many systems exist to analyze social networks. We clask#yntinto two categories: menu-
based systems and exploration systems.

Menu-based systems provide a wide range of functionalitigsusers often needs expert help
or a cookbook to analyze their datasets. Examples of thesterag include Ucineﬂ[?] — based on
statistics and proposing a broad range of analysis furstierand Pajek|]8] which provides a large
set of algorithms to partition, permute, cluster, hier@eland layout networks.

Mastering all the functionality of these menu-based systrtontrol the analysis process re-
quires considerable effort from the user, hence recenesystare aimed at a more exploratory
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NodeTrix 5

process. This process is based on starting with an overvidineowhole network and then, us-
ing interactions (MatrixEprorem5]) or simple scrip@t@essﬂZ]), to manipulate the dataseg(
through filtering or clustering) and create a set of visuatsfiirther analysis. A number of recent
systems forgo the first step of this process because disglayreadable overview of a large graph
is too difficult. PivotGraph|E9] proposes to start the exptmn from a top level aggregation of
network attributes. The user visualizes categories aridridationships, and then interacts with the
visualization to explore lower levels. NetLe[ZO] focsigm simple visualizations (histograms)
of the network attributes and interaction to analyze thevagk. Semantic substrat26] relies es-
sentially on filtering and organizing actors according teittattributes. Finally, TreePIuEIZl] and
Vizster ] focus on a local representation of the netwartdt ase interaction to navigate within the
whole dataset. These systems present interesting idesmr@anwery comfortable to use. However,
identifying central actors and understanding the globrakstire of the network using these systems
is difficult.

2.2 Graph Drawing

Graph drawing has a very rich histo @ 17], with early workinteractive computerized visual-

izations extending back to the 196(§ [4]. However, almdstiaualizations of graphs amount to

either node-link diagrams or adjacency matrix represemtat There are a few examples of hybrid
representations for grapHs [13] 27] and for tr¢els[[32, 1afHmy do not combine node-line diagrams
with adjacency matrices.

Node-link diagram is the most familiar representation @frs in general and social networks
in particular. It is good at showing the overall structureacparse graph, but Ghoniem et @ [12]
showed that density has a strong impact on its readabildguging on basic readability tasks such
as finding an actor or determining if two actors are linke@ythonclude that node-link diagrams
perform badly for dense graphs even with fexg(20) nodes. Because node-link diagrams become
unreadable in dense communities and around high-degreeduds, they do not lend themselves to
community analysis.

(As an aside, in a community that is almost a cligue and onlssing a few edges, it might
be suggested to use a “complementary” node-link diagranerevthe links displayed indicate the
missing edges; all the other edges being implicitly present. Thialdioeduce clutter in some case,
but in general is not a viable solution, because a commuhityrmdes withinn? /4 = O(n?) edges
is considered dense, but has an approximately equal nunfilsreat and missing edges. Thus,
clutter remains a significant problem even with such “comgatary” node-link diagrams.)

The adjacency matrix representation, which is particyleffective for dense graphs, have been
proposed to solve this problerﬂ [E|15]. However, it is ilited to path-related taskEllZ] that are
very important in social network analysis. Analysts follogy paths between actors using a node-
link network representation can exploit “Gestalt contitord’ preattentive visual processing, but in
a matrix representation the same task requires aligningraidhing nodes back and forth between
corresponding rows and columns, a tedious and error-prigtelével cognitive task. So, matrix
representations ease community analysis, but hinderifabatibn of global structure.
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6 Henry et al.

Thus, at one extreme are sparse social networks, which lmaaérest tree structure and few
communities, for which node-link diagrams are well suitéd.the other end of the spectrum are
very dense networks in which matrices are well suited. Tldlem boils down to deciding which
visualization is more suitable for small-world networkatthave an intermediate nature, being glob-
ally sparse but locally dense. Choosing between theseseqmiaions requires a trade-off between
readability of global structure and ease of community ssialy

Henry and FeketeII;lS] chose to provide users with both reptations synchronized by selec-
tion. They argue that users can use the most appropriataliziation for each task. However, their
system requires the use of two screens and the authors pdittie potential cognitive load and
divided attention from switching between representations

Other recent work by Henry and FekeE|[16] attempts to ovaectine weaknesses of matrix rep-
resentations by adding links on the sides of the traditiaregttix. While the authors experimentally
demonstrated that their visualization improves the tranél matrix, their results also show that the
user fails to identify some important features (in particuthe articulation points) of networks.

