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Abstract: This article is concerned with variable selection for cluster analysis. The problem
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general model generalizing the model of Raftery and Dean (2006) is proposed to specify
the role of each variable. This model does not need any prior assumptions about the link
between the selected and discarded variables. Models are compared with BIC. Variables
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Sélection de variables pour la classification non

supervisée par mélanges gaussiens

Résumé : Cet article s’intéresse à la sélection de variables en classification non supervisée.
Le problème est ramené à un problème de sélection de modèles de mélanges de lois de
probabilités. Un modèle global, généralisant celui de Raftery et Dean (2006) est proposé
pour spécifier le rôle de chaque variable. Ce modèle ne nécessite aucune hypothèse a priori
sur le lien entre les variables sélectionnées et les variables écartées pour la classification. Les
modèles sont comparés avec BIC. Le statut des variables est obtenu grâce à un algorithme
imbriquant deux algorithmes de sélection descendante avec remise en cause de variables
pour la classification et pour la régression linéaire. La consistence du critère de sélection
est démontrée sous des conditions de régularités. Des exemples numériques sur données
simulées et sur une application génomique mettent en évidence l’intérêt de notre procédure
de sélection de variables.

Mots-clés : Sélection de variables, Classification, Mélanges gaussiens, régression linéaire,
Facteur de Bayes, BIC
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1 Introduction

The goal of clustering methods is to discover structures (clusters) among n individuals
described by Q variables. Many clustering methods exist and roughly fall into two categories.
The first ones are based on similarity and/or dissimilarity distances. They gather hierarchical
clusterings, which creates ”trees” and also methods like K-means algorithm which classify
data through a certain number of clusters fixed a priori. The second category is model-based
methods which consist of using certain models for clusters and attempting to optimize the
fit between the data and the model. In practice, each cluster is represented by a parametric
distribution, like a Gaussian distribution and the entire data set is therefore modelled by
a mixture of these distributions. One advantage of model-based clustering is to provide
a rigourous framework to assess the number of mixture components and the role of the
variables in a clustering process.

In principle, the more information we have about each individual, the better a clustering
method is expected to perform. However the structure of interest may often be contained
in only a subset of the available variables and a lot of variables can be useless or even
harmful to detect a reasonable clustering structure. It is thus important to select the relevant
variables from the cluster analysis view point. It is a recent research topic in contrast to
variable selection in regression and classification models (Kohavi and John, 1997, Guyon and
Elisseeff, 1990 and Miller, 1990) and this new interest for the variable selection in clustering
comes from the increasingly frequent use of these methods on high-dimensional datasets.

Three types of approach dealing with variable selection in clustering have been proposed.
The first one includes clustering methods with weighted variables (see for instance Fried-
man and Meulman 2003) and dimension reduction methods. For this later, McLachlan,
Bean and Peel (2002) use a mixture of factor analyzers to reduce the extremely high dimen-
sionality of a gene expression problem. A suitable Gaussian mixture family is considered
by Bouveyron et al. (2007) to take into account simultaneously the dimension reduction
and the data clustering. The specificity of this first type of methods is an implicit variable
selection in contrast to the two last approaches selecting explicitly relevant variables. The
so-called ”filter” approach selects the variables with data analysis tools before the clustering
analysis (see for instance, Dash et al. 2002, Jouve and Nicoloyannis 2005). The influence of
the independent selection step on the clustering result is the main weakness of these meth-
ods. In contrast, the so-called ”wrapper” approach combines the variable selection and the
clustering. For distance-based methods, one can cite Fowlkes et al. (1988) for a forward
selection approach for complete linkage hierarchical clustering, Devaney and Ram (1997)
who propose a stepwise algorithm where the quality of the feature subsets is measured with
the cobweb algorithm or the method of Brusco and Cradit (2001) based on the adjusted
Rand index for K-means clustering. There exists also wrapper methods in the model-based
clustering setting. When the number of variables is greater than the number of individuals,
Tadesse et al. (2005) proposed a fully Bayesian method using a reversible jump algorithm
to choose simultaneously the number of mixture components and to select variables. Kim et
al. (2006) use a similar approach by formulating clustering in terms of an infinite mixture
of distributions via Dirichlet process mixtures. They assumed that there is no correlation
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4 Maugis & Celeux & Martin-Magniette

