N

N
N

HAL

open science

Satisfiability of a Spatial Logic with Tree Variables

Emmanuel Filiot, Jean-Marc Talbot, Sophie Tison

» To cite this version:

Emmanuel Filiot, Jean-Marc Talbot, Sophie Tison. Satisfiability of a Spatial Logic with Tree Variables.
16th EACSL Annual Conference on Computer Science and Logic, Sep 2007, Lausanne, Switzerland.

pp.130-145, 10.1007/978-3-540-74915-8 13 . inria-00148462v2

HAL 1d: inria-00148462
https://inria.hal.science/inria-00148462v2
Submitted on 12 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00148462v2
https://hal.archives-ouvertes.fr

Satisfiability of a Spatial Logic with Tree Variables

Emmanuel Filiot Jean-Marc Talbdt Sophie Tisoh

L INRIA Futurs, Mostrare Project, University of Lille 1 (LIFIUMR 8022 of CNRS)
2 University of Provence (LIF, UMR 6166 of CNRS), Marseille

Abstract. We investigate in this paper the spatial logic TQL for quegysemi-
structured data, represented as unranked ordered treearoudinite alphabet.
This logic consists of usual Boolean connectives, spatiahectives (derived
from the constructors of a tree algebra), tree variablesagingoint operator for
recursion. Motivated by XML-oriented tasks, we investeggéte guarded TQL
fragment. We prove that for closed formulas this fragmeM®0-complete. In
presence of tree variables, this fragment is strictly mgpgessive than MSO as it
allows for tree (dis)equality tests, i.e. testing whether subtrees are isomorphic
or not. We devise a new class of tree automata, called TAGHixhextends
tree automata with global equality and disequality coistsa\We show that the
satisfiability problem for guarded TQL formulas reducesrtpéiness of TAGED.
Then, we focus on bounded TQL formulas: intuitively, a fotais bounded if for
any tree, the number of its positions where a subtree is czppty a variable is
bounded. We prove this fragment to correspond with a subolaFAGED, called
bounded TAGED, for which we prove emptiness to be deciddtiis implies the
decidability of the bounded guarded TQL fragment. Finally,compare bounded
TAGED to a fragment of MSO extended with subtree isomorpHissts.

1 Introduction

In this paper, we consider the spatial logic TQL [7]. Spdtigics have been used to ex-
press properties of structures such as trees [7], graph2]&nd heaps [19]. The main
ingredients of spatial logics are spatial connectivegyhiyispeaking, these connectives
are derived from operators that can be used to generate thaidof interpretation.

The logic we consider here is interpreted over hedgesunranked ordered trees)
labelled over an infinite alphabet. The logic integratesiBao connectives, spatial con-
nectives (derived from the constructors of an unrankedredizee algebra), tree vari-
ables and a fixpoint operator for recursion.

We focus on the satisfiability problem of TQL. It is quite sil@po prove that the
full TQL logic over unranked ordered trees even without tragables is undecidable.
We then focus on the guarded fragment which ensures thatsieewariables have to
be guarded by tree extension. We show that guarded TQL loigiout tree variables
is equivalent to the monadic second order logic (MSO).

However, when tree variables are considered, things ategetore complicated.
Indeed, we can express that two non-empty paths starting draode of a tree lead to
two isomorphic subtrees, which goes beyond regularity aneanked trees.

Still about expressiveness of this logic, an infinite alptadnd the ability to test
for tree equality allow us to consider some data values. Weng#te formulas whose
models are hedges which violate some key constraints or Bomtonal dependencies.

We focus on bounded TQL formulas: intuitively, a formula subnded if for any
tree, the number of equalities and disequalities that haneettested — to check non-
deterministically that the tree is a model of the formula basinded.

We introduce a new class of tree automata, calieel automata with global equali-
ties and disequalitieSTAGED for short), which extends unranked tree autorahteith
an equality relation= 4 and a disequality relatiog 4 on states. Subtrees of some tree
t which evaluates by to states which are in relation by4 (resp. by 4) have to be
isomorphic (resp. non isomorphic). Naturaky, induces an equivalence relation on a
subset of nodes a@f but the number of classes of this relation is bounded. EAJ5ED
can express that all subtrees of heightor some fixed natural, are equal, but not that
for each node of the tree, all the subtrees rooted at its senscuial. Although it is a
natural extension of tree automata, this extension hag hees considered.

We show that satisfiability of guarded TQL formulas reducesmptiness of TAGED.
We define a subclass of TAGED, callbdéunded TAGEDfor which we can decide
emptiness. Intuitively, boundedness ensures that thenaditgt of every equivalence
class is bounded, which may not be the case for full TAGED. Wensemptiness de-
cidability of bounded TAGED.

We complete our proof by constructing a TAGED from a guardetizounded TQL
formula. This construction extends the one from [4] withetwariables. This extension
is non-trivial as the automata we have to consider are nogra@istic.

Finally, we define an extension of MSO with a binary relatiohetween nodes; two
nodes are in relation if they are roots of two isomorphic sedgt. We consider MSO
formulas extended with the predicate It is easy to see that this extension renders
MSO undecidable. However, we prove that if the relatiertoncerns only variables
belonging to a prefix of existentially quantified first-ordariables, then this extension
is decidable. The proof works by reduction to emptiness ofoied TAGED.

Automata dealing with data values have been studied in [LBl@vever, our moti-
vations are different and we obtain the capability to martega values as a side-effect.
In [3], the authors study two-variables FO logic extendethwin equality relation on
data values. The expressiveness of this formalism and tegmsented here are not
comparable: we can test tree isomorphisms while they cadags value equality only,
but restricting our logic to data-value equality is styidiéss expressive, as we do not
have quantifiers.