Solutions have also been proposed to improve the readatifilitode-link diagrams for commu-
nities. Auber et aI.|]3] introduce aggregated node-linlgdians where each community is aggre-
gated in a single node within which a small overview is digpth While communities are quickly
identifiable and the global structure more readable, dstahalysis of communities is impossible
because links between communities are missing.

Holten proposed the Hierarchical Edge Bundles technig8ktélimprove the readability of hier-
archical graphs; it can also be applied to clustered graflisough it can improve the readability of
the global structure and inter-community relationshipis, $till difficult to identify intra-community
organization as nodes inside clusters are positioned a@aigle, creating many edge crossings.

3 NodeTrix

NodeTrix is a hybrid representation of networks based omdfe-link diagram where communities
can be represented as matrices. Intra-community reldtipssise the adjacency matrix representa-
tion while inter-community relationships use normal links

3.1 Data Structure and Design Choices

Two graphs are involved in a NodeTrix representation: ttve waderlying graph (composed of
underlying nodes and edges) that serves as initial input,asraggregated graph (composed of
aggregated nodes and edges) that is derived from the uimdegyaph. Each aggregate node may
correspond to either a unique underlying node or to a groumdérlying nodes that typically form
a community. Underlying nodes are never shared by aggregates,i.e. there is a many-to-one
mapping from underlying nodes to aggregate nodes (and aiso dinderlying edges to aggregate
edges.)

Because our goal with NodeTrix is to provide a readable mpriation for dense subgraphs,
only a single level of aggregation is used: dense subgraghsimply aggregated and displayed
as matrices. Some aggregated nodes may correspond to anlynaierlying node rather than a
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group of underlying nodes and these are displayed as a simopkerather than a matrix. However,
operations are designed to be uniform over all aggregatddsadn particular, the user can add or
merge aggregated nodes, whether each node involved conespo just one or many underlying
nodes.

Attributes of the underlying nodes and underlying edgesanebined and propagated up to the
aggregated elements. For nominal and categorical atsbwalues are combined through simple
concatenation. Numerical attributes are aggregatedraitieg the average or the min,max values.
An interesting benefit of using matrices in NodeTrix is thatin display the attributes of the underly-
ing elements and of the aggregated elements and that fothmtimks and the nodes. Furthermore,
because users can dynamically switch between the two mpeg®ns, more visual variables are
available to show attributes. For example, the backgrowhal ©f a matrix can correspond to an
aggregated node attribute, while attributes of each upiderhode can be shown along the axes of
the matrix. Similarly, the axes can be used to display labkisdividual underlying nodes, while a
global aggregated node label is also shown.

3.2 NodeTrix Visualization

To render the NodeTrix representation, a standard nodtdayout is used for the aggregated graph,
and in addition aggregated nodes containing more than &egimglerlying node are overlayed with
a matrix representation.

3.2.1 Drawing Matrices

NodeTrix is built on the InfoVis Toolkit@O] and uses its gTing mechanism to create the vi-
sualization. The rendering mechanism involves a pipelineenderers which makes it simple to
draw a matrix over a standard node. For example, a simplesrangdpipeline for a node-link dia-
gram would be : computposition, computesize, sefcolor, fill_shape, dravwborder, drawlabel. To
overlay matrices on standard nodes, we introduced a maincarer between the fifhape and the
drawborder renderers. This renderer displays the matrix aéeinly rendered the background node
(with a given position, size and color) and before drawiregtibrder used for selection and the label.

