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Abstract: Neural fields are an interesting option for modelling macroscopic parts of the
cortex involving several populations of neurons, like cortical areas. Two classes of neural
field equations are considered: voltage and activity based. The spatio-temporal behaviour
of these fields is described by nonlinear integro-differential equations. The integral term,
computed over a compact subset of R?, ¢ = 1, 2,3, involves space and time varying, pos-
sibly non-symmetric, intra-cortical connectivity kernels. Contributions from white matter
afferents are represented as external input. Sigmoidal nonlinearities arise from the rela-
tion between average membrane potentials and instantaneous firing rates. Using methods
of functional analysis, we characterize the existence and uniqueness of a solution of these
equations for general, homogeneous (i.e. independent of the spatial variable), and locally
homogeneous inputs. In all cases we give sufficient conditions on the connectivity functions
for the solutions to be absolutely stable, that is to say independent of the initial state of
the field. These conditions bear on some compact operators defined from the connectivity
kernels, the sigmoids, and the time constants used in describing the temporal shape of the
post-synaptic potentials. Numerical experiments are presented to illustrate the theory. An
important contribution of our work is the application of the theory of compact operators
in a Hilbert space to the problem of neural fields with the effect of providing very simple
mathematical answers to the questions asked by neuroscience modellers.
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Stabilité et synchronisation dans des champs neuronaux

Résumé : Les champs neuronaux offrent la possibilité de modéliser des parties macrosco-
piques du cortex faisant intervenir plusieurs populations de neurones, comme les aires cor-
ticales. On considére deux classes d’équations de champs neuronaux, basées respectivement
sur le potentiel et I'activité. Le comportement spatio-temporel de ces champs est décrit
par des équations intégro-différentielles non-linéaires. Le terme intégral, calculé sur une
partie compacte de R?, ¢ = 1,2, 3, fait intervenir des noyaux de connectivité intra-corticale
dépendants du temps et de l'espace, et généralement non symétriques. Les contributions
provenant de la matiére blanche sont prises en compte par un terme d’entrée extérieure. Des
non-linéarités sigmoidales sont introduites par la relation entre les potentiels de membrane
moyens et les taux de décharge instantanés. Grace a des méthodes d’analyse fonctionnelle,
on caractérise 1’existence et 1’unicité d’une solution & ces équations pour des entrées quel-
conques, homogeénes (i.e., indépendantes de la variable d’espace) et localement homogénes.
Dans tous ces cas, on donne des conditions suffisantes sur les fonctions de connectivité pour
que les solutions soient absolument stables, c’est-a-dire indépendantes de 1’état initial du
champ. Ces conditions portent sur des opérateurs compacts définis & partir des noyaux
de connectivité, des sigmoides et des constantes de temps caractéristiques des potentiels
post-synaptiques. Des exemples numériques sont présentés pour illustrer la théorie. Une
contribution importante de notre travail est 'application de la théorie des opérateurs com-
pacts sur un espace de Hilbert aux problémes de champs neuronaux, qui donne des réponses
mathématiques simples aux questions posées par les modélisateurs en neurosciences.

Mots-clés : champs neuronaux, équations intégro-différentielles, opérateurs compacts,
espaces de Hilbert, stabilité, synchronisation, masses neuronales, colonnes corticales.
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1 Introduction

We model neural fields as continuous networks of cortical units, and focus on the ability
of these units to synchronize. We therefore emphasize is the dynamics and spatio-temporal
behaviour.

Cortical units are built from a local description of the dynamics of a number of interacting
neuron populations, called neural masses [12|, where the spatial structure of the connections
is neglected. These “vertically” built units can be thought of as cortical columns [22] 23] [2].
Probably the most well-known neural mass based column model is that of Jansen and Rit [17]
based on the original work of Lopes Da Silva, Van Rotterdam and colleagues [19] 20, 28]. A
complete analysis of the bifurcations of this model can be found in [14]. More realistic models
can be derived from experimental connectivity studies, such as the one shown in figure [l
This figure, adapted from [15], is based on the work of Alex Thomson and colleagues [27].
It shows the local connectivity graph of six populations of neurons and can be thought of
as a model of a column comprising six interacting neural masses.

Such columns are then assembled spatially to form the neural field, which is meant to
represent a macroscopic part of the neocortex, e.g. a visual area such as V1. Connections
between columns are intra-cortical (gray matter) connections. Connections made via white
matter with, e.g., such visual areas as the LGN or V2 are also considered in our models, but
are treated as input/output quantities.

There are at least three reasons why we think this is the relevant granularity to do
modelling

e Realistic modelling of a macroscopic part of the brain at the scale of the neuron is
still difficult for obvious complexity reasons. Starting from mesoscopic building blocks
like neural masses, described by the average activity of their neurons, is therefore a
reasonable choice.

e While MEG and scalp EEG recordings mostly give a bulk signal of a cortical area,
multi-electrode recordings, in vitro experiments on pharmacologically treated brain
slices and new imaging techniques like extrinsic optical imaging can provide a spatially
detailed description of neural masses dynamics in a macroscopic part of the brain like
an area.

e The column/area scales correspond to available local connectivity data. Indeed, these
are obtained by averaging on local populations of neurons we can think of as neural
masses. Besides, local connectivity is supposed to be spatially invariant within an
area.

We now present a general mathematical framework for neural field modelling that agrees
with the ideas of using average descriptions of neuronal activity and spatial invariance of
the local connectivity across the field.

In section [2] we describe the local and spatial models of neural masses and derive the
equations that govern their spatio-temporal variations. In section [3] we analyze the problem

RR n° 6212
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Figure 1: A simplified model of local cortical interactions based on six neuron populations.
This local connectivity graph can be seen as a model of a cortical column composed of six
interacting neural masses. There are three layers corresponding to cortical layers IT/III, IV
and V, and two types of neurons (excitatory ones in red and inhibitory ones in blue) in
each of these layers. The size of the arrows gives an idea of the strength of the connectivity
between populations. This figure is adapted from [15].
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Stability and Synchronization in Neural Fields 5

of the existence and uniqueness of the smooth general and homogeneous solutions of these
equations. In section [4] we study the stability of these solutions with respect to the initial
conditions. In section[5]we extend this analysis to the stability of the homogeneous solutions,
when they exist. In section [6] we revisit the functional framework of our analysis and
extend our results to non-smooth functions with the effect that we can discuss spatially
local stability and synchronization of neural masses. In section [7] we present a number of
numerical expereriments to illustrate the theory and conclude in section [8]

2 The models

We discuss local and spatial models.

2.1 The local models

We consider n interacting populations of neurons such as those shown in figure[Il The follow-
ing derivation is built after Ermentrout’s review [§]. We consider that each neural population
i is described by its average membrane potential V;(¢) or by its average instantaneous fir-
ing rate v;(t), the relation between the two quantities being of the form v;(t) = S;(V;(t))
[13][6], where S; is sigmoidal. The functions S;, i = 1,-- -, n satisfy the following properties
introduced in the

Definition 2.1 For all i = 1,---,n, S; and S} are positive and bounded. We note S;,, =
sup, S;(x), Sm = max; Sim, S, = sup, Si(x) and DS,, = max; S, . Finally, we define
DS,,, as the diagonal matriz diag(S,,,).

Neurons in population j are connected to neurons in population i. A single action potential
from neurons in population j is seen as a post-synaptic potential PSP;;(t — s) by neurons
in population i, where s is the time of the spike hitting the terminal and ¢ the time after
the spike. We neglect the delays due to the distance travelled down the axon by the spikes.

Assuming that the post-synaptic potentials sum linearly, the average membrane potential
of population 7 is

Vi(t) =) PSP;(t—ty)
gk

where the sum is taken over the arrival times of the spikes produced by the neurons in
population j. The number of spikes arriving between ¢t and ¢ + dt is v;(t)dt. Therefore we
have

t t
Vi(t) = Z/ PSPj(t — s)v;(s)ds = Z/ PSP;(t — 5)S;(Vi(s)) ds,
j to i to
or, equivalently

AOEESDS /t PSPyt — s);(s) ds (1)

RR n° 6212
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The PSP;;s can depend on several variables in order to account for adaptation, learning,
etc...

There are two main simplifying assumptions that appear in the literature [8] and yield two
different models.

2.1.1 The voltage-based model

The assumption, made in [16], is that the post-synaptic potential has the same shape no
matter which presynaptic population caused it, the sign and amplitude may vary though.
This leads to the relation

PSPij (t) = wijPSPi(t).

If w;; > 0 the population j excites population i whereas it inhibits it when w;; < 0.
Finally, if we assume that PSP;(t) = ke~ /7Y (t) (where Y is the Heaviside distribu-
tion), or equivalently that

we end up with the following system of ordinary differential equations

Vi) | Vi) N o e g
it =R S 00) + T 1) (3)

that describes the dynamic behaviour of a cortical column. We have added an external
current o (¢) to model the non-local connections of population 4.

We introduce the n x n matrices W such that W;; = k;w;;, and the function S, R” — R"
such that S(x) is the vector of coordinates S;(x;). We rewrite (3)) in vector form and obtain
the following system of n ordinary differential equations

V = —LV + WS(V) + Ly, (4)

where L is the diagonal matrix L = diag(1/7).