The paper is organised as follows: in Section 2 we recall diefirs for hedges,
hedge automata and monadic second order logic. SectioncBilses the TQL logic
and results we obtain concerning its satisfiability. Sectois dedicated to the tool
we use to solve the satisfiability problem, namely tree aatarwith global equalities
and disequalities (TAGED). In Section 5 we relate satidfiighdf TQL formulas and
emptiness of TAGED. Finally, in Section 6 we propose an esitenof MSO with
isomorphism tests whose satisfiability problem is decigabl

2 Preliminaries

We consider an infinite set of labels

Hedges - Treed_et X be the signaturg0, |} U {a | a € A}, where0 is a constant,

| a binary symbol ands unary symbols. We caliedgean element of the’-algebra

Hedge obtained by quotienting the freB-algebra by the following three axioms:
Olh="h hl0=nh (h|A")|W" = h|(h"|A"")

0 will be theempty hedgeWe call respectivelyreesandleaveshedges of the form
a(h) anda(0). We may omit| and writea(h)b(h')c(h’) instead ofa(h)|b(h')|c(h").
We define rootsh) as the word from* defined recursively as(i) root§0) = e, (i)
rootda(h’)) = a and,(7i7) rootg hy |he) = rootg iy)rootghs).

We will also adopt the graph point of view and consider hedges set of vertices
V', two disjoint sets of directed edgés, E; and a mapping from V' to A. In a hedge
h, one associates a vertex with each occurrence of elementsidfere is an edge from
E. (resp. fromE;) from an occurrence; to an occurrence. if the hedge contains a
pattern of the formu; (h1|az(h)|hs2) for some hedges;, ho (resp.ai(hq)|az(hs) for
some hedgek,, hs).

For every hedgér = (V, E., E,, \), we denote bynodes(h) the setV and by
| aby (u) the label\(u), for u € V. We denoté|, the subtree ok rooted atu, and by
< the reflexive-transitive closure @&f.. E.g., the root is minimal foK in a tree.

For a set of labeld., we denotéd;, (resp.T) the set of hedges (resp. trees) with
nodes labelled by elements in

Hedge automata [17]A hedge automatod is a 4-tuple(A, Q, F, A) where A is a
finite set of rulesy(L) — ¢ wherea is a finite or cofinite set of labeld, C Q* is a
regular language over states fréggnandF' C Q* is an accepting regular language.

Definition 1 (runs). Let h be a hedge andl be a hedge automaton. The set of runs
R4(h) C Hg of Aonh is the set of hedges ovérinductively defined by:

RA(h1|h2) = {7‘1|7"2 |T‘1 c RA(hl),T‘Q c RA(hg)} RA(O) = {0}
Ra(a(h)) = {q(r) | Ja(L) = g € A,a € a,7 € Ra(h),roots(r) € L}

Letg be a word of states, we denote By, 5(h) C Ra(h) the set of runs such that
rootr) = g, and often say that evaluates t@ by A. The set of accepting runs df
on h, denoted byr%c“(h), is defined by{r | 3G € F,r € Rag(h)}.

The language accepted by, denoted.(A), is defined by{h | R4“(h) # @}.

Testing emptiness of the language accepted by a hedge dotoimaecidable [5].

MSO The logic MSO (Monadic Second Order logic) is the extensithe first-order
logic FO with the possibility to quantify over unary relai®i.e. over sets.

Let o be the signaturé¢lab, | « € A} wherelab,s are unary predicates. We asso-
ciate with a hedgé, = (V, E,, E,, \) a finite o-structureS™ = (V, {ch,ns} U {lab" |
a € A}), such thatab (v) (resp.ch(v,v'), ns(v, v')) holds inS" if A(v) = a (resp.
(v,v") € E,, (v,0") € Ey).

We assume a countable set of first-order variables rangieghyz, v, z, . .. and a
countable set of second-order variables ranging oveXhy, 7,

MSO formulas are given by the following syntax:

Y == labe(x) [ch(z,y) | ns(z,y) [z € X [VY [¢ [Tz [IX Y

[0]s ={0}

-
i

empty hedge

0
[[Tﬂp,é == HA
l[d)] g;ttgnsion [aléllps = {a(h) |k € [9lps, a € a}
$|l¢ composition (916" Tos = {hh | h€[¢]ps,h" €[¢]p5}
—¢ negation [=¢lps =Ha\[@]p,s
$ V ¢ disjunction [V ¢Tos =[6]ps U0
X tree variable %gﬂ”f - ({5'&())()}
. _) =
o sttt e [1.61ps = 1S C Ha | [B, 5105 S}
/(;*. iteration [¢°]p5 =0U Ui>0 [8lp.6]-- - []p.s
i times
(2) Syntax (b) Semantics
Fig. 1. TQL logic

Let S be ao-structure with domairV/. Let p be a valuation mapping first-order
variables to elements fro and second-order variables to subsetd/of\We write
S =, ¥ when the structuré is a model of the formula under the valuatiop; this
is defined in the usual Tarskian manner and we have in paatiqd) ¢ =, lab,(z)
if lab, (p(z)) holds inS, (i) ¥ =, ch(x,y) if ch(p(x), p(y)) holds inS, (iii) ¥ =,
ns(xz,y) if ns(p(z), p(y)) holds inS.

A set of hedges' is MSO -definabléf there is an MSO senteneg such thatS =
{h | h = 9 }. Itis well-known that a language is accepted by some hedgereia iff
it is MSO-definable.

3 The Tree Query Logic

We consider here a fragment of the TQL logic defined in [7] agapa it to unranked
ordered trees.