Matrices have two advantages which make them more readabienbde-link diagrams to rep-
resent an aggregated node: first, as nodes are organizadyjrexiges from the rest of the graph
to the underlying nodes are readable and suffer from a ldhmitember of crossings; secondly, as
nodes are represented both in rows and columns, edges calavee flom any of the four sides
of the matrix, which also limits crossings and overlappingipfems. Finally, rows and columns of
matrices can be reordered (manually or automatically) farawve readability and further reduce the
number of edge crossings.

To save memory and allow the user to control all the matripezperties with a single general
control panel, the matrix renderer uses a single matrixaligation object, applying a different per-
mutation for each aggregated node. Therefore, changingatloe attribute for the matrix axes will
affect all displayed matrices. We considered creating arsé@ matrix object for each aggregated
node instead, allowing the user to display different atils on different matrices. However, it
would have been very confusing for the user to manage alldh&a@ls in a single huge panel (one
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8 Henry et al.

Figure 2: Drawing links (from left to right): (a)aggregatedhes, (b)underlying edges, (c)underlying
edges with full size, (d)underlying edges carrying attiésu

set of controls for each matrix) or to force the user to sedewiatrix to see its controls. We decided
that sharing the visual attributes for all the matrices viiestest compromise.

3.2.2 Drawing Links

To display links in NodeTrix, we considered three optiongsptaying only aggregated links, dis-
playing only the underlying links, or displaying both.

Displaying aggregated links (FiguR®) provides simple visual feedback on how communities
interact. Moreover, an aggregated attribute can be mappedisual variabledg. color, thickness,
opacity) of this edge. However, the details of which actdthe two communities are interacting are
not visible. On the other hand, displaying each underlydtyae(Figuer) provides connectivity
details and enables visualization of the attributes of egigfe independently, but at the cost of many
more links and potential crossings. Because small-wortdorks are globally sparse, they are few
inter-community relationships. However, displaying batfjyregated and underlying edges at a same
time could nevertheless be confusing, in part due to thelplesateraction between visual variables
and edge crossings or overlap.

For NodeTrix, we chose to visualize underlying edges, bth thie added flexibility of allowing
the user to control the thickness of links through a slidecréasing the size of underlying links
eventually causes them to merge, and the resulting visadbfeck (Figur¢ 3.7.2¢) is similar to that
with aggregated edges (Figure 3/2.2a), but with more picecisMoreover, when visualizing an
underlying edge attribute as a color, the thickness of ntebgeds of color conveys the number of
underlying edge.Zd). The slider that controls lirike sipdates the visualization with smooth,
immediate feedback, similar in spirit to direct manipudati Manipulating this slider allows the user
to quickly switch from one kind of overview mode — how are commities linked? Which kinds of
links? — to a detailed mode — who are linking the communitiegether?

3.2.3 Layout

Because the aggregated graph in NodeTrix is laid out as #itrgal node-link diagram, any exist-
ing graph layout could be used. However, because NodeTimtéaded to be used as an interactive
exploration tool and we do not want to confuse the user withdasudden changes to the layout,
it seems appropriate to support incremental, interagtideiven changes to the layout, such as ag-
gregating or splitting nodes. The initial layout given te@ thraph is the LinLog layout proposed
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by Noack ]. It was chosen to give prominence to clusterthey can be quickly identified by
the user. After this initial layout, the user may then mal@la@hanges such as dragging nodes to
change their positions, grouping a set of nodes, or remavimgde from a group.

To (re)order the nodes within an adjacency matrix, manyediffit algorithms can be used. As
these matrices are typically small, the running time is moissue. Nevertheless, we chose not to
reorder the matrices automatically as they are usually dense and do not need any particular
optimization. Instead, we preferred to allow the user terattively move rows and columns.

3.3 Visual Variables and Control Panel

NodeTrix relies on the InfoVis Toolkit to generate contrtudilter and affect visual variables. The
user controls two sets of visual variables: one for the nadediagram, and one for the matrices
displayed in the aggregated nodes. Each set of variabl¢ainshe following, for nodes and edges:
color, transparency, shape size, filled area of the shapeebcolor, width, and labels.

The user filters and associates visual variables to aggegatd underlying graph attributes
using simple controls such as combo boxes or sliders. Thelstion is immediately updated,
following the principles of direct manipulation.

