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Abstract. We investigate in this paper the spatial logic TQL for querying semi-
structured data, represented as unranked ordered trees over an infinite alphabet.
This logic consists of usual Boolean connectives, spatial connectives (derived
from the constructors of a tree algebra), tree variables anda fixpoint operator for
recursion. Motivated by XML-oriented tasks, we investigate the guarded TQL
fragment. We prove that for closed formulas this fragment isMSO-complete. In
presence of tree variables, this fragment is strictly more expressive than MSO as it
allows for tree (dis)equality tests, i.e. testing whether two subtrees are isomorphic
or not. We devise a new class of tree automata, called TAGED, which extends
tree automata with global equality and disequality constraints. We show that the
satisfiability problem for guarded TQL formulas reduces to emptiness of TAGED.
Then, we focus on bounded TQL formulas: intuitively, a formula is bounded if for
any tree, the number of its positions where a subtree is captured by a variable is
bounded. We prove this fragment to correspond with a subclass of TAGED, called
bounded TAGED, for which we prove emptiness to be decidable.This implies the
decidability of the bounded guarded TQL fragment. Finally,we compare bounded
TAGED to a fragment of MSO extended with subtree isomorphismtests.

1 Introduction

In this paper, we consider the spatial logic TQL [7]. Spatiallogics have been used to ex-
press properties of structures such as trees [7], graphs [6,12] and heaps [19]. The main
ingredients of spatial logics are spatial connectives: roughly speaking, these connectives
are derived from operators that can be used to generate the domain of interpretation.

The logic we consider here is interpreted over hedges (i.e. unranked ordered trees)
labelled over an infinite alphabet. The logic integrates Boolean connectives, spatial con-
nectives (derived from the constructors of an unranked ordered tree algebra), tree vari-
ables and a fixpoint operator for recursion.

We focus on the satisfiability problem of TQL. It is quite simple to prove that the
full TQL logic over unranked ordered trees even without treevariables is undecidable.
We then focus on the guarded fragment which ensures that recursive variables have to
be guarded by tree extension. We show that guarded TQL logic without tree variables
is equivalent to the monadic second order logic (MSO).

However, when tree variables are considered, things are getting more complicated.
Indeed, we can express that two non-empty paths starting from a node of a tree lead to
two isomorphic subtrees, which goes beyond regularity overunranked trees.

Still about expressiveness of this logic, an infinite alphabet and the ability to test
for tree equality allow us to consider some data values. We can write formulas whose
models are hedges which violate some key constraints or somefunctional dependencies.



We focus on bounded TQL formulas: intuitively, a formula is bounded if for any
tree, the number of equalities and disequalities that have to be tested – to check non-
deterministically that the tree is a model of the formula – isbounded.

We introduce a new class of tree automata, calledtree automata with global equali-
ties and disequalities(TAGED for short), which extends unranked tree automataAwith
an equality relation=A and a disequality relation6=A on states. Subtrees of some tree
t which evaluates byA to states which are in relation by=A (resp. by6=A) have to be
isomorphic (resp. non isomorphic). Naturally,=A induces an equivalence relation on a
subset of nodes oft, but the number of classes of this relation is bounded. E.g.,TAGED
can express that all subtrees of heightn, for some fixed naturaln, are equal, but not that
for each node of the tree, all the subtrees rooted at its sons are equal. Although it is a
natural extension of tree automata, this extension has never been considered.

We show that satisfiability of guarded TQL formulas reduces to emptiness of TAGED.
We define a subclass of TAGED, calledbounded TAGED, for which we can decide
emptiness. Intuitively, boundedness ensures that the cardinality of every equivalence
class is bounded, which may not be the case for full TAGED. We show emptiness de-
cidability of bounded TAGED.

We complete our proof by constructing a TAGED from a guarded and bounded TQL
formula. This construction extends the one from [4] with tree variables. This extension
is non-trivial as the automata we have to consider are non-deterministic.

Finally, we define an extension of MSO with a binary relation∼ between nodes; two
nodes are in relation if they are roots of two isomorphic subtrees. We consider MSO
formulas extended with the predicate∼. It is easy to see that this extension renders
MSO undecidable. However, we prove that if the relation∼ concerns only variables
belonging to a prefix of existentially quantified first-ordervariables, then this extension
is decidable. The proof works by reduction to emptiness of bounded TAGED.

Automata dealing with data values have been studied in [18, 3]. However, our moti-
vations are different and we obtain the capability to managedata values as a side-effect.
In [3], the authors study two-variables FO logic extended with an equality relation on
data values. The expressiveness of this formalism and the one presented here are not
comparable: we can test tree isomorphisms while they can test data value equality only,
but restricting our logic to data-value equality is strictly less expressive, as we do not
have quantifiers.

The paper is organised as follows: in Section 2 we recall definitions for hedges,
hedge automata and monadic second order logic. Section 3 describes the TQL logic
and results we obtain concerning its satisfiability. Section 4 is dedicated to the tool
we use to solve the satisfiability problem, namely tree automata with global equalities
and disequalities (TAGED). In Section 5 we relate satisfiability of TQL formulas and
emptiness of TAGED. Finally, in Section 6 we propose an extension of MSO with
isomorphism tests whose satisfiability problem is decidable.

2 Preliminaries

We consider an infinite set of labelsΛ.



Hedges - TreesLet Σ be the signature{0, |} ∪ {a | a ∈ Λ}, where0 is a constant,
| a binary symbol andas unary symbols. We callhedgean element of theΣ-algebra
Hedge obtained by quotienting the freeΣ-algebra by the following three axioms:

0|h = h h|0 = h (h|h′′)|h′′′ = h|(h′′|h′′′)

0 will be theempty hedge. We call respectivelytreesandleaveshedges of the form
a(h) anda(0). We may omit| and writea(h)b(h′)c(h′′) instead ofa(h)|b(h′)|c(h′′).
We define roots(h) as the word fromΛ∗ defined recursively as :(i) roots(0) = ǫ, (ii)
roots(a(h′)) = a and,(iii) roots(h1|h2) = roots(h1)roots(h2).