Syntax We assume a countable sEtof tree variables ranging over h¥,Y, and a
countable seR of recursion variables ranging over ByLet « be a finite or co-finite
set of labels from. Formulasp from TQL are given by the syntax on Figure 1(a). We
allow cofinite sets in extensions, otherwise we could notespformulal[0].
We assume that is the binder for recursion variables and the notions of ldand free
variables are defined as usual. To ensure the existence ofrftxve will assume that
in formulasy£.¢, the recursion variablé occurs under an even number of negations.
A formula is said to beecursion-closedf all the occurrences of its recursion variables
are bound. A TQLsentencads a recursion-closed formula that does not contain tree
variables. A TQL formulap is guardedif for any of its subformulau£.¢’, the variable
& occurs in the scope of some extension operafgiin ¢'.

We assume from now on that recursion variables are boundodg in formulas
and denote recvép) (resp. vatg)) the set of recursion variables (resp. tree variables)
occurring ing. We may writea[¢] instead of{a}[¢].

Semanticdnterpretation maps a TQL formula to a set of hedgesplbet an assignment

of tree variables intdy and¢$ be an assignment of the recursion variables into sets
of hedges. The interpretation of the formulaunderp andd, denoted by[¢], s is
inductively defined and given on Figure 1(b).

ExamplesLet us consider the following formulas:

o= a[T][T (1)

bs = p€-(a[T][E Vv 0) (2)

¢ata = (employee[name[A[0]] | dpt[A[0]] | manager[A[0]]])* (3)

Pdq = ¢ara N T |employee[X]| T |employee[X]| T (4)
Ppath(a),0 = pé-((Tlal¢]|T) v 0) (5)

The above formula is interpreted as the set of hedges of length at leastich that
the root of the first tree is labelled The formulag; is interpreted as the set of hedges
{a[P1]] ... |a[hn] | hi € Ha,n > 0}. The formulagg:q is interpreted as the set of
hedges defining employees by their name, the departmentitidyin, and their man-
ager whereas the formudg,; expresses that an employee occurs twice in the database.
Finally, the models of the formula, ;14,0 are hedges with a path labelled dyfrom
one of the roots to some leafd. the empty hedg8).

The formulag,qq is interpreted as the set of hedges having an odd number eSnod

Podd = ,Ufo-(/l[o] N A[‘ﬁeven(&)]|¢even(€0) \ A[fongo
Where¢even(50) = /‘ge-(o 4 (A[gonfe \ A[&@Hfo))

Let us denote,qn (), = #&-((TILE]|T) Vv) the formula whose models are
hedges containing a path labelled by elements ffofrom one of the roots to a hedge
satisfyingy. The models of the following formula are the hedges havirgrnan-empty
paths labelled respectively lag and bybs from two of the top-level nodes, those two
paths leading to some identical subtrees

T | (a[ppath(a) x| TIb[patn(v),x] V blPpatnw), x| Tlalépatn(a), x T

The formula ¢iqnot_key iS interpreted as the set of
hedges for which two nodes labellédhave identical sub-
trees (roughly speaking “the (data) value of the eleneht
can not be used as a key in this XML document”)

Bidnot-key = T|Al@patn(a),idx))| T I AlBpath(ay,iaix)]| T

The following formula states that two treesiployee
have identical subtrees rooted &yt but different subtrees
rooted bymanager

Gara N T | employee[T |dpt[X]|manager[Y]]| T
| employee| T |dpt[X]|manager[-Y]]| T

Fig.2. AtreewithT # S

A hedge satisfying this formula may be considered as ilivfled assuming the existence
of some functional dependency stating thgbartment has only onenanager.
Models of the formulapy,....;, are the trees whose shapes are described on Figure

2.
¢bra,n(:h = a[X|/.L€(CL[X | f] VXA A[T])]

¢s andog,qq are the only two formulas that are not guarded; howeygis equivalent
to a[T]*, which is guarded and, 44 to the following guarded formula

¢0dd - Mgo-A[qse?)en (60) \ (£0|¢even (go)*|€0)*]
Peven (§o) = pi€e-Al& S0l (Peven (§o) V (€0l Peven (€0)|€0)") V O

But the formulaug.(a[0]|£]b]0] Vv 0) is neither guarded nor equivalent to any guarded
formula.

Definition 2 (satisfiability). A recursion-closed TQL formula is satisfiable if there
exists a hedgé and an assignmentsuch thath € [¢],.

TQL sentencest is easy to prove that TQL sentences can describe sets geketat
are not MSO-definable; for instance, the TQL sentengéa[0]|£]b[0] V 0) describes
a “flat” hedge of the form{a[0]"b[0]™) for n € N.

Theorem 1. For any set of hedges, there exists a guarded TQL sentercsuch that
[¢] = S iff S is MSO-definable.

As a consequence of Theorem 4, satisfiability is decidablgdarded TQL sen-
tences. This restriction is crucial, since, by reductioeimiptiness problem for the in-
tersection of two context-free grammars, one can prove that

Theorem 2. Satisfiability for TQL sentences is undecidable.

Adding quantificationAs in [7], one could also consider quantification over treg-va
ables3X andv.X with the following semantics:

BX.¢los = Jldlpx—ts [¥X0lp6 = [[Dloix—1.6

teT teT

wherep[X — t] is the assignment identical goexcept that it associatesvith X .
Hence, the satisfiability problem from Definition 2 is equiérg to the one of closed
formulas of the forn1.X; . ..3X,, ¢ whereg is a recursion-closed TQL formulae.the
existence of a tree satisfying this formula.
For more complicated alternation of quantifiers, one caityeadapt the proof from
[8] about the undecidability of the fragment of TQL withotgration, recursion and
tree variable but with quantification over labels to prowath

Theorem 3. Satisfiability for recursion-closed TQL formulas with qtifination is un-
decidable (this holds even for recursion-free formulas).