between the sets of the relevant variables for the clustering and the irrelevant ones. However
this assumption is often unrealistic. Others approaches that rely on model selection meth-
ods exist. In this paper, we focus on Gaussian mixture model clustering. Law et al. (2004)
proposed to estimate a set of real-valued quantity for each variable which allows to evaluate
the importance of the variable in the clustering process. It is done using the minimum
message length model selection criterion. Raftery and Dean (2006) recasted the problem
of comparing two nested subsets of variables as a model comparison problem and address
it using Bayes factors. An interesting aspect of their formulation model is that it does not
require that irrelevant variables be independent of the clustering variables. They avoid thus
the unrealistic independence assumption between the relevant and irrelevant variables to
the clustering, considered for instance in Kim et al. (2006) or in Law et al. (2004). In
their model, the subset of irrelevant variables, independent of the clustering, depends of
the relevant variables through a linear regression equation. However, they do not allow the
irrelevant variables to be independent of the clustering variables. It means that indepen-
dent variables are enforced to enter as dependent variables in the regression linear equation.
Their introduction in the regression involves additional parameters but does not lead to
a significant increase of the loglikelihood. Thus, models including those variables in the
clustering variables could be wrongly preferred to models considering them as dependent
variables in the regression equation, when the models are compared with Bayes factor or
penalized likelihood criteria as AIC or BIC.

In this paper, we propose an improvement of the method proposed by Raftery and Dean
(2006) by considering another type of relation between the irrelevant variables and the
clustering variables. We consider that some of irrelevant variables could be independent of
the clustering variables. Also, the algorithm we make use is a backward stepwise variable
selection algorithm rather than a forward stepwise selection algorithm as in Raftery and
Dean (2006), because starting the search with all variables allows the model to take variable
interactions into account. Finally, we consider a more general situation where the variables
are partitioned into homogeneous blocks which cannot be splitted. This new variable roles
modelling allows to improve the clustering and its interpretation.

The paper is organized as follows. Gaussian mixture models for clustering are reviewed
in Section 2. Our variable selection approach is presented and compared with the Raftery
and Dean approach in Section 3. The greedy search algorithm we propose is presented in
Section 4. The consistency of the variable selection criterion is proved in Section 5. Section 6
is devoted to the presentation of numerical experiments on both simulated and real datasets.
A discussion on the overall method and related approaches is presented in Section 7. The
paper is completed with three technical appendices.

2 Multivariate Gaussian models and clustering

Model-based clustering (MBC) consists of assuming that the data come from a source with
several subpopulations. Each subpopulation is modelled separately and the overall popula-
tion is a mixture of these subpopulations. The resulting model is a finite mixture model.

INRIA



Variable Selection for Clustering 5

When data are multivariate continuous observations, the component parameterized density
is usually a multidimensional Gaussian density. Observations y = (y1, . . . ,yn), with yi in
R

Q, are assumed to be a sample from a probability distribution with density

f(yi | K,α) =

K
∑

k=1

pkφ(yi | µk,Σk), (1)

where the pk’s are the mixing proportions (0 < pk < 1 for all k = 1, . . . ,K and
∑K

k=1 pk = 1),
and φ(. | µk,Σk) denotes the Q-dimensional Gaussian density with mean µk and vari-
ance matrix Σk. The vector parameter is denoted α = (p1, . . . , pK , µ1, . . . , µK ,Σ1, . . . ,ΣK).
The mixture model is an incomplete data structure model: The complete data are x =
(x1, . . . ,xn) = ((y1, z1), . . . , (yn, zn)) where the missing data are z = (z1, . . . , zn), with
zi = (zi1, . . . , ziK) are binary vectors such that zik = 1 iff yi arises from group k. The z’s
define a partition of the observed data y, which is an ideal clustering of the data associated
to the mixture model.