2.1.2 The activity-based model

The assumption is that the shape of a PSP depends only on the nature of the presynaptic
cell, that is
PSPZ‘j (t) = ’LUZ‘J‘PSP]‘ (t)

As above we suppose that PSP;(t) satisfies the differential equation (2) and define the
activity to be

A(t) = [t PSP;(t — s)vj(s)ds.

INRIA
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A similar derivation yields the following set of n ordinary differential equations

dA;(t At . ‘
( ) + ( ) :szz Zw”A](t)—’_Iéxt(t) , Z:]_7-~- .
' j

dt T,

We include the k;s in the sigmoids S;, set W;; = w;;, and rewrite this in vector form

A = LA + S(WA + 1), (5)

2.2 Neural fields models

We now combine these local models to form a continuum of columns, e.g., in the case of a
model of a significant part {2 of the cortex. From now on we consider a compact subset {2
of RY, ¢ =1, 2, 3. This encompasses several cases of interest.

When ¢ = 1 we deal with one-dimensional neural fields. Even though this appears
to be of limited biological interest, it is one of the most widely studied cases because of
its relative mathematical simplicity and because of the insights one can gain of the more
realistic situations.

When ¢ = 2 we discuss properties of two-dimensional neural fields. This is perhaps more
interesting from a biological point of view since {2 can be viewed as a piece of cortex where
the third dimension, its thickness, is neglected. This case has received by far less attention
than the previous one, probably because of the increased mathematical difficulty.

Finally ¢ = 3 allows us to discuss properties of volumes of neural masses, e.g. cortical
sheets where their thickness is taken into account |18} [3].

The results that are presented in this paper are independent of q. Nevertheless, we have
a good first approximation of a real cortical area with ¢ = 2, and cortical depth given by
the index ¢ = 1,--- ,n of the considered cortical population, following the idea of a field
composed of columns, or equivalently, of interconnected cortical layers.

We note V(r,t) (respectively A(r,t)) the n-dimensional state vector at the point r of
the continuum and at time t. We introduce the n x n matrix function W(r, r’,¢) which
describes how the neural mass at point r’ influences that at point r at time ¢. More precisely,

W;;(r,r’,t) describes how population j at point r’ influences population ¢ at point r at time
t. We call W the connectivity matrix function. Equation (4) can now be extended to

V,(r,t) = —LV(r,t) +/ W(r,r', t)S(V(r',t)) dr’ + Loy (r, 1), (6)
)
and equation (B]) to

Ai(r,t) = —LA(r,t) + S (/Q W(r,r', t)A(r',t)) dr’ + Iext(r,t)> . (7

RR n° 6212
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A special case which will be considered later is when W is translation invariant, W (r,r’,t) =
Wi(r —r',t). We give below sufficient conditions on W and I for equations (6) and (7)
to be well-defined and study their solutions.

3 Existence and uniqueness of a solution

In this section we deal with the problem of the existence and uniqueness of a solution to (6]
and (7)) for a given set of initial conditions. Unlike previous authors [10, [4] 2I] we consider
the case of a neural field with the effect that we have to use the tools of functional analysis
to characterize their properties.

We start with the assumption that the state vectors V and A are differentiable (respec-
tively continuous) functions of the time (respectively the space) variable. This is certainly
reasonable in terms of the temporal variations because we are essentially modeling large
populations of neurons and do not expect to be able to represent time transients. It is far
less reasonable in terms of the spatial dependency since one should allow neural masses ac-
tivity to be spatially distributed in a locally non-smooth fashion with areas of homogeneous
cortical activity separated by smooth boundaries. A more general assumption is proposed
in section But it turns out that most of the groundwork can be done in the setting of
continuous functions.

Let F be the set C,,(2) of the continuous functions from 2 to R™. This is a Banach
space for the norm || V|, oo = maxi<;<n Sup,cq |Vi(r)|, see appendix [Al We denote by J a
closed interval of the real line containing 0.

We will several times need the following

Lemma 3.1 We have the following inequalities for all x,y € F andr' € Q

IS(x(x")=S(y(r)lloc < DSmllx(r) =y (r)llsc  and [S(x)=S(¥)lln.co < DSmx=¥lln.co-

Proof. S is smooth so we can perform a zeroth-order Taylor expansion with integral
remainder, write

S(x(r')) - S(y(r')) = (/O DS(y(r) + C(x(x') = y(r'))) dC) (x(r') = y(x)),

and, because of lemma and definition 2.1]

IS(x(")) ~ S(y())]l < / IDS(y(r') + C(x(r') — y (') e dC %) — y () o <
DS,lIx(x') = y ()|

This proves the first inequality. The second follows immediately. O

INRIA
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3.1 General solution

A function V(t) is thought of as a mapping V : J — F and equations (@) and (7) are
formally recast as an initial value problem:

LV

F(EV()
v ®)

where V| is an element of F and the function f from J x F is equal to f, defined by the
righthand side of (6):

fo(t,x)(r) = —Lx(r) + / W(r,r’,t)S(x(r")) dr’ + Lexi(r,t) Vx € F, (9)
Q
or to f, defined by the righthand side of (7)):

fa(t,x)(r) = —Lx(r) + S ( W (r,r', t)x(r") dr’ + Iext(r,t)> Vx € F. (10)

Q

We have the

Proposition 3.2 If the following two hypotheses are satisfied
1. The connectivity function W is in C(J; Cpxn(Q2 x Q)),
2. The external current Loy is in C(J; Cy(92)),

then the mappings f, and f, are from J x F to F, continuous, and Lipschitz continuous
with respect to their second argument, uniformly with respect to the first (Cpxn(2 x Q) and
C,.(Q) are defined in appendiz[Al).

Proof. Let t € J and x € F. We introduce the mapping
gy : (£, %) — gy (t,x) such that g,(t,x)(r) = / W (r,r’,t)S(x(r")) dr’
Q

gv(t,x) is well defined for all r € ) because, thanks to the first hypothesis, it is the in-
tegral of the continuous function W(r,.,¢)S(x(.)) on a compact domain. For all r' € Q,
W (.,r’,t)S(x(r")) is continuous (first hypothesis again) and we have (lemma [A.1])

W, x", )S(x(r"))lloo < TW (s )llnxn.00l[S(x(x")) |-

Since ||S(x(.))||oc is bounded, it is integrable in {2 and we conclude that g, (¢, x) is continuous
on ). Then it is easy to see that f,(¢,x) is well defined and belongs to F.

RR n° 6212
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Let us prove that f, is continuous.

fv(t7x) - fv(&Y) = _L(X - Y) + /Q (W(-,I‘/J)S(X(I‘/» - W(" I‘/, S)S(Y(r,))) dr’

+ Iext('yt) - Iext('7 S)

= L(x—y)+ /Q (Wt 1) — Wt $)S(x(')) dr’

+ / W (-, ', 5)(S(x(r) — S(y(r')) dr’ + Text (-, ) — Toxs (-, 5)
Q
It follows from lemma [3.7] that

[1fo(t, %) = fo(5,¥)lln,00 < [ILlls [ = ¥lln,00 + (2] S [W (-, - 8) = W(, -, 8)[[nxcn,00t
|Q‘ HW(7 ) 5)||n><n,ooDSm ||X - YHn,oo + ”Iext('vt) - Iext('v S)Hmoo-

Because of the hypotheses we can choose |t—s| small enough so that [|[W (-, -, £) =W (-, -, $)||nxn,c0
and |Tex (-, %) — Lext (-, 8)|ln,0o are arbitrarily small. Similarly, since W is continuous on the
compact interval J, it is bounded there and [|[W(,,s)|nxn,co < w > 0 for all s € J. This
proves the continuity of f,.

It follows from the previous inequality that

[fo(t,%) = fuo(t,¥)lIn.co < [ Llloo [[% = ¥lln,oo + [QUNW - D)llnsxn.co DSm (X = ¥lln.co;

and because |[W (-, -, t)||lnxn,co < w > 0 for all ts in J, this proves the Lipschitz continuity
of f, with respect to its second argument, uniformly with respect to the first.

A very similar proof applies to f,. O

We continue with the proof that there exists a unique solution to the abstract initial value
problem (8) in the two cases of interest.