4 Interaction

We designed a set of interaction techniques to create, edliirenipulate NodeTrix in a very simple
and powerful way because we believe that manipulation istkeynderstanding a network and its
potential multiple interpretations.

4.1 NodeTrix Editing

NodeTrix can be created starting with a pure, traditionaleibnk diagram. We propose a set of
interactions based on drag-and-drop of hodes, matrix teiss, and matrix core elements. We feel
these interactions are easy to understand as the user gijnglly one of these elements and drops
it to another location (possibly over existing elementspé&sform an action. When dragging an
element, the user has immediate visual feedback and is@abdad the element’s label.

Moving a node or a matrix to adjust its position and improve the readability of theresgntation
can be done by grabbing the matrix or the node, dragging itreledsing it at a new position. As
the element is dragged, its connecting links are updated.

To aggregate a group of nodes into a matrix, the user may lasso-select the desired nodeshw
are then immediately converted into a matrix. To make thesiteon to a matrix smooth, the trans-
formation from node-link diagram to matrix is animated. Tmmation speed is adjustable to suit
both novice users (who may benefit from seeing a slow animatiobetter understand how nodes
and edges become organized into a matrix) and advanced (wggvswvould presumably prefer a
brief animation). Splitting a matrix back into a group of nodes is done by right-clicking on it, in
which case nodes are positioned with a circular layout atdhe center of the previous matrix.
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10 Henry et al.

To complete these basic aggregation features, we provididathl interactions for finer-grain
editing of the aggregated elements. If users missed an atemith the lasso selection or simply
wants toadd an additional node to a matrix, they can drag-and-drop a single node into theixnat
The node will integrate with the matrix, appearing in the mxaéxis items (in both the rows and
columns). Its connections with the matrix elements will igpthyed in the matrix core, whereas
its connections with the external elements will be dispthgie links starting from the matrix axis
items and ending at the external elements. If a single nodieggged onto another single node, then
the two will be aggregated intoax 2 matrix. On the other hand, if users wishextract a node
from a matrix, they can grab the corresponding matrix agisiteither on the row or column axis)
and drop it outside the matrix. The dropped item will then Epldyed as a standard node with
appropriate links between itself and the matrix, and theesponding row and column in the matrix
will be removed.

To increase readability or visualize different combinatipusers may want toove an itemfrom
one matrix to another. This can done by grabbing a matrix isems and dropping it on the other
matrix. During the transfer, the user is able to read the rablel and may cancel the interaction
by dropping the element back into the original matrix. Thisymesult in a change to the ordering
of nodes in the matrix. Therder of items in the matrix normally corresponds to the item addition
order, with the last item added in the last position. Howgwéien two matrices are merged, the item
ordering follows the indices of nodes in the underlying d¢raphe ordering of nodes can be changed
by grabbing nodes and dropping them back into the matrix ab@agtime, in the desired order.

Finally, users camerge matricestogether by dragging-and-dropping a matrix over another.

4.2 Geometric Zoom on Matrices and Axis Labels

An aggregated matrix may occupy more space than the orignoalp of nodes in node-link repre-
sentation. This is partly due to the labels displayed on said of the resulting matrix. However,
while reading labels on each side of the matrix is requirgaktdorm community analysis and local
editing operations, the axis labels are not required on affiges at all times, and the size of the ma-
trix core can be reduced to fit the minimum level of readapioreover, as each matrix possesses
a label (reflecting its composition), axis labels for indival underlying nodes may not be necessary
at all in a final layout.

We tried displaying the axis labels on demand following thkeeatric label principles. For
example, if the mouse pointers hovers over a matrix, its kkisls as well as its neighbors’ axis
labels are displayed. In this case, axis labels need to rewisible after the mouse pointer moves
(to avoid frustrating the user when loosing a landmark onfiog at an item to grab). However,
during a case study, we observed that it was more comfortalble able to read all axis labels when
editing, and to remove all axis labels at once and reduceizben§the matrices to get an overview
of a final layout.