The mixture component variance matrix can be decomposed as in Banfield and Raftery
(1993) and Celeux and Govaert (1995), into the following form

Σk = LkD′
kAkDk

where Lk = |Σk|
1/Q controls the volume of the kth cluster, Dk is the matrix of eigenvectors

of Σk which defines the cluster orientation and Ak is the diagonal matrix of normalized
eigenvalues of Σk which controls the shape of that cluster. According to the constraints which
are required on the different elements of this decomposition, a collection of parsimonious
and interpretable models is available. Moreover, the proportions can be assumed to be equal
or free. Finally, the considered model family is

T = {(K,m) ∈ {2, . . . ,Kmax} ×M}

where M is the set of 28 models, described in Appendix A, and Kmax is the maximum
number of clusters which has to be specified by the user. Those 28 models are available in
the mixmod software (Biernacki et al., 2006) and, for most of them, in the mclust software
(Fraley and Raftery, 2003).

In this inferential framework, it is possible to choose one of the models (K,m) ∈ T , by
using model selection methods or criteria (see McLachlan and Peel 2000). In a Bayesian
perspective, the model maximizing the posterior probability

(K̃, m̃) = argmax
(K,m)∈T

P [(K,m)|y]

is to be chosen. By Bayes theorem

P [(K,m)|y] =
f(y|K,m)P [(K,m)]

f(y)
,
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6 Maugis & Celeux & Martin-Magniette

and, supposing a non informative uniform prior distribution P [(K,m)] on the models, it
leads to P [(K,m)|y] ∝ f(y|K,m). Thus

(K̃, m̃) = argmax
(K,m)∈T

f(y|K,m)

where the integrated likelihood f(y|K,m) is defined by

f(y|K,m) =

∫

f(y|K,m,α)π(α|K,m)dα,

α being the vector parameter of the model (K,m) and π(α|K,m) its prior distribution
(Kass and Raftery 1995). Since this integrated likelihood is typically difficult to calculate,
an asymptotic approximation of 2 ln[f(y|K,m)] is generally used. This approximation is the
Bayesian Information Criterion (BIC) defined by

BICclust(y|K,m) = 2 ln[f(y|K,m, α̂)] − λ(K,m) ln(n) (2)

where λ(K,m) is the number of free parameters for the (K,m) model and f(y|K,m, α̂) is
the maximum likelihood under this model (Schwarz, 1978). Finally in this perspective, the
selected model is

(K̂, m̂) = argmax
(K,m)∈T

BICclust(y|K,m).

For deriving (K̂, m̂), the maximum likelihood estimate (mle) α̂ is computed using gener-
ally the EM algorithm (Dempster, Laird and Rubin, 1977). And this estimate yields the
clustering Maximum a Posteriori (MAP) rule ẑ = (ẑ1, . . . , ẑn) = MAP(α̂) defined by

ẑik =

{

1 if p̂kφ(yi|µ̂k, Σ̂k) > p̂jφ(yi|µ̂j , Σ̂j),∀j 6= k,
0 otherwise.

Here all the Q variables are supposed to enter in the mixture models. When there are
numerous variables, it can be sensible to choose which variables are entering in the mixture
models. This can be regarded as a model selection problem as well.