We will also adopt the graph point of view and consider hedgesas a set of vertices
V , two disjoint sets of directed edgesEc, Es and a mappingλ from V toΛ. In a hedge
h, one associates a vertex with each occurrence of elements ofΛ. There is an edge from
Ec (resp. fromEs) from an occurrencea1 to an occurrencea2 if the hedge contains a
pattern of the forma1(h1|a2(h)|h2) for some hedgesh1, h2 (resp.a1(h1)|a2(h2) for
some hedgesh1, h2).

For every hedgeh = (V,Ec, Es, λ), we denote bynodes(h) the setV and by
labh(u) the labelλ(u), for u ∈ V . We denoteh|u the subtree ofh rooted atu, and by
≤ the reflexive-transitive closure ofEc. E.g., the root is minimal for≤ in a tree.

For a set of labelsL, we denoteHL (resp.TL) the set of hedges (resp. trees) with
nodes labelled by elements inL.

Hedge automata [17]A hedge automatonA is a 4-tuple(Λ,Q, F,∆) where∆ is a
finite set of rulesα(L) → q whereα is a finite or cofinite set of labels,L ⊆ Q∗ is a
regular language over states fromQ, andF ⊆ Q∗ is an accepting regular language.

Definition 1 (runs). Let h be a hedge andA be a hedge automaton. The set of runs
RA(h) ⊆ HQ ofA onh is the set of hedges overQ inductively defined by:

RA(h1|h2) = {r1|r2 | r1 ∈ RA(h1), r2 ∈ RA(h2)} RA(0) = {0}
RA(a(h)) = {q(r) | ∃α(L) → q ∈ ∆, a ∈ α, r ∈ RA(h), roots(r) ∈ L}

Let q be a word of states, we denote byRA,q(h) ⊆ RA(h) the set of runsr such that
roots(r) = q, and often say thath evaluates toq byA. The set of accepting runs ofA
onh, denoted byRaccA (h), is defined by{r | ∃q ∈ F, r ∈ RA,q(h)}.

The language accepted byA, denotedL(A), is defined by{h | RaccA (h) 6= ∅}.

Testing emptiness of the language accepted by a hedge automaton is decidable [5].

MSO The logic MSO (Monadic Second Order logic) is the extension of the first-order
logic FO with the possibility to quantify over unary relations,i.e.over sets.

Let σ be the signature{laba | a ∈ Λ} wherelabas are unary predicates. We asso-
ciate with a hedgeh = (V,Ec, Es, λ) a finiteσ-structureSh = 〈V, {ch, ns} ∪ {labha |

a ∈ Λ}〉, such thatlabha(v) (resp.ch(v, v′), ns(v, v′)) holds inSh if λ(v) = a (resp.
(v, v′) ∈ Ec, (v, v′) ∈ Es).

We assume a countable set of first-order variables ranging over byx, y, z, . . . and a
countable set of second-order variables ranging over byX,Y, Z, . . ..

MSO formulas are given by the following syntax:

ψ ::= laba(x) | ch(x, y) | ns(x, y) | x ∈ X | ψ ∨ ψ | ¬ψ | ∃x.ψ | ∃X.ψ



φ ::= 0 empty hedge
⊤ truth
α[φ] extension
φ|φ composition
¬φ negation
φ ∨ φ disjunction
X tree variable
ξ recursion variables
µξ.φ least fixpoint
φ∗ iteration

(a) Syntax

J0Kρ,δ = {0}
J⊤Kρ,δ = HΛ

Jα[φ]Kρ,δ = {a(h) | h ∈ JφKρ,δ, a ∈ α}
Jφ|φ′Kρ,δ = {h|h′ | h ∈ JφKρ,δ, h

′ ∈ Jφ′Kρ,δ}
J¬φKρ,δ = HΛ\JφKρ,δ

Jφ ∨ φ′Kρ,δ = JφKρ,δ ∪ Jφ′Kρ,δ

JXKρ,δ = {ρ(X)}
JξKρ,δ = δ(ξ)
Jµξ.φKρ,δ =

T
{S ⊆ HΛ | JφKρ,δ[ξ 7→S] ⊆ S}

Jφ∗Kρ,δ = 0 ∪
S

i>0 JφKρ,δ| . . . |JφKρ,δ
| {z }

i times

(b) Semantics

Fig. 1. TQL logic

Let S be aσ-structure with domainV . Let ρ be a valuation mapping first-order
variables to elements fromV and second-order variables to subsets ofV . We write
S |=ρ ψ when the structureS is a model of the formulaψ under the valuationρ; this
is defined in the usual Tarskian manner and we have in particular, (i) ψ |=ρ laba(x)
if laba(ρ(x)) holds inS, (ii) ψ |=ρ ch(x, y) if ch(ρ(x), ρ(y)) holds inS, (iii) ψ |=ρ

ns(x, y) if ns(ρ(x), ρ(y)) holds inS.
A set of hedgesS is MSO -definableif there is an MSO sentenceψ such thatS =

{h | h |= ψ}. It is well-known that a language is accepted by some hedge automata iff
it is MSO-definable.

3 The Tree Query Logic
We consider here a fragment of the TQL logic defined in [7] and adapt it to unranked
ordered trees.