For these reasons, we added two sliders in the control parmaritrol the size of the matrices
and the axis labels.

INRIA
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4.3 Supporting the Exploration of Matrices

One strong weakness of the matrix representation, whermenpla network, is the tedious work
required to perform path-related tasks. For example, fontiow two communities are connected
is tedious as it requires going back and forth alternatedylireg rows and columns. Moreover, if
communities are far apart in the matrix, this task requiresam of the full length of matrix rows
or columns, and connections in a large matrix may lie outiideviewport. Obviously, the task
is worse when dealing with three matrices as the user neezlgetk for intersections of rows and
columns in each of the three communities.

We noticed in a participatory-design session reporte@j fiat social network analysts also
use the matrix representation for some of their analyzeseljp perform community analysis and
provide support for path-related tasks in general, we pl@visers with a couple of interaction
techniques that work across separate matrix-NodeTrix ewirsd that might be arranged in a dual-
viewport or split-screen fashion. These techniques allebstsed on drag-and-drop, however this
time, the user drags a group of elements from one window tthanone.

The interaction is made of two steps: first, the user selegmap of nodes in the window
of the pure matrix visualization and then drags this grouthtoNodeTrix window. To select the
group of nodes, we provide lasso selection directly on thre matrix representation. Alternatively,
the selection can be done on an axis (rows and columns). Wlgeoup of edges (matrix cells)
is selected, the corresponding set of nodes transferrds igrtion of the edges’ source nodes and
sink nodes. Dropping the selected group inside the Nodeirndow performs the addition of an
aggregated node to the NodeTrix visualization. The grodpés displayed as a matrix. Selecting
and dropping a second group allows the user to see how theapsgyare connected to each other
visualizing the result with links. The process can contitareisualize connections between several
communities.

5 Animation

Proper use of animation has much potential to increase teeteeness of user interfaces and visu-
alizations [3[L[B[]6]. To help users maintain their mentatiei®f the network across interactions,
we considered how to continuously animate the aggregatinodes into an adjacency matrix. Typ-
ically, animating over transitions involves some kind affeipolation of graphical elements from
one state to another. In the case of transitioning from a #fiollediagram to a matrix, however,
the visual design of the animation is non-trivial, becauséealink diagrams and adjacency matri-
ces are composed of very different graphical elements. eTiseat sort of duality between the two
forms: nodes correspond pwints in hode-link diagrams, but tbhne segments (rows and columns)
in matrices, and, conversely, edges corresponitheossegmentsin node-link diagrams, but tpoints
(intersections of rows and columns) in matrices. The keplem is to find an intermediate graphical
form or layout through which we can interpolate during amaation.

To find solutions, we conducted sessions of sketching, st@iming, and analysis of how graphs
can be depicted with node-link diagrams and matrices. Weeubthat, although each node corre-
sponds strictly to an entire row and column within a matrhe hode can also be identified with
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special points in the matrix, that occur where the diagondlthe axes (or sides) of the matrix inter-
sect the node’s row and/or column. Furthermore, it is pdssibdraw a node-link diagram overlaid
on a matrix grid, in such a way that the nodes fall on some dfdlspecial points, and such that the
edges (drawn as polylines or curves) pass through their omnegponding locations in the matrix.
Figure@, subfigures 3-7, show some possibilities.

. ABCDE ABCDE
A A A A 1
E£II3\D B ll3I B _!’E'
NI/ c Cc—— c [
A D D D D
1 2 3 E E |4E E
ABCDE ABCDE
A\IL\kA A ))IJ
B ~B | B j
c ~—~c | ¢
D D D
5 6 EE |7E

Figure 3: 1: A node-link diagram of a network. 2: The corrasgiog adjacency matrix. For
simplicity, only the upper half is shown, since the matrisysnmetric. 3 through 5: different ways
of depicting the edges in a node-link diagram laid out overmttatrix, using polylines or curves. The
“corners” of the edges coincide with the filled-in cells o timatrix in 2. 3 and 4: inspired by circuit
wiring diagrams. 5 through 7: different choices for the kimas of nodes in the node-link diagram

laid out over the matrix. 6 and 7: each node is duplicated adtWwo locations in the node-link
diagram.