Bounded TQL formuladn bounded formulas, variables can occur in recursion only
in a restricted manner: intuitively a formula is boundechiéite exists a bound on the
number of equality test performed to (non-determinishgalerify that a hedge is a
model of the formula. Boundedness appears naturally inaatiéin problems and in
pattern languages (where variables appears a bounded naitmes in terms or
patterns). But defining boundedness in the presence ofgieciis a bit more technical.

In the examples we have given so far, the only formula thatoishounded is
dvranch- The following formulais also not bounded as it asks eaclreelf the hedge
to be different fromX: —(u&. T|(X Vv A[E])|T)

We let 3 be a recursion-closed formula s.t. no recursion variablsimd twice,
and denote by the formula s.tu€.¢¢ is a subformula of3. To defineboundedness
formally, we introduce, for every subformudaof 3, thegeneralized free variablesf
¢, denoted vdy(¢), as the least solution of the following (recursive) equagio

var;(0) = vary(T) = & var;(alg]) = var; (=) = vars (u.¢) = var; (¢*) = va
var,(€) = vars(¢c) vars(X) = {X} vars(¢V ¢) = var;(¢l¢') = vary(¢) U

Note that the least solution of these equations is compeit#@sl operator occurs
positively (resp. negatively) in a formula if it occurs um@a even (resp. odd) number
of negations.

A formula g is boundedf it satisfies the following properties:

1. for any subformula*, var;(¢) = &;
2. for any subformula|¢’ where| occurs negatively, vg(s) = vary(¢') = @.
3. each formulap|¢’ where| occurs positively and each formulav ¢’ wherevV

occurs negatively satisfy¢ € recva(e), vary(§) N vary(¢') = @, andv¢' €
recvafe’), var;(¢') Nvars(¢) = 9.

As a consequence of Theorem 1, this fragment is strictly nexpressive than
guarded TQL sentences, as it allows for tree isomorphista.t€®@mbining Theorems
6 and 5 of the next two sections proves our main result:

Theorem 4. Satisfiability is decidable for bounded guarded TQL fornsula

RemarksOur logic can be seen as an extension of the (recursiveypdéteguage of

XDuce [13]. The main difference here is that we allow Boolearrators and drop the
linear condition for variables of XDuce. The pattern-matching heatdsm of CDuce

[1] extends the one from XDuce with Boolean operations andke&e conditions on

variables. However, no equality tests between terms caetiermed making our logic

more powerful. Since we consider an infinite alphabet and leeva&quality tests be-

tween trees, we can, as a side effect, simulate data valuEmasn some of the exam-
ples we gave.

4 Tree Automata with Global Equalities and Disequalities

In this section, we present a new extension of hedge autqeedtad TAGED) with the
ability to test tree equalities or disequalities globaliytbe run. We prove decidability
of emptiness for a particular class of TAGED, called boun@&GED, which we use
to decide satisfiability of bounded TQL formulas.

4.1 Definitions

Definition 3 (TAGED). A tree automaton with global equalities and disequalitiB&GED)
is a 6-tupled = (A, Q, F, A, =4,#4) such that:

o (A,Q, F,A)is ahedge automaton;

e =4 is an equivalence relation on a subsetgf

e =£ 4 is a non-reflexive symmetric binary relation gh

A TAGED is positiveif # 4= &, and is simply denoted by = (A, Q, F, A,=4). The
set{q | 3¢ € Q, g =4 ¢’} is denoted by, and for all stateg € F, we denote byg|
its equivalence class. The set| 3¢’ € Q, g #4 ¢’} is denoted byD. The notion of
run differs from hedge automata as we add equality and déditgaonstraints.

Definition 4 (runs).LetA = (A, Q, F, A,=4,#4) be aTAGED. A rum of the hedge
automatonA, @, F, A) on a hedge: satisfies the equality constraints if the following
holds:Vi € {1,...,n}, Vu,v € nodes(h),l ab,.(u) =4l ab,.(v) = hl|, = hl,.

Similarly, the runr on h satisfies the disequality constraints if the following
holds:Vi € {1,...,n}, Yu,v € nodes(h),| ab,(u) #4 | ab,.(v) = hl, # hls.

The set of accepting runs df on h, denotedR%°¢(h), is the set of accepting runs
r of (4, Q, F, A) which satisfy the equality and disequality constraintse Tdanguage
accepted by, denotedL(A), is the set of hedgéssuch thatR%*°(h) # @.

Remark that.(A) is not necessarily regular, as illustrated by Example 1.

Example 1.Let A be an infinite alphabet. L& = {q, ¢x,q¢}, F' = {qs}, and letA be
defined as the set of following ruled{¢*) — ¢ Alg*) — qx algxgx) — gy

Let A; be the positive TAGED A, Q, F, A, {qx =4, qx})- ThenL(A,) is the set
{a(t|t) | a € A,t € T}, which is known to be non regular [10].

Example 2.Let Q = {q,q9x,q9x%.qr}, F = {qs}, and letA defined as the set of fol-
lowing rules:

Aq) —ax AMd)—aqa AG)—ax alax(ax +ar) — ar

Let A, be the TAGED(A, Q, F, A, {gx =4, 4x},{ax #4. ¢x})- ThenL(A,) is the
set of hedges whose shapes are described on Figure 2.

RemarksExtensions of tree automata which allow for syntactic ei(giahd disequality
tests between subterms have already been defined by addisgaints to automaton
rules. E.g., adding the constrain = 2 to a rule means that one can apply the rule at
positionr only if the subterm at position.1.2 is equal to the subterm at positiar?.
Testing emptiness of the recognized language is undeeidalgeneral [16] but two
classes with a decidable emptiness problem have been eisguhals: the first class,
automata are deterministic and the number of equality &sigy a path is bounded [11]
whereas the second restricts tests to sibling subterm$§i@g.latter class has recently
been extended to unranked trees [15], the former one haséx@ended to equality
modulo equational theories [14]. But, contrarily to TAGED,all these classes, tests
are performed locally, typically between sibling or cousirbterms. Finally, automata
with local and global equality tests, using one memory, Haeen considered in [9].
Their emptiness problem is decidable, and they can simplagégive TAGEDs which
use at most one state per runs to test equalities, but notaj@usitive TAGEDSs.