Syntax We assume a countable setT of tree variables ranging over byX,Y , and a
countable setR of recursion variables ranging over byξ. Letα be a finite or co-finite
set of labels fromΛ. Formulasφ from TQL are given by the syntax on Figure 1(a). We
allow cofinite sets in extensions, otherwise we could not express formulaΛ[0].
We assume thatµ is the binder for recursion variables and the notions of bound and free
variables are defined as usual. To ensure the existence of fixpoint, we will assume that
in formulasµξ.φ, the recursion variableξ occurs under an even number of negations.
A formula is said to berecursion-closedif all the occurrences of its recursion variables
are bound. A TQLsentenceis a recursion-closed formula that does not contain tree
variables. A TQL formulaφ is guardedif for any of its subformulaµξ.φ′, the variable
ξ occurs in the scope of some extension operatorα[ ] in φ′.

We assume from now on that recursion variables are bound onlyonce in formulas
and denote recvar(φ) (resp. var(φ)) the set of recursion variables (resp. tree variables)
occurring inφ. We may writea[φ] instead of{a}[φ].

SemanticsInterpretation maps a TQL formula to a set of hedges. Letρ be an assignment
of tree variables intoTΛ andδ be an assignment of the recursion variables into sets
of hedges. The interpretation of the formulaφ underρ and δ, denoted byJφKρ,δ is
inductively defined and given on Figure 1(b).



ExamplesLet us consider the following formulas:

φ = a[⊤]|⊤ (1)
φs = µξ.(a[⊤]|ξ ∨ 0) (2)

φdtd = (employee[name[Λ[0]] | dpt[Λ[0]] |manager[Λ[0]]])∗ (3)
φdd = φdtd ∧ ⊤ | employee[X ] | ⊤ |employee[X] | ⊤ (4)

φpath(a),0 = µξ.((⊤|a[ξ]|⊤) ∨ 0) (5)

The above formulaφ is interpreted as the set of hedges of length at least1, such that
the root of the first tree is labelleda. The formulaφs is interpreted as the set of hedges
{a[h1]| . . . |a[hn] | hi ∈ HΛ, n ≥ 0}. The formulaφdtd is interpreted as the set of
hedges defining employees by their name, the department theywork in, and their man-
ager whereas the formulaφdd expresses that an employee occurs twice in the database.
Finally, the models of the formulaφpath(a),0 are hedges with a path labelled byas from
one of the roots to some leaf (i.e. the empty hedge0).

The formulaφodd is interpreted as the set of hedges having an odd number of nodes:

φodd = µξo.(Λ[0] ∨ Λ[φeven(ξo)]|φeven(ξo) ∨ Λ[ξo]|ξo
whereφeven(ξo) = µξe.(0 ∨ (Λ[ξo]|ξe ∨ Λ[ξe]|ξo))

Let us denoteφpath(L),ψ = µξ.((⊤|L[ξ]|⊤) ∨ ψ) the formula whose models are
hedges containing a path labelled by elements fromL from one of the roots to a hedge
satisfyingψ. The models of the following formula are the hedges having two non-empty
paths labelled respectively byas and bybs from two of the top-level nodes, those two
paths leading to some identical subtrees

⊤ | (a[φpath(a),X ]|⊤|b[φpath(b),X ] ∨ b[φpath(b),X ]|⊤|a[φpath(a),X ])| ⊤

T

T

T

T

T
S

Fig. 2. A tree withT 6= S

The formulaφid not key is interpreted as the set of
hedges for which two nodes labelledid have identical sub-
trees (roughly speaking “the (data) value of the elementid
can not be used as a key in this XML document”)

φid not key = ⊤|Λ[φpath(Λ),id[X]]|⊤|Λ[φpath(Λ),id[X]]|⊤

The following formula states that two treesemployee
have identical subtrees rooted bydpt but different subtrees
rooted bymanager

φdtd ∧ ⊤ | employee[⊤ |dpt[X ]|manager[Y ]] | ⊤
| employee[⊤ |dpt[X ]|manager[¬Y ]] | ⊤

A hedge satisfying this formula may be considered as ill-formed assuming the existence
of some functional dependency stating thatdepartment has only onemanager.

Models of the formulaφbranch are the trees whose shapes are described on Figure
2.

φbranch = a[X |µξ.(a[X | ξ] ∨ ¬X ∧ Λ[⊤])]

φs andφodd are the only two formulas that are not guarded; however,φs is equivalent
to a[⊤]∗, which is guarded andφodd to the following guarded formula



φodd = µξo.Λ[φeven(ξo) ∨ (ξo|φeven(ξo)
∗|ξo)

∗]
φeven(ξo) = µξe.Λ[ξ∗eξo|(φeven(ξo) ∨ (ξo|φeven(ξo)

∗|ξo)
∗) ∨ 0

But the formulaµξ.(a[0]|ξ|b[0] ∨ 0) is neither guarded nor equivalent to any guarded
formula.

Definition 2 (satisfiability). A recursion-closed TQL formulaφ is satisfiable if there
exists a hedgeh and an assignmentρ such thath ∈ JφKρ.

TQL sentencesIt is easy to prove that TQL sentences can describe sets of hedges that
are not MSO-definable; for instance, the TQL sentenceµξ.(a[0]|ξ|b[0] ∨ 0) describes
a “flat” hedge of the form(a[0]nb[0]n) for n ∈ N.

Theorem 1. For any set of hedgesS, there exists a guarded TQL sentenceφ such that
JφK = S iff S is MSO-definable.

As a consequence of Theorem 4, satisfiability is decidable for guarded TQL sen-
tences. This restriction is crucial, since, by reduction ofemptiness problem for the in-
tersection of two context-free grammars, one can prove that:

Theorem 2. Satisfiability for TQL sentences is undecidable.

Adding quantificationAs in [7], one could also consider quantification over tree vari-
ables∃X and∀X with the following semantics:

J∃X.φKρ,δ =
⋃

t∈T

JφKρ[X→t],δ J∀X.φKρ,δ =
⋂

t∈T

JφKρ[X→t],δ

whereρ[X → t] is the assignment identical toρ except that it associatest with X .
Hence, the satisfiability problem from Definition 2 is equivalent to the one of closed

formulas of the form∃X1 . . .∃Xnφwhereφ is a recursion-closed TQL formula,i.e. the
existence of a tree satisfying this formula.