3 Selecting variables

The approach we propose for selecting relevant variables for clustering is related to the
Raftery and Dean (2006) approach that is sketched first. The idea of the Raftery and Dean
approach is to divide the set of variables into the subset of relevant clustering variables
and the subset of irrelevant variables, independent of the clustering, but depending of the
relevant variables through a linear regression equation. This is an interesting aspect of
their approach, avoiding the unrealistic independence assumption between the relevant and
irrelevant variables to the clustering, considered for instance in Law et al. (2004). And,
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Variable Selection for Clustering 7

as they stressed, the independence assumption would often lead to wrongly declare a vari-
able as relevant to the clustering because it is related to the clustering variables, but not
necessarily to the clustering itself. However, Raftery and Dean (2006) do not allow the
irrelevant variables to be independent of the clustering variables. It means that independent
variables are forced to enter as dependent variables in the regression linear equation. Their
introduction in the regression involves additional parameters in the model without leading
to a significant increase of its loglikelihood. Thus, models including those variables in the
clustering variables could be wrongly preferred to models considering them as dependent
variables in the regression equation, when the models are compared with Bayes factor or
penalized likelihood criteria as AIC or BIC. For this very reason, we opt for a more realistic
model where an irrelevant clustering variable can be supposed to be dependent or indepen-
dent of the clustering variables. Moreover, we consider a more general framework where
the Q variables are partitioned into T blocks. That is there exists a function Ψ such that
each variable j ∈ {1, . . . , Q} belongs to a unique variable block Ψ(j) ∈ {1, . . . , T}. This
common situation appears for instance in the genomic application considered in Section 6.3.
Obviously in the standard situation where each block reduces to a single variable, we have
T = Q, and all the following formula can be straightforwardly particularized to this simple
case.

The models in competition will be compared with their integrated likelihoods which can
be decomposed into two multiplicative parts. The first part is the integrated likelihood of
the Gaussian mixture model (K,m) on the relevant clustering variables. The second part
is the integrated likelihood of the regression of the irrelevant variables on a subset of the
clustering variables. It is the main difference with the Raftery and Dean model: Here,
the clustering variables do not necessarily enter in the regression equation explaining the
irrelevant variables. Let F be the family of variable block index subset, S ∈ F the set of
clustering variable block indexes, and Sc its complementary in F .

In order to distinguish the role of each clustering block of variables in a regression,
the set of clustering variable blocks entering the regression equation of irrelevant variables
Sc will be denoted J . The information is summarized into a couple (S, J) and the set
V = {(S, J); (S, J) ∈ F2, J ⊆ S} is defined. The division of the variable block roles is
illustrated in Figure 1. Finally, the considered model set is defined by

N = {(K,m,S, J); (K,m) ∈ T ; (S, J) ∈ V}.

Throughout the paper, for an union of variable blocks A, yA denotes the set {yj ∈ R
n/Ψ(j) ∈

A} and card(A) = card{j; Ψ(j) ∈ A}. For each model (K,m,S, J), the associated integrated
likelihood has the form

f(y|K,m,S, J) = fclust(y
S |K,m)freg(y

Sc

|yJ),

where fclust(y
S |K,m) =

∫

fclust(y
S |K,m,α)π(α|K,m,S)dα is the mixture integrated like-

lihood and freg(y
Sc

|yJ) =
∫

freg(y
Sc

|yJ , B,Ω)π(B,Ω|S, J)dBdΩ the multidimensional re-
gression integrated likelihood, B denoting the vector of regression coefficients and Ω the

RR n° 6211



8 Maugis & Celeux & Martin-Magniette

variance matrix of the regression model (see Appendix B).

The model to be chosen is supposed to maximize this integrated likelihood

(K̃, m̃, S̃, J̃) = argmax
(K,m,S,J)∈N

fclust(y
S |K,m)freg(y

Sc

|yJ)

= argmax
(K,m,S,J)∈N

2 ln
[

fclust(y
S |K,m)

]

+ 2 ln
[

freg(y
Sc

|yJ)
]

.