Proposition 3.3 Subject to the hypotheses of proposition for any element Vg (resp.
Ay) of F there is a unique solution V (resp. A), defined on a subinterval of J containing
0 and continuously differentiable, of the abstract initial value problem (8) for f = f, (resp.

f= fa)‘

Proof. All conditions of the Picard-Lindel6f theorem on differential equations in Banach
spaces |7} [1] are satisfied, hence the proposition. O
This solution, defined on the subinterval J of R can in fact be extended to the whole real
line and we have the

Proposition 3.4 If the following two hypotheses are satisfied
1. The connectivity function W is in C(R; Cyxn (22 X Q)),
2. The external current Loy is in C(R; C,(2)),

INRIA
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then for any function Vo (resp. Ag) in F there is a unique solution V (resp. A), defined
on R and continuously differentiable, of the abstract initial value problem (8) for f = f,

(resp- f = fa)-

Proof. In theorem of appendix [B] we prove the existence of a constant 7 > 0 such
that for any initial condition (tp, Vo) € R x F, there is a unique solution defined on the
closed interval [tg — 7,to + 7]. We can then cover the real line with such intervals and finally
obtain the global existence and uniqueness of the solution of the initial value problem. O

3.2 Homogeneous solution

A homogeneous solution to (@) or (7) is a solution U that does not depend upon the space
variable r, for a given homogeneous input I..(¢) and a constant initial condition Ugy. If
such a solution U(¢) exists, then it satisfies the following equation

U'(t) = —LU(t /w v )S(U)) dr’ + Lo (1),

in the case of () and

U'(t) = -LU(t) + S </Q W (r,r' t)U(t) dr’ + IeXt(t)> ,

in the case of (7). The integral [, W (r,r’,#)S(U(t)) dr’ is equal to

(Jo W(r,r',t)dr’) S(U(t)). The integral [, W(r,r’,t)U(t) dr’ is equal to

(Jo W(r,r',t)dr’) U(t). They must be independent of the position r. Hence a necessary
condition for the existence of a homogeneous solution is that

W(r,r',t)dr' = W(t), (11)
Q
where the n x n matrix W (t) does not depend on the spatial coordinate r.
In the special case where W (r, r’, t) is translation invariant, W (r,r’,t) = W(r—r’, t), the
condition is not satisfied in general because of the border of ). In all cases, the homogeneous
solutions satisfy the differential equation

U'(t) = —LU(t) + W()S(U(t)) + Lext (1), (12)
for (6) and
U'(t) = -LU(t) + S (W(H)U(t)) + Lex (1)) (13)

for (7)), with initial condition U(0) = Uy, a vector of R™. The following proposition gives a
sufficient condition for the existence of a homogeneous solution.

Theorem 3.5 If the external current I (t) and the connectivity matriz W (t) are contin-
uous on some closed interval J containing 0, then for all vector Uy of R", there exists a
unique solution U(t) of (IZ) or (I3) defined on a subinterval Jo of J containing 0 such that
U(0) = U,.

RR n° 6212



12 Faugeras, Grimbert & Slotine

Proof. The proof is an application of Cauchy’s theorem on differential equations. Con-
sider the mapping fr, : R" x J — R" defined by

fro(x,t) = —Lx + W(t)S(x) + Lexs (1)
We have

o (%,) = fro (¥, D)lloo < [Lllocllx = ¥lloo + TW ()]l [[S(x) = S(y) |

It follows from lemma BT that ||S(x) —S(¥)|lco < DSy || X —¥|/c and, since W is continuous
on the compact interval J, it is bounded there by w > 0 and

[0 (%, 8) = fro(¥: Dlloe < ([Lilloc +wDSm)[x = ylloo

for all x, y of R” and all ¢t € J. A similar proof applies to (I3]) and the conclusion of the
proposition follows. O
As in proposition [3.4] this existence and uniqueness result extends to the whole time real
line if I and W are continuous on R.

This homogeneous solution can be seen as describing a state where the columns of the
continuum are synchronized: they receive the same input I..(f) and produce the same
output U(¢).

3.3 Some remarks about the case () = R¢

A significant amount of work has been done on equations of the type (6] or (7) in the case
of a one-dimensional infinite continuum, (2 = R, or a two-dimensional infinite continuum,
2 = R2. The reader is referred to the review papers by Ermentrout [§8] and by Coombes [5]
as well as to [26] 1], [25].

Beside the fact that an infinite cortex is unrealistic, the case 2 = R? raises some math-
ematical questions. Indeed, the choice of the functional space F is problematic. A natural
idea would be to choose F = L2, the space of square-integrable functions. If we make this
choice we immediately encounter the problem that the homogeneous solutions (constant
with respect to the space variable) do not belong to that space. A further difficulty is that
S(x) does not in general belong to F if x does. As shown in this article, these difficulties
vanish if 2 is compact.

4 Stability of the general solution
We investigate the stability of a solution to (6) and (7) for a given input I... We give

sufficient conditions for the solution to be independent of the initial conditions. We first
consider the general case before looking at an approximation of the convolution case.

INRIA
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4.1 The general case

We define a number of matrices and linear operators that are useful in the sequel

Definition 4.1 Let
W..=WDS,, W,..=DS, W

and
me — L—1/2WcmL—l/2 W»,I-;u/ _ L_l/zwmcL_1/2

Consider also the linear operators, noted g,,, and h,, defined on F:
gm(X)(r,t) = / W (v, v/ t)x(r') dr’  Vx € F,
Q

and
B (%) (1, 1) = / Woe(r, o', )x(r')dr’  Vx e F,
Q

as well as g% and hE, that are constructed from WL —and WL | respectively.
We start with a lemma.

Lemma 4.2 With the hypotheses of proposition[3.3, the operators .., g%, hm, and h% are
compact operators from F to F for each timet € J.

Proof. This is a direct application of the theory of Fredholm’s integral equations [7]. We
prove it for g .

Because of the hypothesis 1 in proposition B.2] at each time instant ¢ in J, W, is
continuous on the compact set (2 x (2, therefore it is uniformly continuous. Hence, for
each ¢ > 0 there exists 7(¢) > 0 such that ||r; — r2|| < n(¢) implies that |Wcp,(r1,1',¢) —
W (ro, v/ t)||eo < e forall v’ € Q, and, for all x € F

1gm (%) (r1,2) = gm (%) (r2, ) [loc < €]Q[[x][5,00

This shows that the image ¢,,,(B) of any bounded subset B of F is equicontinuous.
Similarly, if we set w(t) = [Wem (-, -, t)|lnxn,c00, We have || gm (%) (r, t)[|oo < w(t)]|Q]|X||n,00-
This shows that for every r € Q, the set {y(r),y € g.n(B)}, is bounded in R", hence rela-
tively compact. From the Arzela-Ascoli theorem, we conclude that the subset g,,(B) of F
is relatively compact for all ¢ € J. And so the operator is compact.
The same proof applies to g%, h,,, and hl. O
To study the stability of solutions of (6) and () it is convenient to use an inner product on
F. It turns out that the natural inner-product will pave the ground for the generalization
in section [6] We therefore consider the pre-Hilbert space G defined on F by the usual inner
product

(x, ¥) = /2 x(r) Ty (x) dr

We note ||x||,2 the corresponding norm to distinguish it from ||x||,, o0, see appendix [A]l It
is easy to show that all previously defined operators are also compact operators from G to
G. We have the
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14 Faugeras, Grimbert & Slotine

Lemma 4.3 g,,, g5, h,,, and h% are compact operators from G to G for each time t € J.

Proof. We give the proof for g,,.

The identity mapping x — x from F to G is continuous since ||x||,,2 < /7|Q|[|X]/n,c0-
Consider now g,, as a mapping from G to F. As in the proof of lemma [4.2] for each £ > 0
there exists n(t) > 0 such that ||r;1—r2|| < n(t) implies ||[Wep, (r1,17,6) =W (r2, 1/, )]0 < €
for all r' € Q. Therefore the ith coordinate ¢, (x)(r1,t) — g, (x)(r2,t) satisfies (Cauchy-
Schwarz’ inequalities):

|gfn(x)(r1,t) - gfn(x)(r%tﬂ < Z/Q |W0m,ij(r1’r/7t) - Wcmﬁj(r%r,at)‘ |mj(r/>| dr’ <
J

EZ/I% )| dr’ <5\/|ﬁz(/ (¢ |2dr>1/2ggm

and the image g,,(B) of any bounded set B of G is equicontinuous Similarly, if we set
w(t) = [[Wem (e ) lnxn.co in Q x Q, we have |g¢ (x)(r,t)| < w(t)\/n|Q]||x||n.2. The same
reasoning as in lemma [£.2] shows that the operator x — g,,(x) from G to F is compact and
since the identity from F to G is continuous, x — g,,(x) is compact from G to G.

The same proof applies to g~ , h,,, and h%. O
We then proceed with the following

Lemma 4.4 The adjoint of the operator g, of G is the operator g}, defined by

g ()(r, ) = /Q W (¢, x, )x(x') dr’

It is a compact operator.

Proof. The adjoint, if it exists, is defined by the condition (g, (x), y) = (x, g%,(y)) for
all x, y in G. We have

<gm(X),.V>=/Qy(r)T (/QWcm(r,r',t)x(r’)dr') dr =
/ </W (r,x',t) ()dr)dr’,

from which the conclusion follows. Since G is not a Hilbert space the adjoint of a compact
operator is not necessarily compact. But the proof of compactness of g,, in lemma [4.3]
extends easily to g;;,. O

Similar expressions apply to g *, h¥ and hl*.

We now state an important result of this section.