For more complicated alternation of quantifiers, one can easily adapt the proof from
[8] about the undecidability of the fragment of TQL without iteration, recursion and
tree variable but with quantification over labels to prove that

Theorem 3. Satisfiability for recursion-closed TQL formulas with quantification is un-
decidable (this holds even for recursion-free formulas).

Bounded TQL formulasIn bounded formulas, variables can occur in recursion only
in a restricted manner: intuitively a formula is bounded if there exists a bound on the
number of equality test performed to (non-deterministically) verify that a hedge is a
model of the formula. Boundedness appears naturally in unification problems and in
pattern languages (where variables appears a bounded number of times in terms or
patterns). But defining boundedness in the presence of recursion is a bit more technical.

In the examples we have given so far, the only formula that is not bounded is
φbranch. The following formula is also not bounded as it asks each subtree of the hedge
to be different fromX : ¬(µξ.⊤|(X ∨ Λ[ξ])|⊤)



We letβ be a recursion-closed formula s.t. no recursion variable isbound twice,
and denote byφξ the formula s.t.µξ.φξ is a subformula ofβ. To defineboundedness
formally, we introduce, for every subformulaφ of β, thegeneralized free variablesof
φ, denoted var∗β(φ), as the least solution of the following (recursive) equations:

var∗β(0) = var∗β(⊤) = ∅ var∗β(a[φ]) = var∗β(¬φ) = var∗β(µξ.φ) = var∗β(φ∗) = var∗β(φ)
var∗β(ξ) = var∗β(φξ) var∗β(X) = {X} var∗β(φ ∨ φ) = var∗β(φ|φ′) = var∗β(φ) ∪ var∗β(φ′)

Note that the least solution of these equations is computable. An operator occurs
positively (resp. negatively) in a formula if it occurs under an even (resp. odd) number
of negations.

A formulaβ is boundedif it satisfies the following properties:

1. for any subformulaφ∗, var∗β(φ) = ∅;
2. for any subformulaφ|φ′ where| occurs negatively, var∗β(φ) = var∗β(φ

′) = ∅.
3. each formulaφ|φ′ where | occurs positively and each formulaφ ∨ φ′ where∨

occurs negatively satisfy∀ξ ∈ recvar(φ), var∗β(ξ) ∩ var∗β(φ
′) = ∅, and∀ξ′ ∈

recvar(φ′), var∗β(ξ
′) ∩ var∗β(φ) = ∅.

As a consequence of Theorem 1, this fragment is strictly moreexpressive than
guarded TQL sentences, as it allows for tree isomorphism tests. Combining Theorems
6 and 5 of the next two sections proves our main result:

Theorem 4. Satisfiability is decidable for bounded guarded TQL formulas.

RemarksOur logic can be seen as an extension of the (recursive) pattern-language of
XDuce [13]. The main difference here is that we allow Booleanoperators and drop the
linear condition for variables of XDuce. The pattern-matching mechanism of CDuce
[1] extends the one from XDuce with Boolean operations and weaker conditions on
variables. However, no equality tests between terms can be performed making our logic
more powerful. Since we consider an infinite alphabet and we allow equality tests be-
tween trees, we can, as a side effect, simulate data values asdone in some of the exam-
ples we gave.

4 Tree Automata with Global Equalities and Disequalities

In this section, we present a new extension of hedge automata(called TAGED) with the
ability to test tree equalities or disequalities globally on the run. We prove decidability
of emptiness for a particular class of TAGED, called boundedTAGED, which we use
to decide satisfiability of bounded TQL formulas.

4.1 Definitions

Definition 3 (TAGED). A tree automaton with global equalities and disequalities (TAGED)
is a 6-tupleA = (Λ,Q, F,∆,=A, 6=A) such that:

• (Λ,Q, F,∆) is a hedge automaton;
• =A is an equivalence relation on a subset ofQ;
• 6=A is a non-reflexive symmetric binary relation onQ;



A TAGED is positiveif 6=A= ∅, and is simply denoted byA = (Λ,Q, F,∆,=A). The
set{q | ∃q′ ∈ Q, q =A q

′} is denoted byE, and for all statesq ∈ E, we denote by[q]
its equivalence class. The set{q | ∃q′ ∈ Q, q 6=A q′} is denoted byD. The notion of
run differs from hedge automata as we add equality and disequality constraints.

Definition 4 (runs). LetA = (Λ,Q, F,∆,=A, 6=A) be a TAGED. A runr of the hedge
automaton(Λ,Q, F,∆) on a hedgeh satisfies the equality constraints if the following
holds:∀i ∈ {1, . . . , n}, ∀u, v ∈ nodes(h), labr(u) =A labr(v) =⇒ h|u = h|v.

Similarly, the runr onh satisfies the disequality constraints if the following
holds:∀i ∈ {1, . . . , n}, ∀u, v ∈ nodes(h), labr(u) 6=A labr(v) =⇒ h|u 6= h|v.

The set of accepting runs ofA onh, denotedRaccA (h), is the set of accepting runs
r of (Λ,Q, F,∆) which satisfy the equality and disequality constraints. The language
accepted byA, denotedL(A), is the set of hedgesh such thatRaccA (h) 6= ∅.

Remark thatL(A) is not necessarily regular, as illustrated by Example 1.

Example 1.LetΛ be an infinite alphabet. LetQ = {q, qX , qf},F = {qf}, and let∆ be
defined as the set of following rules:Λ(q∗) → q Λ(q∗) → qX a(qXqX) → qf
Let A1 be the positive TAGED(Λ,Q, F,∆, {qX =A1

qX}). ThenL(A1) is the set
{a(t|t) | a ∈ Λ, t ∈ TΛ}, which is known to be non regular [10].