As can be seen, there are several possibilities for thenmggiate state that an animation might
interpolate through. We identify a few different design dimsions. First, the edges in the intermedi-
ate state might be depicted using polylines or curves (E@usubfigures 3-5). Second, the location
of nodes might be along the diagonal or along the sides of #iteixr(subfigures 5-7); in the latter
case, each node must be duplicated at some point duringithatéon. Third, the intermediate state
might show only the upper half of the matrix (after which tménaation might fade in or unfold the
other half of the matrix as a mirror image), or the intermegligtate might show the whole matrix
(before which the animation would have to duplicate the edgenehow, since they occur in each
half of the matrix).

We made a first set of choices along each of these design dimnerend implemented an ani-
mated transition from node-link diagrams to adjacency itedr both in the NodeTrix software and
in an additional piece of software. Figdle 4 shows the lat@lementation, where the network has
colored nodes and edges. As can be seen, the intermedi@gsthfigure 3) shows both halves
of the matrix, hence the animation begins by duplicatingesdgubfigure 2). The positions of the
nodes, and of the control points for the edge curves, areugtlydnterpolated to reach their final
locations (subfigure 3). Then, the edge curves are fadedsatiteanormal depiction of the matrix
is faded in (subfigure 4). Notice that the “corners” of the@dgrves coincide with the appropriate
cells of the matrix (subfigure 4), and the opacity of the carngevaried such that these corners are
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the last part of the curve to fade away, to reinforce theinaisorrespondence to the matrix cells
that fade in.

/‘q AN
| %L =5

4 5

Figure 4: The stages of an animation from a node-link diagtBnto an adjacency matrix (5).

Compared with other animated transitions in visualizaggatems, this animation may seem
rather complicated, and in practice an expert user may ipitediethe animation be brief (e.g. lasting
0.5 seconds). However, novice users may appreciate havasg tanimations last longer, at least
initially. We expect that, in addition to helping the userintain a mental model of the visualization
across transitions, these animations may also have an tashalebenefit, to help users learn how
adjacency matrices are constructed and how to interpret.thiée expect it would be worthwhile to
implement variations on the animation corresponding taother design choices we identified, and
to solicit feedback from users as to their preferences.

A fourth design dimension relevant for education involvesiding whether to animate all the
nodes and edges at the same time, or to animate them in sequemcexample, edges might be
animated one at a time, constructing the matrix cell-by-eelalternatively, each node (with all
its edges) might be animated one at a time, constructing #ig>mrow-by-row. Such a sequential
animation might be made to accelerate as more of the matbixilisup, allowing the user to see the
process in detail at first, and then to see it quickly compleeest of the matrix.

6 Case Study: Exploring and Presenting Publications Data

In this case study, we present how NodeTrix can be used bo#xfdoring and presenting publi-
cations data. The InfoVis 2004 contest provided us with arcl@dataset from which we extracted
the co-authorship network of the Information Visualizatiteld. This network is disconnected in
291 components and contains 1104 nodes (researchers) @neédges (co-authorship). It has a low
density and a high clustering coefficient, which categarthés network as a small-world network.
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We only present here the analysis of the largest connectegb@oent, containing 137 nodes
and 328 edges. This network can be considered as small sizeddiready presents challenges
for exploration and presentation using traditional maaixi node-link diagrams. Detailed commu-
nities are not readable in node-links while connectionsvbeh communities are tedious to find in
matrices.

Moreover, presenting results on paper requires some flifddr matrices as well as node-link
diagrams. The matrix representation requires space: fitatdit in a printed article with readable la-
bels for networks of more than a hundred nodes. Edge-cigsaimd node-overlapping is an issue for
node-link diagrams. Filtering reduces the size and dewsitiye network to make it more readable.
Using NodeTrix solves these presentation problems sinnsedsubgraph are aggregated as matri-
ces whereas edge-crossing and node-overlapping is linfitethermore, communities (aggregated
nodes) remain readable.