Theorem 4.5 A sufficient condition for the stability of a solution to (6) is

lomllg <1

where ||.||; is the operator norm.
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Stability and Synchronization in Neural Fields 15

Proof. Let us note S the function DS,,'S and rewrite equation (6) as follows

Vi(r,t) = =LV(r,t) + [ Wen(r, o', t) S(V(r', 1)) dr’ + Loy (r, t).
Q
Let U be its unique solution with initial conditions U(0) = Uy, an element of G. Let also
V be the unique solution of the same equation with different initial conditions V(0) = V,
another element of G. We introduce the new function X = V — U which satisfies

Xt (I‘, t) = 7LX(I‘7 t) + WCWL (I‘, rlv t) H(Xa U) (rlv t) dr' = 7LX(I‘7 t) + gm(H(Xa U))(I‘, t)
Q
where the vector H(X, U) is given by H(X, U)(r,t)) = S(V(r,t)) —S(U(r,t)) = S(X(r,t)+
U(r,t)) — S(U(r,t)). Consider now the functional
1

V(X) =5

(X, X)
Its time derivative is (X, X;). We replace X; by its value from (I4)) in this expression to

obtain

v (X)
dt

= - <X’ LX> + <X7 gm(H(XvU))> =
_ < LY?X, L1/2X> + <L1/2X, gL (LY?H(X, U)) >

Let Y = L/2X. Using lemma [3.T}, we write
H(X,U) = D, X,

where D,, is a diagonal matrix whose diagonal elements are between 0 and 1. Multiplying
both sides with L!/2 we obtain

LY?H(X,U) = D,,LY?X =D,,Y,
and therefore

<

n,2

(Y, ghLPHX,U) )| < Y], ok (L2HX, U))

n

Y12 ol [ LB, 0)| ) < IV gk

and the conclusion follows. O
We now give a sufficient condition for the stability of a solution to (7).

Theorem 4.6 A sufficient condition for the stability of a solution to () is

Imllg <1
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16 Faugeras, Grimbert & Slotine

Proof. Let U be the unique solution of (7)) with an external current I.(r,?) and initial
conditions U(0) = Up. As in the proof of theorem we introduce the new function
X = V — U, where V is the unique solution of the same equation with different initial
conditions. We have

Xt (I‘7 t) = —LX(I’, t) + S (/ W(I’7 r/7 t)V(r/7 t) dr/ + Iext (I’7 t)) _
Q
S </ W (r, v, t)U(r',t) dr’ + Iext(r,t)) (15)
Q
Using the idea in the proof of lemma [3.1] this equation can be rewritten as

Xy(r,t) = —LX(r,t) + </01 DS(/QW(I‘,r’,t)U(r’t) dr’ + Loy (r, t)+

g/QW(r, v/, )X (r', 1) dr’) dC) (/Q W(r, v, t)X (', 1) dr')

We use the same functional as in the proof of theorem
1

VX) = 5 (X, X).
Its time derivative is readily obtained with the help of equation (I5])
dV (X
Vd(t ) = —(X, LX) + (X, Dphim(X)),

where D,,, is defined by
Dn(U, X, r,t) =

1
/ Ds(/ W(r,r', )U(t) dr’+IeXt(r,t)+C/ W(r,r', )X (r', 1) dr’) DSldc,
0 Q Q

dv(X)

at m a

a diagonal matrix whose diagonal elements are between 0 and 1. We rewrite
slightly different manner, introducing the operator h’
dV (X)
dt

- <L1/2X, L1/2X> + <DmL1/2X, Iy, (LY?X) > :

Letting Y = L!/2X, from the Cauchy-Schwarz’ inequality and the property of D,, we obtain
(DY, hiy(Y) )] < IDmY [l [1h5 (V)2 < (1Y (1.2 1y (Y) 1,2

dv(X)

And since [|h% (Y)|ln2 < [|B5|lg Y ||n,2, a sufficient condition for =

that ||hL|lg < 1.0
Note that ||g%||g = |lg% ||lL2 and [|hL ||g = ||h% |2 by density of G in L? (see section [6). In
appendix [A] we show how to compute such operator norms.

to be negative is
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4.2 The convolution case

In the case where W is translation invariant we can obtain a slightly easier to exploit
sufficient condition for the stability of the solutions than in the theorems and We
first consider the case of a general compact {2 and then the case where () is an interval.
Translation invariance means that W(r+a,r’ +a,t) = W(r,r’, ¢) for all a, so we can write
W (r,r',t) = W(r—1’,t). Hence W(r, ) must be defined for allr € Q = {r—1/, with r, r’ €
Q} and we suppose it continuous on Q for each t. Qisa symmetric with respect to the origin
0 compact subset of RY.

4.2.1 General )
We note 1,4 the characteristic function of the subset A of R? and M* = M’ the conjugate
transpose of the complex matrix M.
We prove the following
Theorem 4.7 If the eigenvalues of the Hermitian matric
W*(f,t) W(F, 1) (16)

are strictly less than 1 for all f € R? and all t € J, then the system (@) is absolutely stable.
W (f,t) is the Fourier transform with respect to the space variable r of 15(r) W (r,t),

:/AWCLm(r,t)e_Qi”‘fdr
Q

Proof. We prove the theorem for W (£, ¢) =5 WL T'(—r,t)e=2mf dr, the Fourier trans-
form of 15(r) WL (—r,t), because we deal with g * in the following proof. Then the

theorem naturally holds for W f,t) fQ (r,t)e~2f dr since the corresponding fam-

ilies of Hermitian matrices for both deﬁmtlons of W have the same spectral properties. The
proof proceeds exactly as that of theorem We have

<Y gL (LY?H(X, U)) > (gh*(Y), DY)

Therefore the condition
lgm ()72 < I1Y]7 5

is sufficient to ensure the negativity of dV (X)/dt.
For all vector Z in R?, we have

Z*W*(E,t)W(,t)Z < Z*Z VE, Vt e,
thanks to the hypothesis of the theorem. Hence
Y*(£,6) WH(E, ) W(E, £) Y (£,1) < Y*(£,0) Y (£,t) VE, Vtel,
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18 Faugeras, Grimbert & Slotine

where Y (£, ) is the Fourier transform of 1o 'Y, which is well defined and belongs to L2 (R9)
(Plancherel’s theorem). We integrate the previous inequality in R? and obtain
W Y20 2 < 1Y ][R -
Then, Parseval’s theorem gives (x denotes the spatial convolution)
116 Wer (=) x Lo Y (L )Ean2 < 12 Y ()1 .2,

from which [|g5*(Y)[2 5 < [[Y||? , follows. O
The case of the activation-based model can be addressed in a similar fashion. We have the

Theorem 4.8 If the eigenvalues of the Hermitian matriz
W (£, 1) W, 1)

are strictly less than 1 for all £ and allt € J then the system () is absolutely stable. W(f, t)
is the Fourier transform of WL (r,t) with respect to the space variable r.

Proof. The proof follows that of theorem [4.6] and then exploits the relation between
convolution and Fourier transform and Parseval’s relation by expressing the constraint

1hs (O 2 < Y17

in the Fourier domain. O

These two theorems are somewhat unsatisfactory since they replace a condition that must
be satisfied over a countable set, the spectrum of a compact operator, as in theorems[4.5land
[4.6] by a condition that must be satisfied over a continuum. Nonetheless one may consider
that the computation of the Fourier transforms of the matrixes W% and WZ  are easier
than that of the spectra of the operators g~ and hZ , but see section [Al

4.2.2 () is an interval

In the case where ) is an interval, i.e. an interval of R (¢ = 1), a parallelogram (¢ = 2), or
a parallelepiped (¢ = 3), we can state different sufficient conditions. We can always assume
that 2 is the ¢g-dimensional interval [0, 1]¢ by applying an affine change of coordinates. The
connectivity matrix W is defined on J x [—1,1]9 and extended to a ¢-periodic function of
periods 2 on J x R9. Similarly, the state vectors V and A as well as the external current I,
defined on J x [0, 1]% are extended to ¢-periodic functions of the same periods over J x R4
by padding them with zeros in the complement in the interval [—1,1]? of the interval [0, 1]7.
G is now the space L2 (2) of the square integrable g-periodic functions of periods 2.

We define the functions ¢y, (r) = e~ ™ (mmit+7ama) for m € Z9 and consider the matrix

W (m) whose elements are given by
W;;(m) = / Wi (r)Ym(r)dr 1<4,j <n.
[0,2]4

We recall the
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Definition 4.9 The matriz W(m) is the mth element of the Fourier series of the periodic
matriz function W (r).

The theorems [4.7] and [4.8] can be stated in this framework.
Theorem 4.10 If the eigenvalues of the Hermitian matriz
W*(m,t) W(m, t) (17)

are strictly less than 1 for all m € 77 and all t € J, then the system (6) (resp. (4)) is
absolutely stable. W (1, t) is the mth element of the Fourier series of the q-periodic matriz
function WL (r,t) (resp. WL (r,t)) with periods 2 at time t.

mc

5 Stability of the homogeneous solution

We next investigate the stability of a homogeneous solution to (6] and (7). As in the previous
section we distinguish the general and convolution cases.