Example 2.Let Q = {q, qX , qX , qf}, F = {qf}, and let∆ defined as the set of fol-
lowing rules:

Λ(q∗) → qX Λ(q∗) → q Λ(q∗) → qX a(qX(qX + qf )) → qf

LetA2 be the TAGED(Λ,Q, F,∆, {qX =A2
qX}, {qX 6=A2

qX}). ThenL(A2) is the
set of hedges whose shapes are described on Figure 2.

RemarksExtensions of tree automata which allow for syntactic equality and disequality
tests between subterms have already been defined by adding constraints to automaton
rules. E.g., adding the constraint1.2 = 2 to a rule means that one can apply the rule at
positionπ only if the subterm at positionπ.1.2 is equal to the subterm at positionπ.2.
Testing emptiness of the recognized language is undecidable in general [16] but two
classes with a decidable emptiness problem have been emphasised. In the first class,
automata are deterministic and the number of equality testsalong a path is bounded [11]
whereas the second restricts tests to sibling subterms [2].This latter class has recently
been extended to unranked trees [15], the former one has beenextended to equality
modulo equational theories [14]. But, contrarily to TAGED,in all these classes, tests
are performed locally, typically between sibling or cousinsubterms. Finally, automata
with local and global equality tests, using one memory, havebeen considered in [9].
Their emptiness problem is decidable, and they can simulatepositive TAGEDs which
use at most one state per runs to test equalities, but not general positive TAGEDs.

Definition 5 (bounded TAGED).A bounded TAGED is a 7-tupleA = (Λ,Q, F,∆,=A

, 6=A, k) whereA′ = (Λ,Q, F,∆,=A, 6=A) is a TAGED andk ∈ N is a natural. An
accepting runr ofA on a treet is an accepting run ofA′ on t such that the following
is true: |{u | labr(u) ∈ E ∪D}| ≤ k.
We say thatA and its accepting runs arek-bounded and may write(A′, k) instead of
A. We say that a TAGEDB is equivalent to a bounded TAGEDA if L(A) = L(B).



The TAGED of Example 1 is equivalent to the 2-bounded TAGED(A1, 2), whereas
one can prove that the one of Example 2 is not equivalent to anybounded TAGED.

Theorem 5 (emptiness of bounded TAGED).LetA be a bounded TAGED. It is de-
cidable to know whetherL(A) = ∅ holds or not.

The rest of this subsection is dedicated to the proof of this theorem, first for positive
bounded TAGED, then for full bounded TAGED.

4.2 Configurations

We define a tool calledconfigurationsused to decide emptiness of positive bounded
TAGED. In this subsection, the 6-tupleA = (Λ,Q, F,∆,=A, k) always denotes a
positive bounded TAGED. We suppose thatA accepts trees only, i.e.F ⊆ Q. It is not
difficult to adapt the decidability result to hedge acceptors. Moreover, we suppose that
for any runr -even non accepting- on a tree, the cardinal of the set of nodes labelled
by states of E is at mostk. Indeed, it is easy to transformA to ensure this property by
enriching states with a counter up tok. We show how to decompose a positive TAGED
into an equivalent and computable finite set of configurations. Since testing emptiness
of configurations is easily decidable, we get the decidability result for positive TAGED.
Informally, configurations are (non-regular) tree acceptors which make explicit parent
or ancestor relations between nodes for which equality tests are performed byA. These
are DAG-like structures labelled by sets of states ofA. A tree t is accepted by some
configurationc if the unfolding ofc can be embedded into a runr of A on t, such that
labels ofr belong to labels ofc. By putting suitable rules on how sets of states occur as
labels ofc, we can enforcer to respect equality constraints.

Definition 6 (configurations).A configurationc ofA is a rooted directed acyclic graph
such that:(i) every node carries a symbol from2Q, (ii) outgoing edges of a node are
ordered, and(iii) for every equivalence class[q] of =A, there is at most one setP ⊆ Q

such that[q] ∩ P 6= ∅ andP is a label ofc.

Fig. 3.A configuration (nat-
urals represent the order on
edges)

Nodes ofc are denoted bynodes(c). For every node
u ∈ nodes(c), we denote byc|u the subgraph ofc induced
by the nodes reachable fromu in c, and byu1, . . . , un the
n successor nodes ofu given in order. Note that it might be
the case thatui = uj for somei, j ∈ {1, . . . , n}. Finally,
we always denote bylabc(u) ⊆ Q the label of nodeu in
c. Fig. 3 illustrates a configuration whose nodes are labelled
either by set of states{q, q′}, {s}, {p} or {r}. Note that the
second successor of the root is the node labelled{r}, while
its first and third successor is the node labelled{q, q′}.

In order to define semantics of configurations, we first introduce some useful no-
tions about contexts. Forn ≥ 0, we definen-ary contextsCs as usual, and the hole
substitution with treest1, . . . , tn is denoted byC[t1, . . . , tn]. Note that0-ary contexts
are just trees. See [10] for a formal definition. Givenn statesp1, . . . , pn ∈ Q and an
n-ary contextC, we denote byC[p1, . . . , pn] the tree overΛ ∪ Q, where eachpi is



viewed as a constant symbol. We letA∗ be the TAGED over alphabetΛ ∪ Q which
is justA with additional rulesq(ǫ) → q, for everyq ∈ Q. We say thatC[p1, . . . , pn]
evaluates top, denotedC[p1, . . . , pn] →A p if there is a runr of A∗ onC[p1, . . . , pn]
such that roots(r) = p. For any setS ⊆ Q, we writeC[p1, . . . , pn] →Q\S q if states
fromS does not occur inr, except at the root and at the leaves labelledp1, . . . , pn.