6.1 Setup

To manipulate NodeTrix, we used an interactive pen dispRen-based interactions on NodeTrix
are intuitive and comfortable using this input device. Thencan simply grab elements by pressing
the pen over them, drag them moving the pen on the screen aily fielease them by raising the
pen. Lasso selection provides also a very intuitive feeklisamilar to the use of a real pen.

6.2 Aggregation and Exploration

NodeTrix is a flexible representation for which the level gfjeegation as well as the level of details
is controllable. For example, Figuf® and Figurd]l show the exact same dataset: the largest com-
ponent of the InfoVis co-authorship network. In the compaptesentation (Figuﬂa 1), the goal was
to provide a brief overview of main communities in the fieldaveas in the second representation,
the goal was to be able to identify all nodes of the networkevhrouping them by communities.
A third representation could have been a more detailed septation with the axes of the matrices
displayed.

While exploring the network, the interactions providedhwModeTrix ease the analysis. For
example, moving an actor in and out of a community (matriXpsieinderstand his influence on
this community. Figur2 illustrates this operation,wimg that if Ed Chi is extracted from the
PARC community, then the community is disconnected. Thisraton also helps understand the
matrix representation for novice users, as they can dragfabe matrix each actor, one at a time,
visualizing his relations to the others and comparing ihvitis matrix representation.

6.3 Patterns of Collaboration

The main result of our case study is the identification ofedéht collaboration patterns: cross
patterns and block patterns.

Figure??reveals the collaboration pattern of Ben Shneiderman, metior of the InfoVis field.
This aggregated matrix is very sparse and shows only a coenfiist row and first column. We
named this pattern a cross pattern because if Ben is plaogglgrere else in the matrix (as it is often
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Figure 5: Moving a node in and out of a matrix. The PARC comryuisi shown on the left, the
influcence of Ed Chi outlined on the right figure.

the case when the matrix is not reordered), the visible paitea large cross. This pattern reveals
that Ben collaborates with all researchers in this matriewklver, the low density shows that Ben's
collaborators generally do not work together: they are pbbpstudents he is supervising. Figﬂe 1
reveals several matrices with this pattern of collaborati®laisant et al., Bederson et al. and, Eick
etal.

Figure??reveals the collaboration pattern of researchers fromdéeyk The aggregated matrix
is almost a clique, it is a very dense community. Contranhgrevious pattern, this one reveals
that researchers strongly collaborate with each other ahdnly a single one. Figur@a 1 shows that
Parc has the same collaboration pattern.

Note that the community formed by Stephen Roth is to be placeoh intermediate category
(Figure ??). Stephen is central in this community, but several blodles\asible, meaning that
researchers also collaborate with each other.

Figure 6: Three collaboration patterns (from left to righ®)Cross-Pattern: Shneiderman and his
collaborators, (b) Block-Pattern: Researchers at Beykéig Mixed-Pattern: Roth and his collabo-
rators

7 Conclusion and Future Work
We have introduced a novel visualization caldatleTrix. This representation integrates the best of

two traditional network representations: node-link deags and adjacency matrix-based represen-
tations. The strength of this representation for analyzingjal networks is that it is combining the
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familiarity of node-link diagrams to understand the glostalicture of the network and the readabil-
ity of matrices for detailed community analysis.

We described a set of interactions support the manipulatfddodeTrix and help analyzing
networks. We also proposed an animation to smooth the tramdietween node-link diagrams
and matrices. In a slower mode, this animation can be usedlporfovice users understand how
matrices work. Finally, we have illustrated the effectiges of NodeTrix with a case study of the
InfoVis publications data.

We plan to extend our system in several directions and taoperévaluations on its use with
real analysts. The interactive capabilities of NodeTrig wrell suited to collaborative analyzes
S0 an obvious extension include collaborative editiorhegithrough the network or in a shared
environment with large displays.

We have iterated on several alternative representationistialize social networks and believe
that NodeTrix is among the most effective and simplest tceustdnd. We plan to release it soon as
a component of the InfoVis Toolkit (ivtk.sourceforge.net)
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