5.1 The general case

The homogeneous solutions are characterized by the fact that they are spatially constant at
each time instant. We consider the subspace G. of G of the constant functions. We have the
following

Lemma 5.1 G, is a complete linear subspace of G. The orthogonal projection operator Pg,

from G to G. is defined by
Po.(x) =X = ﬁ/ﬂx(r) dr

The orthogonal complement G- of G. is the subset of functions of G that have a zero average.
The orthogonal pmjectio operator Pg. is equal to Id —Pg,. We also have

'PQCLMX = M'chlx Vx € Q, M e Mn><n (18)

Proof. The constant functions are clearly in G. Any Cauchy sequence of constants is
converging to a constant hence G, is closed in the pre-Hilbert space G. Therefore there exists
an orthogonal projection operator from G to G. which is linear, continuous, of unit norm,
positive and self-adjoint. Pg_ (x) is the minimum with respect to the constant vector a of the
integral [, [|x(r) — al|> dr. Taking the derivative with respect to a, we obtain the necessary
condition

/Q(X(r) —a)dr=0

1To be accurate, this is the projection on the closure of G in the closure of G which is the Hilbert space
L2(Q).
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20 Faugeras, Grimbert & Slotine

and hence a,,,;,, = X. Conversely, X — a,,,;,, is orthogonal to G. since fQ (x(r) —amin)bdr =0
for all b € G...
Lety € G, [,xy(r)dr=x [,y(r)dr =0 for all x € G, if and only if y € G-
Finally
Pg+Mx = Mx —~Mx =Mx - Mx=M(x—X) = MPg.x

0
We are now ready to prove the theorem on the stability of the homogeneous solutions to

(©).

Theorem 5.2 If W satisfies (1)), a sufficient condition for the stability of a homogeneous
solution to (@) is that the norm | g} *|lg. of the restriction to G of the compact operator

gk* be less than 1 for allt € J.

Proof. This proof is inspired by [24]. Note that G is invariant by g7, and hence by gL *.
Indeed, from lemma[4.4] and equation (II)) we have

g:n (X) = W(qr;n (t)i =0 Vxe g(J’_

Let V,, be the unique solution of (6) with homogeneous input ey (¢) with initial conditions
V,(0) = V,0 and consider the initial value problem

{ X'(t) = Pgr (fv(taPQCLXJFPQch)) (19)
X(0) = X
X = Pg+Vy is a solution with initial condition Xo = Pg1 Vo since Pél = Pg+ and
PgrVy+Pg, Vp =V, But X =0 is also a solution with initial condition X, = 0 since G.
is flow-invariant because of (L1)), that is f,(,G.) C G, and hence Pg. (fu(t,Gc)) = 0. We
therefore look for a sufficient condition for the system (19]) to be absolutely stable at X = 0.
We consider again the functional V(X) = 3 (X, X) with time derivative dV;tX) =
(X, X; ). We substitute X, with its value from (I9) which can be rewritten as

X; =Pgs ( — L(Pg1X +Pg,V,) + /QW(r, ' 1) S(Pg1 X(r',t) + Pg, V,(r', 1)) dr’)
Because of lemma [5.1] this yields
X; = —LPg1 X + Pg1 </Q W (r,1',1) S(Pgr X(r', ) 4+ Pg, V,(r', 1)) dr’)
We write

1
S(Pg. X 1 Pg.V,) = S(Pe.V,) + ( | D8PV, +cPax) dc) Pgi X,
0
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and since S(Pg,V,) € G, and because of (LI)
Pg1 (/ W (1,1, 1) S(Pg1 X(r', t) + Pg. V, (', 1)) dr’) =
-\, !

1
Pg (/ W (v, 1/ t) (/ DS(Pg.V,(r',t) + (Pg1 X(r', 1)) dC) PgrX(r',t) dr’)
Q 0
We use (18) and the fact that Pg. is self-adjoint and idempotent to write

v (X)
dt

1
<PgCLX, </chm(r,r/7t) (/0 D§(’chvp(r',t)—i—CPgCLX(r’,t))dC)’PgCLX(r’,t) dr’>>

= —<PgCJ_ X, L'PgéX>+

Let us denote D, (r’) the diagonal matrix fol DS(Pg, Vp(r',t)+(Pgr X(r',t)) dC. Its diagonal
elements are between 0 and 1. Letting Y = L'/ *Pg1 X we rewrite the previous equation in

operator form
AV (X)
dt

= (Y. Y) +(Y, g.(D, Y))
By definition of the adjoint
(Y, g5 (D, Y)) = (gh*(Y), D, Y)
From the Cauchy-Schwarz’ inequality
[{gm™ (¥). DoY) < [lgm ()|, 5 1D Y5 < [lgm™ (D], 5 1Y
and since

lgm™ (O, < g llgs 1Y 1,2

the conclusion follows. O
Note that [|g.*[lg: = llg|lLz by density of G- in L, where Lj is the subspace of L? of
zero mean functions. We show in appendix [Al how to compute this norm.

We prove a similar theorem in the case of (7).

Theorem 5.3 If W satisfies (11)), a sufficient condition for the stability of a homogeneous
solution to (7) is that the norm ||hL,||g+ of the restriction to G, of the compact operator hf,
be less than 1 for all t € J.

Proof. The proof is similar to that of theorem [5.2l We consider A, the unique solution
to () with homogeneous input L.y (), initial conditions A,(0) = Ao, and consider the
initial value problem

(20)

(A0 = 7o (PR )
A(0) Ao
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A ="Pg. A, is a solution with initial conditions Ag = Pg. Ao since Pgr Ay +Pg Ay = Ap.
But A = 0 is also a solution with initial conditions A, = 0 since G.. is flow-invariant because
of (I1), that is fu(t,G.) C G., and hence Pg. (fu(t,G.)) = 0. We therefore look for a
sufficient condition for the system (I9) to be absolutely stable at A = 0.

Consider again the functional V(A) = 1 (A, A) with time derivative d‘;(tA ) = (A, Ay).

We substitute A; with its value from (20) which, using (1)), can be rewritten as

A=

PQ% <_L(PQ%A+PQCAP) +S (/ W(r, r', t) /PQ%A(I'/’ t) dr’ + W(t)chAp + Iext(t)> )

We do a first-order Taylor expansion with integral remainder of the S term and introduce
the operator h,,:

S < / W(r,v',1) Pgr A(r',t) dr’ + W(t)Pg, A, + Iext(t)> =S (W(t)Pg,Ap + Lo (1)) +
Q

1
(/ Dﬁ(W(t)’chAp + Tt (2) + C/ W (r,r',t) Pg‘}A(r/’t) dr’)d§> hm(PgrLA)(I', t)
0 Q ’ ’
Let us define

1
Dy(r,t) = /0 DS(W(1)Pa. Ay + T (1) + ¢ [ Wier' )P, Al ) dr') dc.

a diagonal matrix whose diagonal elements are between 0 and 1. Letting Y = L'/ 2PQFLA
we write /

dV(A)
dt
and the conclusion follows from the Cauchy-Schwarz’ inequality:

= (Y, Y)+ (Y, D, bl (Y))

Y Do his (O)] < 1Y o [P b (V)]0 < 1Y Mo 15 (O, 0 < Bl 1Y

n,2 —

5.2 The convolution cases

We know from the analysis done in section [3.2] that there are in general no homogeneous
solutions to (6) or (7) since condition (1)) cannot be satisfied. Indeed the integral [, W (r—
r’,t) dr’ is in general a function of r. But propositions [3.3] [3.4] and show that there
exists a solution for a given initial condition. We call these solutions pseudo-homogeneous.
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5.2.1 General ()
There are echoes of theorems [4.7] and [4.8] which are stated in the following

Theorem 5.4 If W satisfies (I1]), a sufficient condition for the stability of a pseudo-
homogeneous solution to (@) (resp. (1)) is that the eigenvalues of the Hermitian matriz

W* (£, t)W(£, 1)

are strictly less than 1 for all £ # 0 and all t € J. W(f, t) is the Fourier transform of
WL (r,t) (resp. WL (r,t)) with respect to the space variable r.

Proof. The proof is an adaptation of the proofs of theorems [5.2] and 5.3] We exploit
again the relation between convolution and Fourier transform, Parseval’s relation and the
fact that if x € G-, x(0) = 0. O
The only difference with theorems and [4.8]is that there are no constraints on the Fourier
transforms of the connectivity matrices at the origin of the spatial frequencies plane. This
is due to the fact that we only “look” at the subspace of G of functions with zero spatial
average.

5.2.2 () is an interval

There are also echoes of theorem in the following

Theorem 5.5 If W satisfies (I1l), a sufficient condition for the stability of a pseudo-
homogeneous solution to (@) (resp. (7)) is that the eigenvalues of the Hermitian matrices

W*(m, )W (m, t)

are strictly less than 1 for all m # 0 € Z9 and all t € J. W(m, t) is the mth element of
the Fourier series of the q-periodic function WL (v t) (resp. WL (r,t)) with respect to the
space variable r.