We now view configurations as a way to combine contexts to formtreest, with addi-
tional requirements which enforce existence of a runr ofA ont. Condition(iii) of Def-
inition 6 ensuresr satisfies the equality constraints. This motivates the semantics of con-
figurations. More formally, letc be a configuration ofA. A mappingλ fromnodes(c)
into contexts overΛ is an interpretationof c if for every nodeu ∈ nodes(c), if u
has exactlyn successor nodesu1, . . . , un in c, thenλ(u) is ann-ary context. More-
over,λ must satisfy the following: for every nodeu ∈ nodes(c) and every nodes
u1, . . . , un ∈ nodes(c), if u1, . . . , un are the successor nodes ofu then the following
holds (called condition(P )):

∀p ∈ labc(u), ∃p1 ∈ labc(u1) . . . ∃pn ∈ labc(un), λ(u)[p1, . . . , pn] →Q\(E∪D) p

As A is positive, the setD is empty, but we keep this definition for uniformity
reasons when dealing with disequalities. Every nodeu ∈ nodes(c), together with the
mappingλ, define a treet(u, λ) overΛ as follows:t(u, λ) = λ(u)[t(u1, λ), . . . , t(un, λ)],
wheren ∈ N andu1, . . . , un are the successor nodes ofu in c. Note that this definition
is well-founded sincec is a DAG. As we will see, condition(P ) ensures the existence
of a run ofA on t(u0, λ), whereu0 is the root ofc.

Definition 7 (tree language recognized by a configuration).Letc be a configuration
ofA. The tree language recognized byc, denotedL(A, c), is defined by the set of trees
t(u0, λ), whereu0 is the root ofc, andλ is an interpretation ofc.

Trees accepted by configuration of Fig. 3 are necessarily of formC[C′[t], t′, C′[t]],
for some contextsC,C′, C′′ and treest, t′. As already said, the constraints on the con-
texts and the configuration ensure the existence of a run on the trees ofL(A, c) which
satisfies the equality constraints. In particular, we can prove the following:

Proposition 1. Let c be a configuration ofA such thatL(A, c) is nonempty. Lett be a
tree ofL(A, c), andu0 ∈ nodes(c) be the root ofc. For everyp ∈ labc(u0), there is
a runr ∈ RA,p(t) which respects the equality constraints.

The converse holds too, and we can bound the size of configurations:

Proposition 2. Let t ∈ TΛ be a tree such thatt ∈ L(A). Then there is a configuration
c of size at most|Q|.k|Q| such thatt ∈ L(A, c).

Sketch of proofWe start from an accepting runr of A on t and define an equiva-
lence relation on a subset ofnodes(t). Informally, two nodesu, v are equivalent if an
equality test betweent|u andt|v is performed inr. This is the case for instance when
labr(u) =A labr(v). Each equivalence class will represent a node ofc, to enforce
equalities. �

Hence, we can finitely represent the language recognized byA as a computable set
of configurations ofA, as stated below:



Corollary 1. LetA be ak-bounded positive TAGED. We letD(A) be the set of config-
urations ofA whose sizes are bounded by|Q|.k|Q|. The following holds:

L(A) =
⋃

c∈D(A)

L(A, c)

Moreover, we can decide emptiness of the language recognized by any configura-
tion.

Lemma 1. Given a configurationc, it is decidable to know whetherL(A, c) = ∅ holds.

Proof (Sketch).For all nodesu, u1, . . . , un s.t.u1, . . . , un are the successors ofu, it
suffices to test whether there is ann-ary contextC s.t. for all statep ∈ labc(u), there
arep1 ∈ labc(u1),. . . ,pn ∈ labc(un) s.t.C[p1, . . . , pn] →Q\E p. We can represent
the set of contextsC such thatC[p1, . . . , pn] →Q\E p by a tree automatonA(pi)i,p.
Then, it suffices to test emptiness of

⋂
p∈P

⋃
(pi)i∈

Q

i
labc(ui)

L(A(pi)i,p), which is de-
cidable, since regular languages are closed by Boolean operations.

As a corollary of Lemma 1 and Corollary 1, we get the following:

Proposition 3. Emptiness of positive bounded TAGED is decidable.

4.3 Adding disequalities to positive bounded TAGED

In the previous section, we have shown that emptiness of positive bounded TAGED
is decidable. In this section, we extend this result to full bounded TAGED.A always
denotes ak-bounded TAGED. The definition of configurations ofA remains unchanged,
and the setD(A) still denotes the set of configurations ofA whose size is bounded by
|Q|.k|Q|. We have the following inclusion:L(A) ⊆

⋃
c∈D(A) L(A, c), but the other one

does not hold in general, since configurations do not requiredisequality constraints to
be satisfied. We show how an additional test on configurationsc allows us to decide
whetherL(A) ∩ L(A, c) is empty, which will be sufficient to decide whetherL(A) is
empty. Informally, letc be a configuration andλ be an interpretation ofc. We say thatλ
satisfies the disequalities ofc if for all nodesu, v ∈ nodes(c), if there arep ∈ labc(u)
andq ∈ labc(v) such thatp 6=A q, thent(u, λ) 6= t(v, λ).

We now relate the problem of finding such an interpretation tocontext disunifica-
tion. For all nodesu ∈ nodes(c), we let cxtc(u) be the set of contexts satisfying con-
dition (P ) of the definition of interpretation. We define the notion ofpartial interpreta-
tion β of c, as a mapping fromnodes(c) into contexts, such that it maps every nodeu

such that cxtc(u) is finite into a context of cxtc(u), and every other nodev to a context
@v(•, . . . , •) with n holes (ifv hasn successors), where@v is a fresh symbol such that
@v 6∈ Λ. Note that treest(u, β) are trees over alphabetΛ ∪ {@v | v ∈ nodes(c)}.
We can show the following, by using context disunification (symbols@v are viewed as
context variables):

Lemma 2. LetA be a bounded TAGED. We haveL(A) 6= ∅ iff there exist a configu-
ration c ∈ D(A) and a partial interpretationβ of c such thatβ satisfies the disequality
constraints ofc. Moreover, it is decidable to know whether such an interpretation β
exists.