Definition 5 (bounded TAGED).A bounded TAGED isa 7-tuplé = (A, Q, F, A, =4

,#a, k) whered’ = (A,Q,F,A,=4,#4) is a TAGED andk € N is a natural. An
accepting run- of A on a treet is an accepting run ofi’ ont¢ such that the following
istrue: |{u || ab,(u) €e EUD}| <k.

We say thatd and its accepting runs ark-bounded and may writed’, k) instead of
A. We say that a TAGEDB is equivalent to a bounded TAGEDIf L(A) = L(B).

The TAGED of Example 1 is equivalent to the 2-bounded TAGED, 2), whereas
one can prove that the one of Example 2 is not equivalent tdbbaopded TAGED.

Theorem 5 (emptiness of bounded TAGED)Let A be a bounded TAGED. It is de-
cidable to know whethel(A) = @ holds or not.

The rest of this subsection is dedicated to the proof of ttestem, first for positive
bounded TAGED, then for full bounded TAGED.

4.2 Configurations

We define a tool calledonfigurationsused to decide emptiness of positive bounded
TAGED. In this subsection, the 6-tuplé = (A,Q, F, A, =4, k) always denotes a
positive bounded TAGED. We suppose thatccepts trees only, i.é! C Q. It is not
difficult to adapt the decidability result to hedge acceptbtoreover, we suppose that
for any runr -even non accepting- on a tree, the cardinal of the set oftadelled

by states of E is at mogt Indeed, it is easy to transforr to ensure this property by
enriching states with a counter uptoWe show how to decompose a positive TAGED
into an equivalent and computable finite set of configurati@ince testing emptiness
of configurations is easily decidable, we get the decidgbiisult for positive TAGED.
Informally, configurations are (non-regular) tree acceptohich make explicit parent
or ancestor relations between nodes for which equalitg st performed byl. These
are DAG-like structures labelled by sets of statesiofA treet is accepted by some
configuratiorr if the unfolding ofc can be embedded into a rurof A ont, such that
labels ofr belong to labels of. By putting suitable rules on how sets of states occur as
labels ofc, we can enforce to respect equality constraints.

Definition 6 (configurations).A configuration: of A is a rooted directed acyclic graph
such that:(i) every node carries a symbol fro2, (ii) outgoing edges of a node are
ordered, andi:) for every equivalence clasg of =4, there is at most one sét C Q
such thafg] N P # @ and P is a label ofc.

Nodes ofc are denoted byodes(c). For every node

u € nodes(c), we denote by, the subgraph of induced i
by the nodes reachable fromin ¢, and byu, ..., u, the 1/ 3/ 2
n successor nodes afgiven in order. Note that it might be

the case that; = u; for somei,j € {1,...,n}. Finally, aq

we always denote blyab.(u) C @ the label of node: in 1e<g

c. Fig. 3iillustrates a configuration whose nodes are labell

either by set of statefgy, ¢'}, {s}, {p} or {r}. Note that the Fig. 3.A configuration (nat-
second successor of the root is the node labgliédwhile urals represent the order on
its first and third successor is the node labelled;'}. edges)

In order to define semantics of configurations, we first intik@lsome useful no-
tions about contexts. For > 0, we definen-ary contexteC's as usual, and the hole
substitution with trees,, ..., ¢, is denoted byCty, ..., t,]. Note that0-ary contexts
are just trees. See [10] for a formal definition. Givestatesp,,...,p, € @Q and an
n-ary contextC', we denote byClp1,...,p,] the tree overd U @, where eacly; is

viewed as a constant symbol. We lét be the TAGED over alphabet U @ which
is just A with additional rules;(e) — ¢, for everyq € Q. We say thaC|p, ..., pn]
evaluates te, denoted”[py, ..., p,] —4a pif thereis arun- of A* onC[py,...,px)
such that roots’) = p. For any setS C Q, we writeC[p1,...,pn] —q\s ¢ if states
from .S does not occur im, except at the root and at the leaves labelled . . , p,,.

We now view configurations as a way to combine contexts to toesst, with addi-
tional requirements which enforce existence of airefi A ont. Condition(éii) of Def-
inition 6 ensures satisfies the equality constraints. This motivates the stiosof con-
figurations. More formally, let be a configuration ofi. A mapping) fromnodes(c)
into contexts overl is aninterpretationof ¢ if for every nodeu € nodes(c), if u
has exactlyn successor nodes, ..., u, in ¢, then\(u) is ann-ary context. More-
over, A must satisfy the following: for every node € nodes(c) and every nodes
u,...,u, € nodes(c), if uy,...,u, are the successor nodeswothen the following
holds (called conditioifP)):

Vp €l abe(u), 3p1 €1 abe(ur)...3pn €1 @be(un), A(u)[p1,...,pn] —o\(EUD) P

As A is positive, the sef) is empty, but we keep this definition for uniformity
reasons when dealing with disequalities. Every nedenodes (c), together with the
mapping)\, define a treé(u, A) overA as follows:t(u, \) = A(w)[t(u1, A), ..., t(un, N)],
wheren € N anduq, ..., u, are the successor nodeswoih c. Note that this definition
is well-founded since is a DAG. As we will see, conditiofiP) ensures the existence
of a run of A ont(up, \), whereuy is the root ofc.