6 Extending the theory

We have developed our analysis of () and (7)) in the Banach space F of continuous functions
of the spatial coordinate r even though we have used a structure of pre-Hilbert space G on top
of it. But there remains the fact that the solutions that we have been discussing are smooth,
i.e., continuous with respect to the space variable. It may be interesting to also consider
non-smooth solutions, e.g., piecewise continuous solutions that can be discontinuous along
curves of ). A natural setting, given the fact that we are interested in having a structure of
Hilbert space, is L2 (2), the space of square-integrable functions from 2 to R", see appendix
[Al It is a Hilbert space and G is a dense subspace.
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6.1 Existence and uniqueness of a solution

The theory developed in the previous sections can be readily extended to L2 (Q2): the analysis
of the stability of the general and homogeneous solutions has been done using the pre-Hilbert
space structure of G and all the operators that have been shown to be compact in G are also
compact in its closure L2(2) [7]. The only point that has to be re-worked is the problem
of existence and uniqueness of a solution addressed in propositions [3.2] and [3.3l This allows
us to relax the rather stringent spatial smoothness hypotheses imposed on the connectivity
function W and the external current I.., thereby bringing in more flexibility to the model.
We have the following

Proposition 6.1 If the following two hypotheses are satisfied. At each time instant t € J
1. The mapping W is in C(J; L2, (2 x Q)).

nxn
2. The external current I is in C(J; L2(9)),

then the mappings f, and f, are from J x L2(Q) to L2(Q), continuous, and Lipschitz con-
tinuous with respect to their second argument, uniformly with respect to the first.

Proof. Because of the first hypothesis, the fact that S(x) is in L2 (1) for all x € L2(Q),
and lemma [A.2] f, is well-defined. Let us prove that it is continuous. As in the proof of
proposition [3.2] we write

fot, %) = ful(s,y) = —L(x —y) + / (W(r' 1) = W(, ', 5))S(x(r")) dr'+

Q
/ W(7 I‘l, 8)(S(X(I'/)) - S(y(r/)) dI‘l + Iext('7 t) - Iext('a 8)7
Q
from which we obtain, using lemma

[fo(t;x) = fo(s,¥)lln2 < [LllFlx = yln2 + V[QSm[[W(, - 8) = W, - )|+
DSl W, 8)[[plx = ¥llnz + Mext (-5 8) = Texi (- 8) [l n,2;

and the continuity follows from the hypotheses. || || is the Frobenius norm, see appendix[Al
Note that since W is continuous on the compact interval J, it is bounded and |[W (-, -, t)||r <
w for all £ € J for some positive constant w. The Lipschitz continuity with respect to the
second argument uniformly with respect to the first one follows from the previous inequality
by choosing s = t.
The proof for f, is similar. O

From this proposition we deduce the existence and uniqueness of a solution over a subinterval
of R:

Proposition 6.2 Subject to the hypotheses of proposition[6.1] for any element V of L2 (£2)
there is a unique solution V, defined on a subinterval of J containing 0 and continuously
differentiable, of the abstract initial value problem (8) for f = f, and f = f, such that
V(0) = V.
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Proof.
All conditions of the Picard-Lindel6f theorem on differential equations in Banach spaces
(here a Hilbert space) [7, [1] are satisfied, hence the proposition. O
We can also prove that this solution exists for all times, as in proposition [3.4¢

Proposition 6.3 If the following two hypotheses are satisfied
1. The connectivity function W is in C(R; L2, (0 x )),

nxn

2. The external current Iy is in C(R; L2(Q)),

then for any function Vg in L2(Q) there is a unique solution V, defined on R and continu-
ously differentiable, of the abstract initial value problem (8) for f = f, and f = f,.

Proof. The proof is similar to the one of proposition [3.4} O

6.2 Locally homogeneous solutions and their stability

An application of the previous extension is the following. Consider a partition of 2 into P
subregions §2;, i = 1,..., P. We assume that the ();s are closed, hence compact, subsets of {2
intersecting along piecewise regular curves. These curves form a set of 0 Lebesgue measure
of 2. We consider locally homogeneous input current functions

P
Loc(r,t) = ) 1o, (r)LEy(8), (21)
k=1

where the P functions I” ,(¢) are continuous on some closed interval J containing 0. On the
border between two adjacent regions the value of Iy (r,t) is undefined. Since this set of
borders is of 0 measure, the functions defined by (2I)) are in L2 () at each time instant. We

assume that the connectivity matrix W satisfies the following conditions

P
W(r, v/, t)dr’ = 1o, (r)Wir(t) k=1,---,P. (22)
Qk i=1

These conditions are analogous to (IIl). A locally homogeneous solution of (6) or (7)) can be

written
P

V(I‘, t) = Z ]‘Qi (r)Vi(t)v

i=1

where the functions V; satisfy the following system of ordinary differential equations

Vi(t) = —LVi(t) + > Wik (t)S(Vi(t) + T (b), (23)
k=1
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for the voltage-based model and

Vi(t) = —LV,(t) + S (Z Wik (£) Vi (t) + Iéxt<t)> , (24)

k=1

for the activity-based model. The conditions for the existence and uniqueness of a locally
homogeneous solution are given in the following theorem, analog to theorem [3.5}

Theorem 6.4 If the external currents 1¥ (), k = 1,--- , P and the connectivity matrizes

Wii(t), i,k =1,--- , P are continuous on some closed interval J containing 0, then for all
sets of P vectors Uk k=1,--- , P of R", there exists a unique solution (Uy(t),--- ,Up(t))
of (23) or (Z) defined on a subinterval Jo of J containing 0 such that Uy (0) = Uk k =
1,---,P.

Proof. The system (23] can be written in the form

VI(t) = —LV(t) + W(ESV(T)) + Lexs (1), (25)
Vl Iéxt S(Xl)

where V is the nP dimensional vector s Lext = , S(X) = ,
Ve Igct S(Xp)

W is the block matrix (W), x and £ is the block diagonal matrix whose diagonal elements
are all equal to L. Then we are dealing with a classical initial value problem of dimension
nP and the proof of existence and uniqueness is similar to the one of theorem A similar
proof can be written in the case of system (24). O

Again, if 7. and W are continuous on R, the existence and uniqueness result extends
to the whole time line R.

Having proved existence and uniqueness of a locally homogeneous solution we consider
the problem of characterizing its stability. The method is the same as in section Bl We

[e]
consider the subset, noted G, of the functions that are constant in the interior ); of each
[e]
region ;,4 = 1,--- , P (the interior A of a subset A is defined as the biggest open subset
included in A). We have the following lemma that echoes lemma [5.1]

Lemma 6.5 G7 is a complete linear subspace of L2((2). The orthogonal projection operator
Pgr from L2(Q2) to GF is defined by

1

x(r") dr’
0] Jo, <)

P
Pgr(x)(r) =x" = 10,(r)
k=1

The orthogonal complement GF L of GI is the subset of functions of L2(Q) that have a
zero average in each ;i =1,---, P. The orthogonal projection operator Pgr . is equal to
Id —Pgr. We also have

Pgr:Mx = MPgr.x VXGLi(Q),MEMan (26)
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Proof. The proof of this lemma is similar to the one of lemma [5.11 O
We have the following theorem, corresponding to theorems [5.2] and [5.3]

Theorem 6.6 If W satisfies (23), a sufficient condition for the stability of a locally homo-
geneous solution to (6)) (respectively (7)) is that the norm ||g}*|lgr . (respectively ||hL,[lgr )

of the restriction to G of the compact operator gL * (respectively h% ) be less than 1 for
allt € J.

Proof. The proof strictly follows the lines of the ones of theorems [5.2] and [5.3] O
This is true for every partition of {2 therefore we have the following

Proposition 6.7 If the operator gk* (respectively hk ) satisfies the condition of theorem
(respectively of theorem[5.3), then for every partition of Q, corresponding locally homo-
geneous current, and W satisfying (22), the locally homogeneous solution of (@) (respectively

(@) is stable.

Proof. It is clear that G. C G[, therefore I+ C G and |g}*llgrr < llgm*llgx
(respectively [[1L[|grs < [hE]|g-). O
Note that even if condition (22) is not satisfied by W, i.e. if we do not guarantee the
existence of a locally homogeneous solution for a given partition of {2, we still have the
result that, given that the operator g~ * (respectively hl ) satisfies the condition of theorem
[5.2] (respectively of theorem[5.3)), the "pseudo" locally homogeneous solutions, corresponding
to a locally homogeneous input current, are stable. A numerical example is given below, see

figure 13

7 Numerical examples

We consider two (n = 2) one-dimensional (¢ = 1) populations of neurons, population 1
being excitatory and population 2 inhibitory. The set ) is simply the closed interval [0, 1].
We note z the spatial variable and f the spatial frequency variable. We consider Gaussian
functions, noted G;;(x),%,j = 1,2, from which we define the connectivity functions. Hence
we have G;; = G(0,0,;). We consider three cases. In the first case we assume that the
connectivity matrix is translation invariant (see sections [4.2] and 5.2). In the second case
we relax this assumption and study the stability of the homogeneous solutions. The third
case, finally, covers the case of the locally homogeneous solutions and their stability. In this
section we have S1(z) = Sz(z) =1/(1+ e 7).