As a corollary, by combining Lemma 2 and Lemma 1, we get the proof of Theorem 5.



5 From TQL to Automata
In this section,φ denotes a recursion-closed and guarded TQL formula over tree vari-
ablesX1, . . . , Xn. We sketch the construction of a TAGEDAφ such that for all hedges
h ∈ HΛ, we haveh ∈ L(Aφ) iff there exists a valuationρ : var(φ) → TΛ such that
h ∈ JφKρ. Moreover, we proveAφ to be equivalent to a computable bounded TAGED
wheneverφ is bounded.

In a first step, we transformφ into an equivalent system of fixpoint equations, and
then sketch the construction ofAφ starting from this system. This construction extends
the construction of [4]. This extension is non-trivial, since it manages tree variables,
which induce non-determinism in the produced tree automaton. Moreover, even for
sentences, this construction is different, since trees areordered.

System of equationsWe define dual connectives for parallel composition and Kleene
star. We letφ1||φ2 as a shortcut for¬(¬φ1|¬φ2), φ⋄1 for ¬(¬φ1)

∗ andX for ¬X∧Λ[⊤].
A system of fixpoint equationsΣ is a sequence of equationsξ1 = rhs1, . . . , ξn = rhsn
where everyrhsi has one of the following form:

0 0 ξ ∨ ξ′ ξ ∧ ξ′ α[ξ] ξ|ξ′ ξ||ξ′ X X ξ∗ ξ⋄

The last fixpoint variable,ξn, is denoted by last(Σ). The set of tree variables occur-
ring inΣ is denoted by var(Σ). Systems of equations are interpreted over the complete
lattice(2HΛ ,

⋃
,
⋂

), modulo an assignmentρ : var(Σ) → TΛ. We consider the follow-

ing monotonic operations over2HΛ , moduloρ: 0 is interpreted as{0HΛ}, 0 as{0HΛ}
(the overline denotes the complement inHΛ),∨ by∪,∧ by∩,α[.] as the unary operator
which maps any set of hedgesH ⊆ HΛ into {a[h] | a ∈ α, h ∈ H}, .|. as the binary
operator which maps two sets of hedgesH,H ′ intoH |H ′ = {h|h′ | h ∈ H,h′ ∈ H ′},

its dual .||. mapsH,H ′ into H ||H ′ = H |H ′. The Kleene star.∗ and its dual.⋄ are
interpreted similarly. Finally,X is interpreted byρ(X) andX by TΛ\{ρ(X)}.

The solution ofΣ over(2HΛ ,
⋃
,
⋂

) moduloρ is a mapping from fixpoint variables
of Σ into 2HΛ , and is denoted by SolH(Σ, ρ). We can push down the negations to
the leaves ofφ, using the dual connectives, and introduce fixpoint variables for every
position inφ, which allow to construct a system of equationsSφ such that var(Sφ) =
var(φ) and the following holds:

Lemma 3. For all valuationsρ : var(Sφ) → TΛ, we haveJφKρ = SolH(Sφ, ρ)(last(Sφ))

E.g., the equation system associated with the formulaµξ.(a[ξ] ∨ (µξ′.(b[ξ′] ∨X))) is
{ξ′ = ξ2 ∨ ξ3; ξ2 = b[ξ′]; ξ1 = a[ξ]; ξ3 = X ; ξ = ξ1 ∨ ξ

′}.

Ideas of automaton construction for sentencesIn this paragraph, we assume thatφ is
a sentence. Checking whether a hedgeh is a solution ofSφ is similar to a run of some
hedge automaton onh. Let us consider the systemS = {ξ = ξ1 ∨ ξ2; ξ1 = a[ξ]; ξ2 =
0}, where the last variable isξ. Solutions ofS are chains labelled byas. To check
whether hedgea(0) is a solution ofξ, first verify thata(0) is a solution ofξ1 or a
solution ofξ2. One can easily see thata(0) is not a solution ofξ2. It remains to verify
whethera(0) is a solution ofξ1 = a[ξ], by verifying that0 is a solution ofξ, etc... This
can be done by an automaton with transition rulesa(ǫ + qa[ξ]) → qa[ξ], whereqa[ξ] is



a final state. We define the set of (final) states byQ = F = {qa[ξ]}. Let us interpret
S over2Q

∗

, whereQ∗ is the set of words overQ. We interpret∨ by ∪, 0 by {ǫ}, and
a[ξ] by {qa[ξ]}. Solutions ofξ are denoted bys(ξ) (and similarly for other variables).
Hence we gets(ξ2) = {ǫ}, s(ξ1) = {qa[ξ]}, ands(ξ) = {ǫ, qa[ξ]}. Which trees evaluate
to qa[ξ] ? Trees of the forma(h) whereh evaluates to some word of states froms(ξ).
Hence, we can define transitiona(s(ξ)) → qa[ξ].

Things get more complicated when adding intersection. For instance, consider the
systemS′ = {ξ1 = a[ξ]; ξ2 = a[ξ′]; ξ′ = 0; ξ = ξ1 ∧ ξ2}. If we interpret this system as
before, with statesqa[ξ] andqa[ξ′], we would gets(ξ) = ∅. Hence, states should carry
enough information to know if the current tree is a solution of a[ξ], a[ξ′], or both. In
the construction we provide, every state is a tuple of atoms of the formα[ξ], α[⊤], or
α[¬ξ], for every right-hand side of the formα[ξ] occuring in the system. If some tree
t evaluates to a tuple which has a component equal toα[ξ], it means thatt is of the
form a(h), wherea ∈ α andh is solution ofξ. If the component isα[⊤] or α[¬ξ], it
means thata(h) is not a solution ofα[ξ], because, in the first case,a 6∈ α, and in the
second one,a ∈ α, buth is not a solution ofξ. Knowing this complete information, i.e.
which right-hand sides of the formα[ξ] are satisfied or not by the current tree, we are
able to construct exactly one rule per state, by solving the system on sets of words of
states, with suitable interpretations. As the formula is guarded, solutions of the system
are regular state word languages. We then get a deterministic hedge automaton whose
accepted trees are the solutions of the system.