In practice, the integrated likelihoods are approximated using the BIC approximation as
in (2), and the chosen model is

(K̂, m̂, Ŝ, Ĵ) = argmax
(K,m,S,J)∈N

{BICclust(y
S |K,m) + BICreg(y

Sc

|yJ)} (3)

where
BICclust(y

S |K,m) = 2 ln[fclust(y
S |K,m, α̂)] − λS

(K,m) ln(n)

and
BICreg(y

Sc

|yJ) = 2 ln[freg(y
Sc

|yJ , β̂, Ω̂)] − ν(S,J) ln(n),

λS
(K,m) being the number of free parameters of the (K,m) model with card(S) variables,

(β̂, Ω̂) the maximum likelihood estimate of the regression parameters, and ν(S,J) = (card(J)+

1)card(Sc) + card(Sc)(card(Sc)+1)
2 . We refer to formula (18) in Appendix B where the com-

putation of the BIC criterion for multidimensional multivariate regression is detailed.

Figure 1: Graphical representation of the variables repartition into three
groups.

INRIA



Variable Selection for Clustering 9

4 The variable selection procedure

The number of models in N is 28(Kmax−1)
∑T

t=1(
T
t )
∑t

l=1(
t
l), where Kmax is the maximum

number of clusters and an exhaustive research of the optimal model is impossible in most
situations. The algorithm we propose is a two-nested-step algorithm.

• (i) For all (K,m), we search

(Ŝ(K,m), Ĵ(K,m)) = argmax
(S,J)∈V

{

BICclust(y
S |K,m) + BICreg(y

Sc

|yJ )
}

by a backward stepwise procedure detailed hereafter.

• (ii) We determine

(K̂, m̂) = argmax
(K,m)∈T

{

BICclust(y
Ŝ(K,m)|K,m) + BICreg(y

Ŝc(K,m)|yĴ(K,m))
}

.

Finally, the selected model is (K̂, m̂, Ŝ(K̂, m̂), Ĵ(K̂, m̂)).

In a backward stepwise selection, all the variables are selected at the beginning and, at
each step, a block of variables is excluded or included of the significant variable set. We opt
for a backward stepwise selection algorithm rather than a forward stepwise selection algo-
rithm as in Raftery and Dean (2006), because starting the search with all variables included
allows the model to take variable block interactions into account.

4.1 The models in competition

The variable set {1, . . . , T} is divided at each step into three subgroups: S the set of already
selected clustering variable blocks, C the candidate block being considered for inclusion
into or exclusion from the set of clustering variables and R the remaining variables. The
decision of exclusion (resp. inclusion) of variable block C from (resp. in) the set of clustering
variables is made by the comparison of the following two models:

1. M1(K,m):

f1(y|K,m) = f1(y
R,yC ,yS |K,m)

=
∑

z

f1(y
R,yC ,yS |z,K,m)f1(z|K,m)

= f1(y
R|yC ,yS)f1(y

C |yS)
∑

z

f1(y
S |z,K,m)f1(z|K,m)

= f1(y
R|yC ,yS)freg(y

C |yS[C])fclust(y
S |K,m).

Model M1 specifies that given yS , yC is explained by a subset yS[C] of yS and gives
no additional information for the clustering.

RR n° 6211



10 Maugis & Celeux & Martin-Magniette

2. M2(K,m):

f2(y|K,m) = f2(y
R,yC ,yS |K,m)

=
∑

z

f2(y
R,yC ,yS |z,K,m)f2(z|K,m)

= f2(y
R|yC ,yS)

∑

z

f2(y
C ,yS |z,K,m)f2(z|K,m)

= f2(y
R|yC ,yS)fclust(y

C ,yS |K,m).

In model M2, after the observation of yS , yC provides additional information for the
clustering.

The two models are compared with the Bayes factor, B12(K,m) for M1(K,M) against
M2(K,M):

B12(K,m) =
f1(y|K,m)

f2(y|K,m)
. (4)

Because the conditional distribution of (yR|yC ,yS) is unaffected by the distribution of
(yC ,yS), f1(y

R|yC ,yS) = f2(y
R|yC ,yS) and the Bayes factor can be written

B12(K,m) =
freg(y

C |yS[C])fclust(y
S |K,m)

fclust(yC ,yS |K,m)
.