7.1 The convolution case

We define W;;(z, 2') = a;; Gij(x — '), where the ;s are positive weights. The connectivity
functions and their Fourier transforms are then given by

ij 2 2,02 2
W;i(z) = _ %, 203 Wi;(f) = aije—%r o3
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The matrices W (z) and W(f) can be written?

x? x?
o o
W (z) = 11 2 12 .
&6 20%1 _ﬂe 20%2
\/ 2#031 \/ ZWJSQ
W(f) B a116—2ﬂ'2f20%1 _a126—27r2f20%2
a21e_2ﬂ-2f20-§1 —a226_27(2f20-§2
Therefore we have
2,2 2 2.2 2
WL () = an Sy, me 2™ SO0 a8y e 2T 00
cm(f) - , 27T2f20'2 , 27T2f20'2 )
anglm«/Tﬁge— 21 _Oé2252m7'2€_ 22
and =LT Sy def I A C
where

A=52n (a§1716_4772‘7%1f2 + a§1723_4772‘7§1f2)
B = 8,7, (a§2726_47r2052f2 + a%2716_4”2‘7%2f2) ,
and
C = _S;S;\/TlTQ <a2106227-2627r2(0—%1 + 0'%2)f2 + 061205117'16727#(0—%2 + O’%l>f2)

By construction the eigenvalues of this matrix are positive, the largest one, A,,,., being

given by
Amas = % (A B+ JA-BZ+ 402)

Introducing the parameters A; = (71.57a11)?, Ay = (2Sha02)2, 1 = 71 /72, 1 = as1 /a1,
Xy = a1z /e we can rewrite A, B and C as follows

2
A=A, <e47r2(7%1f2 + ﬂ647r2051f2> B=A, <e4ﬂ2052f2 + Tx2e47r2052f2) :
r

2We ignore for simplicity the convolution with the Fourier transform of 11 (z).
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and

C=—\A A <;T/1;e27r2(‘7§1 +05) f? + 1‘2\/;6727r2(0'%2 + 0%1)f2>

The necessary and sufficient condition that the eigenvalues are less than 1 for all f is therefore

()™ 2-A-B-\J(A_BZ+4CZ>0 Vf (27)

It depends on the spatial frequency f and the nine parameters A, Ao, x1, zo, r, and o, the
2 x 2 matrix oy, 4,5 = 1,2.

We have solved equation (@) on © = [0, 1]. We have sampled the interval with 100 points
corresponding to 100 neural masses. The input I..; is equal to [W;(t), Wa(t)]T, where where
the W;(t)s, ¢ = 1,2 are realizations of independent Brownian/Wiener processes shown in
figure 2 We know that the solution is not homogeneous for the reasons exposed above.

\
N A
A o i N
f ! “;L/u" R P
0547 \ v \ AN
i " N/ i ., N \',” \/ \‘
\ \
I 10 Y20 | 30 40 50 60
0 ) ! \ —
Y
-0.51 ;\
v}\
\ R
] ~ 7\
-1 N N A
A N\ ! / A
VoW WRTA \
-1.51 U RN \
. \

-2

Figure 2: The two coordinates of the input I..;(t) are realizations of independent Wiener
processes.

This is illustrated in figure Bl The initial conditions are homogeneous and equal to either
(0,0) or (1,—1) for all neural masses state vectors V. The figure [ shows the stability of
the first coordinate of the solution for one of the hundred neural masses: solutions become
identical independently of the initial conditions. The bottom of the figure shows the plot
of the function ¢ defined in (27) as a function of the spatial frequency f. The constraint is
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Vi09,Vi(10090 ———————— V20100, V2(10,0=0
,,,,,,,,,,,,,,,,,,, V1{100}, Vi(108.0)=0 e V2(100,), V(100,020

Figure 3: An illustration of the fact that when the connectivity matrix is translation invariant
there does not exist in general a homogeneous solution: the neural masses do not synchronize.
The lefthand graph shows the first coordinate of the solution when the input and the initial
conditions are homogeneous. The righthand graph shows the same for the second coordinate.

satisfied for all frequencies. The parameters are

O‘:[ljm 1él4] ":{0%1 Oil} St =52, =025 m=1p=1

We show in figure [0l a case where the stability is lost. The values of the parameters are

o= { 565.7 565.7 ] B [ 0.01 0.01

i _ o o _ .
565.7 565.7 0.1 0.1} 1m =Sm =025 7 =7 =1

The bottom of the figure shows the plot of the function ¢ defined in (27) as a function of
the spatial frequency f. The constraint is not satisfied at low spatial frequencies.

7.2 Homogeneous solutions

In the previous case the translation invariance of the connectivity matrix forbid the existence
of homogeneous solutions. We can obtain a connectivity matrix satisfying condition (II) by
defining /
Wi, (2,2) = aaijla”(‘r—m) ij=1,2,
Jo Gij(z —y)dy

where o and the a;;s are connectivity weights. These functions are well defined since the
denominator is never equal to 0 and the resulting connectivity matrix is in L3, 5 ([0, 1] x [0, 1]).
It is shown in figure The values of the parameters are given in (28). Proposition
guarantees the existence and uniqueness of a homogeneous solution for an initial condition
in LZ(Q). According to theorem [5.2] a sufficient condition for this solution to be stable is
that g%, g < 1.
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S — Vi

——————————————————— VAo Viga ) — 5 V3 Y

Figure 4: An illustration of the stability of the two coordinates of the solution with respect
to the choice of the initial condition. Results are shown for the neural mass 50. The function
¢(f) defined in (27) is shown at the bottom. It is positive for all spatial frequencies f.

We have solved equation (@) in Q2 = [0, 1]. We have sampled the interval with 100 points
corresponding to 100 columns and solved the resulting system of 2x100 ordinary differential
equations using Maple. The parameters are

_[520 5.20 [o01 01
“=19209 209 111

] n=m=1 a=1/20 (28)

For these values we have ||gL*||g. ~ 0.01. All operator norms have been computed using the
method described in appendix Al The initial conditions are drawn randomly and indepen-
dently from the uniform distribution on [—2, 2]. The input L.y (¢) is equal to [W1(t), Wa(t)]7,
where the W;(t)s, i = 1,2 are realizations of independent Brownian/Wiener processes shown
in figure 21

We show in figure [7] the synchronization of four (numbers 10, 26, 63 and 90) of the
hundred neural masses. If we increase the value of «, the sufficient condition will eventually
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Figure 5: An illustration of the lack of stability of the two coordinates of the solution with
respect to the choice of the initial condition. Results are shown for the neural mass 50. The
function c(f) defined in (27) is shown at the bottom. It is negative for a range of spatial

frequencies f.

not be satisfied and we may be able to witness lack of synchronization. This is shown in
figure 8 for a = 15 corresponding to an operator norm ||} *|lg. ~ 2.62.
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Figure 6: The four elements of the matrix W(z, z’) in the homogeneous case.

7.3 Locally homogeneous solutions

We partition 2 = [0,1] into Q; = [0,1/2] and Qs = [1/2,1]. We can obtain a connectivity

matrix satisfying condition (22]) by defining

.. J— /
aoy;(z,2’) 1/2;” (z = 2) s e
/ / Gij(x —y)dy
Wij(z,2") = O o :
aq;(z,z') 1G” (@=2) ' €y

/ Gij(x —y)dy
1/2

with ;;(z,2') =all, 2 € Qp, 2/ €, k1=1,2.

R

The resulting connectivity matrix is in L3, .5([0, 1] x [0, 1]). It is shown in figure
The input L (t) is equal to [Wq(t), Wa(t)]T in Q; and to [W5(t), W4 (¢)]T in Qq, where the
Wi(t)s, @ = 1,--- ,4 are realizations of independent Brownian/Wiener processes shown in
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Figure 7: The synchronization of four of the hundred neural masses. The input is shown in
figure 2 The first components are shown on the left, the second on the right.

figure[I0l According to proposition[6.3]there exists a unique solution to (6]) for a given initial
condition in L3(Q2).
The parameters are

" 521 0.23 " 498 0.34
@ = 10923 521 % T | o034 498
. 475 0.45 v 539 0.13
(8% == (8% =
0.45 4.75 0.13 5.39
0.05 0.075
| 01 0.03 n=mn=1 a=1

For these values we have ||g%* [gp+ =~ 0.23. The initial conditions are drawn randomly and
independently from the uniform distribution on [—10, 10] and [—2, 2] for ©; and on [—20, 20]
and [—2,2] for Q.

We show in figure [IT] the synchronization of two neural masses (numbers 10 and 26) in
; and two neural masses (numbers 63 and 90) in Q3 of the hundred neural masses. If we
increase the value of «, the sufficient condition will eventually not be satisfied and we may be
able to witness lack of synchronization. This is shown in figure[I2| for « = 10 corresponding
to an operator norm ||g£l*\|g£u ~ 2.3.

As mentioned at the end of section[6.2] even if the connectivity function satisfies condition
(IT) but not condition (22) and the operator g% * satifies the condition of theorem [5.2] but
not that of theorem [6.6] the existence of locally homogeneous solutions is not guaranteed but
their stability is because of proposition[6.7} As shown in figure[I3]these solutions can be very
close to being locally homogeneous. This is potentially very interesting from the application
viewpoint since one may say that if the system admits homogeneous solutions and if they
are stable it can have locally homogeneous solutions without “knowing” the partition, and
they are stable.
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Figure 8: The lack of synchronization of four of the hundred neural masses when the sufficient
condition of theorem [5.2]is not satisfied. The input is the same as in the previous example.
The first components are shown on the first row, the second on the second. The left figure

shows the complete graph for 0 < ¢ < 60s, the right figure is a zoom on 10 < t < 60s.