Definition 7 (tree language recognized by a configuration).etc be a configuration
of A. The tree language recognized hydenotedL (A4, ¢), is defined by the set of trees
t(ug, A), whereuy is the root ofc, and\ is an interpretation of.

Trees accepted by configuration of Fig. 3 are necessarilgraf €[C'[t], ', C'[t],
for some context§’, C’, C”" and treeg, t’. As already said, the constraints on the con-
texts and the configuration ensure the existence of a runeotrébs ofL(A, ¢) which
satisfies the equality constraints. In particular, we cawvethe following:

Proposition 1. Letc be a configuration ofd such thatZL (A4, ¢) is nonempty. Let be a
tree of L(A, ¢), andugy € nodes(c) be the root ot.. For everyp € | ab.(uo), there is
arunr € Ra ,(t) which respects the equality constraints.

The converse holds too, and we can bound the size of configusat

Proposition 2. Lett € T, be a tree such thate L(A). Then there is a configuration
c of size at mostR)|.k/?! such that € L(A,¢).

Sketch of proofWe start from an accepting runof A ont and define an equiva-
lence relation on a subsetonbdes (t). Informally, two nodes:, v are equivalent if an
equality test betweet],, andt|, is performed in-. This is the case for instance when
| ab,.(u) =4 | ab,.(v). Each equivalence class will represent a node, a6 enforce
equalities. O

Hence, we can finitely represent the language recognizetldsya computable set
of configurations of4, as stated below:

Corollary 1. Let A be ak-bounded positive TAGED. We [B{.A) be the set of config-
urations of A whose sizes are bounded|igy/.k/?!. The following holds:

LA) = |J L4«

ceD(A)

Moreover, we can decide emptiness of the language recatjbizany configura-
tion.

Lemma 1. Given a configuration, it is decidable to know whethér(A, ¢) = @ holds.

Proof (Sketch)For all nodesu, uy,...,u, S.t.us,...,u, are the successors of it
suffices to test whether there is arary contextC' s.t. for all statep € | ab.(u), there
arep, € l ab.(u1),...,pn €l @bc(un) St.Clp1,. .., pa] —o\r p. We can represent
the set of context§’ such thatC|p, ..., p,] —o\r p by a tree automatod ,,,), ..
Then, it suffices to test emptiness(Qf.c p U,.,).e11.1 ab. (us) L(A(p:)..p) Which is de-
cidable, since regular languages are closed by Booleamtipes.

As a corollary of Lemma 1 and Corollary 1, we get the following

Proposition 3. Emptiness of positive bounded TAGED is decidable.

4.3 Adding disequalities to positive bounded TAGED

In the previous section, we have shown that emptiness ofip@siounded TAGED
is decidable. In this section, we extend this result to folibded TAGED.A always
denotes &-bounded TAGED. The definition of configurationsdfemains unchanged,
and the seD(A) still denotes the set of configurations.4fwhose size is bounded by
|Q|.kI9!. We have the following inclusion(4) C |J,cp4) L (4, ¢), butthe other one
does not hold in general, since configurations do not reglisequality constraints to
be satisfied. We show how an additional test on configuratcaiows us to decide
whetherL(A) N L(A4, ¢) is empty, which will be sufficient to decide wheth&(A) is
empty. Informally, let be a configuration andl be an interpretation af. We say thai
satisfies the disequalities oif for all nodesu, v € nodes(c), if there arep € | ab.(u)
andq €| ab.(v) such thap # 4 ¢, thent(u, \) # t(v, A).

We now relate the problem of finding such an interpretatiocaotext disunifica-
tion. For all nodes: € nodes(c), we let cxt.(u) be the set of contexts satisfying con-
dition (P) of the definition of interpretation. We define the notiorpaftial interpreta-
tion 8 of ¢, as a mapping fromodes(c) into contexts, such that it maps every nade
such that cxt(u) is finite into a context of cx{«), and every other nodeto a context
@, (e, ...,) with n holes (ifv hasn successors), whef@, is a fresh symbol such that
@, ¢ A. Note that trees(u, 3) are trees over alphabdtu {Q, | v € nodes(c)}.
We can show the following, by using context disunificatioynigols@,, are viewed as
context variables):

Lemma 2. Let A be a bounded TAGED. We hali¢A) # & iff there exist a configu-
ration ¢ € D(A) and a partial interpretatiors of ¢ such thais satisfies the disequality
constraints ofc. Moreover, it is decidable to know whether such an inteigtret 3
exists.

As a corollary, by combining Lemma 2 and Lemma 1, we get thefibTheorem 5.

5 From TQL to Automata

In this sectiong denotes a recursion-closed and guarded TQL formula ovenag-
ablesX;, ..., X,. We sketch the construction of a TAGERD, such that for all hedges

h € Hyu, we haveh € L(Ay) iff there exists a valuatiop : var(¢) — T, such that

h € [¢],. Moreover, we provel, to be equivalent to a computable bounded TAGED
whenever is bounded.

In a first step, we transform into an equivalent system of fixpoint equations, and
then sketch the construction df; starting from this system. This construction extends
the construction of [4]. This extension is non-trivial, &nit manages tree variables,
which induce non-determinism in the produced tree automauoreover, even for
sentences, this construction is different, since treesiatered.

System of equationgVe define dual connectives for parallel composition and Kéee
star. We letp; | |2 as a shortcut for(—¢1|—¢2), ¢ for —(=¢1)* andX for - X AA[T].