Since the integrated likelihoods are difficult to evaluate, −2 ln[B12(K,m)] is approximated
with

BICdiff(y
C |K,m) = BICclust(y

S ,yC |K,m) −
[

BICreg(y
C |yS[C]) + BICclust(y

S |K,m)
]

. (5)

4.2 The backward stepwise selection algorithm

Initialisation Let (K,m) fixed, S = {1, . . . , T}, iE = ∅ and iI = ∅.

This algorithm is making use of an exclusion and an inclusion procedures now described. The
decision of excluding or including a multidimensional variable block from the set of clustering
variables is based on the comparison of the two models with the BIC approximation of the
Bayes factor.

Exclusion step In this step, the proposed multidimensional variable for removal from the
set of currently selected clustering variables is chosen to be the variable block from this set
which gives the smallest value of BICdiff defined in (5). It is as follows:

For all i in S, use the backward stepwise selection algorithm described in Appendix C
to choose the subset (S − i)[i] of dependent variables for the regression of yi on yS−i. And,
compute BICdiff(y

i|K,m). Then, compute

iE = argmin
i∈S

BICdiff(y
i|K,m).

INRIA



Variable Selection for Clustering 11

• If BICdiff(y
iE |K,m) ≤ 0,

– S = S − iE

– if iE = iI stop

– otherwise go to the inclusion step;

• otherwise

– if iI = ∅ stop

– go to the inclusion step.

Inclusion step In this step, the proposed new multidimensional clustering variable is chosen
to be the variable block from this set which gives the greatest difference between value for
BICdiff. It is as follows:

For all i in Sc, use the backward stepwise selection algorithm described in Appendix C to
choose the subset S[i] of dependent variables for the regression of yi on yS . And, compute
BICdiff(y

i|K,m). Then, compute

iI = argmax
i∈Sc

BICdiff(y
i|K,m).

• If BICdiff(y
iI |K,m) > 0,

– if iI = iE stop

– otherwise S = S ∪ iI and go to the exclusion step,

• otherwise go to the exclusion step.

Starting from the exclusion step, the backward variable selection algorithm consists of al-
ternating the exclusion and the inclusion steps.

5 Consistency of our criterion

In this section, it is proved that the probability of selecting the true couple of variables
(S0, J0) by maximizing criterion (3) approaches 1 as n → ∞ when the sampling distribution
is one of the mixture models in competition, and the true model m0 and number of mixture
components K0 are known. The density function of the sample y1, . . . ,yn is denoted h, and

θ?
(K,m,S,J) = argmin

θ(K,m,S,J)∈Θ(K,m,S,J)

KL[h, f(.|θ(K,m,S,J))]

= argmax
θ(K,m,S,J)∈Θ(K,m,S,J)

EX [ln f(X|θ(K,m,S,J))],

RR n° 6211



12 Maugis & Celeux & Martin-Magniette

where KL[f, g] =
∫

ln
(

f(x)
g(x)

)

f(x)dx is the Kullback-Leibler divergence between the densities

f and g, and

θ̂(K,m,S,J) = argmax
θ(K,m,S,J)∈Θ(K,m,S,J)

1

n

n
∑

i=1

ln[f(yi|θ(K,m,S,J))].

The following assumption is considered:

(H1) There exists a unique (K0,m0, S0, J0) such that h = f(.|θ?
(K0, m0, S0, J0)) for some para-

meter value θ?, and the couple (K0,m0) is supposed to be known.