8 Conclusion

We have studied the existence, uniqueness, and stability with respect to the initial conditions
of a solution to two examples of nonlinear integro-differential equations that describe the
spatio-temporal activity of sets of neural masses. These equations involve space and time
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Figure 9: The four elements of the matrix W (z, ') in the locally homogeneous case.

varying, possibly non-symmetric, intra-cortical connectivity kernels. Contributions from
white matter afferents are represented by external inputs. Sigmoidal nonlinearities arise from
the relation between average membrane potentials and instantaneous firing rates. The intra-
cortical connectivity functions have been shown to naturally define compact operators of the
functional space of interest. Using methods of functional analysis, we have characterized the
existence, uniqueness, and stability to the initial conditions of a solution of these equations
for general, homogeneous (i.e. independent of the spatial variable), and locally homogeneous
inputs. In all cases we have provided sufficient conditions for the solutions to be absolutely
stable, that is to say independent of the initial state of the field. These conditions involve the
connectivity functions, the maximum slopes of the sigmoids, as well as the time constants
used to described the time variation of the postsynaptic potentials. We think that an
important contribution of our work is the application of the theory of compact operators
in a Hilbert space to the problem of neural fields with the effect of providing very simple
mathematical answers to the questions asked by modellers in neuroscience. This application
may not be limited to the specific topic of this paper.
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Figure 10: The two coordinates of the input L., (¢) in ; and s are realizations of four
independent Wiener processes (IW; and W, are identical to those shown in figure [2]).

A Notations and background material

A.1 Matrix norms and spaces of functions

We note M, «.,, the set of n x n real matrices. We consider the matrix norm,

Moo = miaxz | M|
J

We note C,,,,(€2) the set of continuous functions from  to M, «,, with the infinity norm.
This is a Banach space for the norm induced by the infinity norm on M,,«,. Let M be an
element of C,,»,(2), we note and define |M||;,xn,co as

M| n,00 = sup max » | My;(r)| = max sup Y [M;;(r)|
reQ J v reQ ;

We also note C,,(12) the set of continuous functions from ) to R"™ with the infinity norm.
This is also a Banach space for the norm induced by the infinity norm of R™. Let x be an
element of C,,(£2), we note and define ||x||,, - as

[%[ln,0c = sup max |z;(r)| = max sup |z;(r)|
reQQ ? v oreQ
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-10

-12

Figure 11: The synchronization of two neural masses in {2; and two neural masses in 5.
The input is shown in figure 10l The first components are shown on the left, the second on
the right.

We can similarly define the norm ||.||nxn,co (resp. ||-||ln.00) for the space C,,x,, (2 x Q) (resp.
C (92 x Q).
We have the following

Lemma A.1 Given x € C,(2) and M € C,,«, () we have
IMX[ln,00 < [IM[lnxn,00 X[ln,00
More precisely, we have for all v € §)
IM(r) x(r)[oc < [IM(r)]loo[[%(r) |0
The same results hold for Q) x Q) instead of €.
Proof. Let y = M x, we have

yi(r) = Z M;j(r)z;(r)
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10 20 3 40 50 60

Figure 12: The lack of synchronization of two neural masses in €2; and two neural masses in
Q5. The input is shown in figure[I0l The first components are shown on the left, the second
on the right.

and therefore

lyi(r)] < Z | Mij ()] | (x)| < Z | M (r)] [[%(r)]| oo,

so, taking the max;
[y ()l < IM(r)]loo [I%(r) /[

from which the first statement easily comes. [0
We also consider the Frobenius norm on M,, .,

M| =

and consider the space L2, (€2 x Q) of the functions from Q x Q to M,,,, whose Frobenius

nxn
norm is in L*(Q2 x Q). If W € L2, (Q x Q) we note |[W|7 = [, , [W(r,r')||7 drdr'.

nxn
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Figure 13: The connectivity function satisfies condition (II)) but not condition (22) and the
operator gL * satifies the condition of theorem [5.2] not that of theorem The input is
locally homogeneous, as in figure [[Il The solution is stable, because of theorem [5.2] and
almost locally homogeneous.The first components are shown on the left, the second on the

right.
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Note that this implies that each element w;j, i, j = 1,---,n is in L*(Q x Q). We note
L2 () the set of square-integrable mappings from ) to R" and |x||,, 2 = (225 l|lz;112)/? the
corresponding norm. We have the following

Lemma A.2 Givenx € L2(Q) and W € L2, (2xQ), we define y(r) = [, W(r,r')x(x') dr’.

This integral is well defined for almost all v, y is in L2 (Q) and we have

[¥lln.2 < IWIl£ [[%]l5.2-

Proof. Since each w;; is in L*(Q x Q), w;;(r,.) is in L?() for almost all r, thanks to
Fubini’s theorem. So w;;(r,.)z;(.) is integrable for almost all r from what we deduce that
y is well-defined for almost all r. Next we have

lyi(r)] < Z ’/Qwij(r7r/>$j(rl) dr’

and (Cauchy-Schwarz):

1/2
OESS ( [ wie r')dr') ;e
i

from where it follows that (Cauchy-Schwarz again, discrete version):

1/2 1/2 1/2

()] < [ D Ml Z/ wi(e,x)dr’ | =[x Z/ w(r,x)de’ |
j i e i e
from what it follows that y is in L2 (Q2) (thanks again to Fubini’s theorem) and

Iyl2. < [xl2. > / o)’ de =[x [ W1
i,j x

A.2 Banach space-valued functions

A useful viewpoint that is used in this article is to consider the state vector of the neural
field as a mapping from a closed time interval J containing the origin 0 into one of the spaces
discussed in the previous section. We note C'(J; C,,(2)) the set of continuous mappings from
J to the Banach space C,,(2) and C(J; L2(Q)) the set of continuous mappings from J to the
Hilbert (hence Banach) space L2 (1), see, e.g., [9].
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A.3 Computation of operator norms

We give a method to compute the norms ||g|lg and ||g*||g. for an operator g of the form

g(x)(r):/S)W(r,r/)x(r’)dr'.

Since G (respectively G1) is dense in the Hilbert space L2(Q2) (respectively L3((), the
subspace of L?(Q2) of functions with zero mean), we have ||g||g=[lg|lr> and [[¢* g2 = [lg*[|Lz-
We consider the compact self-adjoint operators

G=g"g:L* - L?

and
GCL =g*"Pg: Lg — Lg,

where P is the orthogonal projection on L. We compute the norms of the two self-adjoint
positive operators G and G, and use the relations

1G] = llgllE-,

and
Gz Iz = 9" P Paliez = 9" P |72 = 9”72

Let T be a compact self-adjoint positive operator on a Hilbert space H. Its largest eigenvalue
is \ = ||T||5- Let v € H. If x ¢ Ker(\ld — T)*, then, according to, e.g., [7],

i ([T /| 77 =

This method can be applied to g~ and h’ , and generalized to the computation of the ||.|| grL
norm.

B Global existence of solutions

In this appendix, we complete the proof of proposition (3.4) by computing the constant
7 > 0 such that for any initial condition (¢g, V) € R x F, the existence and uniqueness of
the solution V is guaranteed on the closed interval [to — 7, tg + 7]

We refer to [I] and exploit the

Theorem B.1 Let F be a Banach space and c > 0. We consider the initial value problem:

{V’(t) = f(t,V(t))
V(ty) = Vo

for |t — to| < ¢ where V is an element of F and f : [to — ¢,to + ¢]| x F — F is continuous.
Let b > 0. We define the set Qp. = {(t,X) e Rx F, [t —to| < ¢ and | X —Vy| <b}.

INRIA



Stability and Synchronization in Neural Fields 43

Assume the function f : Qp. — F is continuous and uniformly Lipschitz continuous with
respect to its second argument, ie

(8 X) = F(& Y] < Ky e[| X =Y,

where Ky, . is a constant independent of t.

Let My, = supg, . || f(t,X)|| and 7 = min{b/M, ., c}.

Then the initial value problem has a unique continuously differentiable solution V(.) defined
on the interval [ty — Tp ¢, to + To.c].

In our case, f = f, and all the hypotheses of the theorem hold, thanks to proposition
[3.21 and the hypotheses of proposition [3.4] with

Ky, = |Ll|oo + Q] DSy, sup  [[W(, 'at)||n><n,007

[t—to|<c

where the sup is well defined (continuous function on a compact domain).
We have
My, < ||Llloo ([Volln,co +b) + Q] S W + 1,

where W = SUP|t—tg|<c W )llnxn,cc and I = SUP|t—t4|<c [ Texct (-5 )|, 00-

So
1

b/Mb’c Z HLHoo + 1Ll oo |‘V0Hn.olo)+|9‘sm WH+I*

Hence, for ¢ > m and b big enough, we have 7, . > m and we can set 7 =
A similar proof applies to the case f = f, and the one of proposition
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