A system of fixpoint equatiords is a sequence of equatiofis= rhs,, ..., &, =rhs,
where everyhs, has one of the following form:

0 0 ¢ve eng aff ¢g ¢l x X ¢ ¢

The last fixpoint variable€,,, is denoted by lagéf”). The set of tree variables occur-
ring in X' is denoted by v42”). Systems of equations are interpreted over the complete
lattice (24, J,N), modulo an assignmept: var(X) — T 4. We consider the follow-
ing monotonic operations ovef'1, modulop: 0 is interpreted ag0™4}, 0 as{0"}
(the overline denotes the complementin), v by U, A by N, a[.] as the unary operator
which maps any set of hedgés C H, into {a[h] | a € o, h € H}, .|. as the binary
operator which maps two sets of heddésH’ into H|H' = {h|h' | h € H,h' € H'},
its dual.||. mapsH, H' into H||H' = H|H’. The Kleene star* and its dual.® are
interpreted similarly. FinallyX is interpreted by (X) and X by T4\ {p(X)}.

The solution of% over (2%4 [J,(N) modulop is a mapping from fixpoint variables
of X into 274, and is denoted by SelX, p). We can push down the negations to
the leaves ofp, using the dual connectives, and introduce fixpoint vaesglibr every
position in¢, which allow to construct a system of equatighssuch that vaiS,) =
var(¢) and the following holds:

Lemma 3. Forall valuationsp : var(S,) — T4, we havd @], = Sok(Sy, p)(last(Sy))

E.g., the equation system associated with the form@l&[¢] Vv (u&'.(b[¢'] V X)) is
{§ = &V&; & =0 & =af]; & =X =86V}

Ideas of automaton construction for sentendaghis paragraph, we assume tiais
a sentence. Checking whether a heéige a solution ofS,, is similar to a run of some
hedge automaton dn Let us consider the systef = {& = & V £2;& = a[€]; & =
0}, where the last variable is. Solutions ofS are chains labelled bys. To check
whether hedge(0) is a solution of¢, first verify thata(0) is a solution of¢; or a
solution of¢,. One can easily see thaf0) is not a solution of,. It remains to verify
whethera(0) is a solution o&; = a[¢], by verifying thatO is a solution of, etc... This
can be done by an automaton with transition rués+ q,¢)) — qaj¢], Wheregqe is

a final state. We define the set of (final) statesthy= F' = {q,[¢}. Let us interpret
S over2?”, whereQ* is the set of words ovep. We interpretv by U, 0 by {¢}, and
al] by {qaq[¢ }- Solutions of¢ are denoted by (&) (and similarly for other variables).
Hence we get(&2) = {e}, s(£1) = {qag}, ands(&) = {e, gq[¢}- Which trees evaluate
to q,[¢) ? Trees of the forna(h) whereh evaluates to some word of states frefg).
Hence, we can define transitiais(£)) — qqe)-

Things get more complicated when adding intersection. Fstance, consider the
systemS’ = {& = a[¢]; & = a[¢']; & = 0; € = & A&} If we interpret this system as
before, with stateg,) andq,,), we would gets({) = @. Hence, states should carry
enough information to know if the current tree is a solutiérufg], a[¢], or both. In
the construction we provide, every state is a tuple of atohtseoforma[], @[T], or
a[—¢], for every right-hand side of the forma[¢] occuring in the system. If some tree
t evaluates to a tuple which has a component equal/§h it means that is of the
form a(h), wherea € « andh is solution of¢. If the component ig[T] or o[—¢], it
means that(h) is not a solution ofx[¢], because, in the first case ¢ «, and in the
second ong € «, buth is not a solution of. Knowing this complete information, i.e.
which right-hand sides of the form[¢] are satisfied or not by the current tree, we are
able to construct exactly one rule per state, by solving yiséesn on sets of words of
states, with suitable interpretations. As the formula iarged, solutions of the system
are regular state word languages. We then get a determihitige automaton whose
accepted trees are the solutions of the system.

Adding tree variablesWhen adding variables, we cannot keep the automaton deter-
ministic, since subtrees will be captured non-determigadly. For instance, consider
the systenti = {¢" = X;¢' = §"[€";{x = a[¢'];& = 0; &3 = £7;61 = Al & =
&1V E&; € = &1 NEx }, where the last variable & Given a valuatiom : var(S) — Ty,
the systemS has a unique solution, modu}g which isa(p(X)|p(X)). A TAGED
accepting the solutions of is the TAGED of Example 1 of Section 4. It is non-
deterministic, since it has to choose to go in a sgatevhich will enforce the TAGED
to test whether the two sons of the root are equal.
As tree variables induce a kind of non-
determinism, we emphasize two kinds of recur- (A&3), {al€']}, @)
sion variables: deterministic recursion variables, - ~
for which the problem of checking whether aA[&), o, {X}) (A[&],9,{X})
given hedge is a solution does not involve tree
variables, such a&r, &1, & andés in our exam-
ple; and non-deterministic ongz ¢’ and¢”. Fi9-4.Runof A4 ona(a(0)a(0))
States of the automaton we construct have three compoiéetfirst componentis
induced by deterministic recursion variables and simwatkassical hedge automaton,
as for the case of sentences. The second component is indyaseh-deterministic
recursion variables, and collects atoms of the farg], where¢ is non-deterministic,
for which the current tree is the solution. In other wordgjliesses the positions in the
tree under which capture variables occur. Third comporemetsets of variableX or
X, meaning that equality or disequality tests are perfornrethe current tree.
Transition rules are obtained by suitable interpretatibthe system over words
of states. Finally, two states are equivalent for the automé their third component

shares a tree variable. Disequalities are defined similkdy instance, an accepting
run of the automaton faf, on the treei(a(0)a(0)), is represented in Fig. 4. The state
(A[&s], 9, {X}) is equivalent to itself.

Theorem 6. Let¢ be a guarded TQL formula. There is a computable TAGEDsuch
that for all hedges, we haveh € L(A,) iff there exists a valuatiop : var(¢) — T4
such thath € [¢],.

Moreover, if¢ is bounded, the TAGEDL, is equivalent to the bounded TAGED
(A, B), for some computable bourii € N.