Adding tree variablesWhen adding variables, we cannot keep the automaton deter-
ministic, since subtrees will be captured non-deterministically. For instance, consider
the systemS = {ξ′′ = X ; ξ′ = ξ′′|ξ′′; ξX = a[ξ′]; ξ2 = 0; ξ3 = ξ∗⊤; ξ1 = Λ[ξ3]; ξ⊤ =
ξ1 ∨ ξ2; ξ = ξ⊤ ∧ ξX}, where the last variable isξ. Given a valuationρ : var(S) → TΛ,
the systemS has a unique solution, moduloρ, which is a(ρ(X)|ρ(X)). A TAGED
accepting the solutions ofS is the TAGED of Example 1 of Section 4. It is non-
deterministic, since it has to choose to go in a stateqX which will enforce the TAGED
to test whether the two sons of the root are equal.

(Λ[ξ3], {a[ξ
′]},∅)

(Λ[ξ3],∅, {X}) (Λ[ξ3],∅, {X})

Fig. 4.Run ofAφ ona(a(0)a(0))

As tree variables induce a kind of non-
determinism, we emphasize two kinds of recur-
sion variables: deterministic recursion variables,
for which the problem of checking whether a
given hedge is a solution does not involve tree
variables, such asξ⊤, ξ1, ξ2 andξ3 in our exam-
ple; and non-deterministic one:ξ,ξX ,ξ′ andξ′′.

States of the automaton we construct have three components.The first component is
induced by deterministic recursion variables and simulatea classical hedge automaton,
as for the case of sentences. The second component is inducedby non-deterministic
recursion variables, and collects atoms of the formα[ξ], whereξ is non-deterministic,
for which the current tree is the solution. In other words, itguesses the positions in the
tree under which capture variables occur. Third componentsare sets of variablesX or
X, meaning that equality or disequality tests are performed on the current tree.

Transition rules are obtained by suitable interpretation of the system over words
of states. Finally, two states are equivalent for the automaton if their third component



shares a tree variable. Disequalities are defined similarly. For instance, an accepting
run of the automaton forS, on the treea(a(0)a(0)), is represented in Fig. 4. The state
(Λ[ξ3],∅, {X}) is equivalent to itself.

Theorem 6. Letφ be a guarded TQL formula. There is a computable TAGEDAφ such
that for all hedgesh, we haveh ∈ L(Aφ) iff there exists a valuationρ : var(φ) → TΛ

such thath ∈ JφKρ.
Moreover, ifφ is bounded, the TAGEDAφ is equivalent to the bounded TAGED

(Aφ, B), for some computable boundB ∈ N.

To compute the boundB, we interpret the systemSφ on naturals, with suitable
interpretations (for instance,X is interpreted by1, ∧ by +, and∨ bymax).

6 Extending MSO with Tree Isomorphism Tests
In this section, we propose an extension of MSO for unranked trees with isomorphism
tests between trees.

Let ∼ be a binary predicate s.t. for a structureSh associated with a hedgeh and a
mappingρ from {x, y} to nodes ofh, Sh |=ρ x ∼ y holds if the two subtrees rooted at
respectivelyρ(x) andρ(y) in h are isomorphic. We consider sentences of the form

Q1x1Q2x2 . . . Qnxnψ

whereQi ∈ {∃, ∀} andψ is an MSO formula extended with atomsxi ∼ xj
(1 ≤ i, j ≤ n). We callMSO∼ this logic. We will also consider the fragmentMSO∃

∼

for which formulas satisfyQ1 = Q2 = . . . = Qn = ∃. Remark thatψ can again
contain quantifiers. Hence, since tree isomorphism cannot be expressed inMSO [10],
MSO∼ andMSO∃

∼ are stricly more expressive thanMSO. By reduction of the Post
correspondence problem, we can prove that:

Theorem 7. Satisfiability forMSO∼ is undecidable.

However,MSO∃
∼ and bounded TAGED are equally expressive: for any formulaϕ

in MSO∃
∼, one can compute a bounded TAGED, whose size is non-elementary in the

size ofϕ, accepting the models ofϕ. The converse holds too. As a consequence of
decidability of emptiness for bounded TAGED, we have:

Theorem 8. Satisfiability is decidable forMSO∃
∼.

7 Conclusion

In this paper, we have considered the spatial logic TQL with tree variables. We have
proved that for the guarded fragment when variables appear in a bounded way then the
satisfiability problem is decidable. To do so, we have introduced a new class of tree
automata, called TAGED, permitting to test global equalities and disequalities on the
accepted trees. Finally, we have used TAGED to prove decidability for an extension of
MSO with isomorphism tests interpreted over unranked trees.
We speculate that the boundedness condition is not requiredfor the decidability of
emptiness of TAGED, as pumping technics dealing with constraints may be applicable.
However, it is non-trivial, since TAGED are not determinizable in general. This would
imply that the full guarded TQL with trees variables is decidable. Another extension



would be to consider hedge variables. This problem seems to be non trivial as the satis-
fiability problem for such formulas could encode word equations.
We emphasized a correspondence betweenMSO∃

∼ and bounded TAGED. It would be
interesting to exhibit a fragment ofMSO∼ equivalent to full TAGED.
The TQL system also includes a transformation language; we aim at using TAGED
automata to type these transformations and more generally,tree transducers.
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