To compute the bound, we interpret the systerf, on naturals, with suitable
interpretations (for instance is interpreted byi, A by +, andVv by max).

6 Extending MSO with Tree Isomorphism Tests

In this section, we propose an extension of MSO for unrantesgstwith isomorphism
tests between trees.

Let ~ be a binary predicate s.t. for a structu#& associated with a heddeand a
mappingp from {z, y} to nodes of:, S” =, « ~ y holds if the two subtrees rooted at
respectivelyp(xz) andp(y) in h are isomorphic. We consider sentences of the form

Q171Q272 . .. Qnupy
where@,; € {3,V} and¢y is an MSO formula extended with atoms ~ z;
(1 <4, < n). We call M SO.. this logic. We will also consider the fragmeht SO?,
for which formulas satisfy@; = Q2 = ... = @, = 3. Remark that) can again
contain quantifiers. Hence, since tree isomorphism cammexpressed i/ SO [10],
MSO.. and M SOZ are stricly more expressive thad SO. By reduction of the Post
correspondence problem, we can prove that:

Theorem 7. Satisfiability forA/ SO.. is undecidable.

However,M SO? and bounded TAGED are equally expressive: for any formula
in M SO, one can compute a bounded TAGED, whose size is non-elergéntine
size of p, accepting the models @f. The converse holds too. As a consequence of
decidability of emptiness for bounded TAGED, we have:

Theorem 8. Satisfiability is decidable fod/ SO2.

7 Conclusion

In this paper, we have considered the spatial logic TQL witle tvariables. We have
proved that for the guarded fragment when variables appeabbunded way then the
satisfiability problem is decidable. To do so, we have inticetl a new class of tree
automata, called TAGED, permitting to test global equaditand disequalities on the
accepted trees. Finally, we have used TAGED to prove detityeor an extension of
MSO with isomorphism tests interpreted over unranked trees

We speculate that the boundedness condition is not reqtorethe decidability of
emptiness of TAGED, as pumping technics dealing with cairss may be applicable.
However, it is non-trivial, since TAGED are not determirbiiin general. This would
imply that the full guarded TQL with trees variables is deditk. Another extension

would be to consider hedge variables. This problem seems tob trivial as the satis-
fiability problem for such formulas could encode word equoragi

We emphasized a correspondence betweed0> and bounded TAGED. It would be
interesting to exhibit a fragment @/ SO.. equivalent to full TAGED.

The TQL system also includes a transformation language;imeaf using TAGED
automata to type these transformations and more gendratytransducers.

References

1. V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XMltriwegeneral-purpose lan-
guage. Ir8th ACM International Conf. on Functional Programmjmgages 51-63, 2003.

2. B. Bogaert and S. Tison. Equality and disequality coivgisaon direct subterms in tree
automata. Ifth Annual Symposium on Theoretical Aspects of Computen&eivolume
577 of LNCS pages 161-171, 1992.

3. M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and3egoufin. Two-variable logic
on data trees and xml reasoning. ACM 25th Symp. on Principles of database systems
pages 10-19, 2006.

4. |. Boneva, JM. Talbot, and S. Tison. Expressiveness oatapogic for trees. Ir20th IEEE
Symposium on Logic in Computer Scieruages 280-289, 2005.

5. A. Briggemann-Klein, M. Murata, and D. Wood. Regulaetl@nguages over non-ranked
alphabets. unpublished manuscript, 1998.

6. L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic tprerying graphs. 129th Inter-
national Colloquium on Automata, Languages and Prograngmiolume 2380 ofLNCS
pages 597-610. Springer, 2002.

7. L. Cardelli and G. Ghelli. TQL: A Query Language for Semistured Data Based on the
Ambient Logic. Mathematical Structures in Computer Scient4:285-327, 2004.

8. W. Charatonik and JM. Talbot. The Decidability of Modele€king Mobile Ambients. In
15th Annual Conference of the European Association for GoengScience Logicvolume
2142 of LNCS pages 339-354. Springer, 2001.

9. H. Comon and V. Cortier. Tree automata with one memongaastraints and cryptographic
protocols. TCS 331(1):143-214, 2005.

10. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. érng8. Tison, and M. Tommasi.
Tree automata techniques and applications, 1997. relected®, 1rst 2002.

11. M. Dauchet, A.-C. Caron, and J.-L. Coquidé. Reductimperties and automata with con-
straints. 20:215-233, 1995.

12. A. Dawar, P. Gardner, and G. Ghelli. Expressiveness amplexity of graph logic. In
Information and Computatigmumber 205, pages 263—-310. 2007.

13. H. Hosoya and B. C. Pierce. XDuce: A statically typed xmdgessing languageACM
Trans. Internet Techn3(2):117-148, 2003.

14. F. Jacquemard, M. Rusinowitch, and L. Vigneron. Treeraata with equality constraints
modulo equational theories. Research Report LSV-06-0Y, ESIS Cachan, France, 2006.

15. W. Karianto and C. Ldding. Unranked tree automata witlirgy equalities and disequalities.
In 34th International Colloquium on Automata, Languages amsjPamming 2007.

16. J. Mongy.Transformation de noyaux reconnaissables d’arbres. fSo0RRATEG PhD thesis,
Université de Lille, 1981.

17. M. Murata. Hedge automata: A formal model for xml schem@echnical report, Fuji Xerox
Information Systems, 1999.

18. Frank Neven, Thomas Schwentick, and Victor Vianu. Towaegular languages over infi-
nite alphabets. IMFCS pages 560-572. SV, 2001.

19. J. C. Reynolds. Separation logic: A logic for shared letaata structures. Ih7th IEEE
Symp. on Logic in Computer Scienpages 55-74. IEEE, 2002.