To simplify the notation, all the dependencies over this couple of models (K0,m0) is
omitted in the following. Moreover, an additional technical assumption is considered:

(H2) The vectors θ?
(S,J) and θ̂(S,J) are supposed to belong to a compact subspace Θ′

(S,J) of
Θ(S,J) defined by

Θ′
(S,J) = P × B(η, card(S))K0 ×DK0

card(S)
× B(ρ, card(Sc), 1 + card(J)) ×Dcard(Sc)

with

– P =

{

(p1, . . . , pK) ∈ [0, 1]K ;
K
∑

k=1

pk = 1

}

denotes the set of possible proportions,

– B(η, r) = {x ∈ R
r, ‖x‖ ≤ η} where ∀x ∈ R

r, ‖x‖ =

√

r
∑

i=1

x2
i ,

– B(ρ, q, r) = {A ∈ Mq×r(R), |||A||| ≤ ρ} where the norm |||.||| is defined by

∀A ∈ Mq×r(R), |||A||| = sup
y∈Rq

‖y‖=1

‖Ay‖,

– Dr is the set of the r × r positive definite matrices with eigenvalues in [a, b] with
0 < a < b.

Theorem 1.

Under assumptions (H1), (H2), the couple of variable sets (Ŝ, Ĵ) maximizing the criterion
(3) with fixed (K0,m0) is such that P ((Ŝ, Ĵ) = (S0, J0)) →

n→∞
1.

Proof. We have (Ŝ, Ĵ) = argmax
(S,J)∈V

BIC(S, J) with

BIC(S, J) = BICclust(y
S) + BICreg(y

Sc

|yJ)

= 2 ln[fclust(y
S |α̂)] − λS ln(n) + 2 ln[freg(y

Sc

|yJ , B̂, Ω̂)] − ν(S,J) ln(n)

= 2

n
∑

i=1

ln[f(yi|θ̂(S,J))] − Ξ(S,J) ln(n),

INRIA
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where Ξ(S,J) = λS + ν(S,J) is the number of model parameters for variable set (S, J). Thus

P ((Ŝ, Ĵ) = (S0, J0)) = P (BIC(S0, J0) ≥ BIC(S, J),∀(S, J) ∈ V)

= P (BIC(S0, J0) − BIC(S, J) ≥ 0,∀(S, J) ∈ V). (6)

Denoting γ(S,J) = Ξ(S,J)−Ξ(S0,J0) and ∆BIC(S, J) = BIC(S0, J0)−BIC(S, J), ∆BIC(S, J)
can be written

∆BIC(S, J) = 2n

{

1

n

n
∑

i=1

ln

[

f(yi|θ̂(S0,J0))

h(yi)

]

−
1

n

n
∑

i=1

ln

[

f(yi|θ̂(S,J))

h(yi)

]}

+γ(S,J) ln(n). (7)

Under regularity conditions and from (H1), ∆BIC(S, J) converges to −KL[h, f(.|θ?
(S,J))]

when n tends to infinity . If KL[h, f(.|θ?
(S,J))] 6= 0 then the term into braces in (7) dominates

and tends to infinity with n. Otherwise, by the unicity assumption in (H1), we have S = S0

and J0 ⊂ J . And, the term into braces in (7) is the loglikelihood ratio statistic of two nested
models which tends to a chi-squared distribution. Thus, the term γ(S,J) ln(n) dominates
and tends to infinity with n. It leads to consider that V can be decomposed as follows

V = {(S0, J0)} ∪ V1 ∪ V2

where
V1 = {(S, J) ∈ V; KL[h, f(.|θ?

(S,J))] 6= 0} and

V2 = {(S0, J) ∈ V; J0 ⊂ J}.
From (6), the theorem is demonstrated if it is proved that

∀(S, J) ∈ V1 ∪ V2, P (∆BIC(S, J) < 0) →
n→∞

0.

Case (S, J) ∈ V1. Denoting Mn(S, J) = 1
n

n
∑

i=1

ln
[

f(yi|θ̂(S,J))

h(yi)

]

and M(S, J) = −KL[h, f(.|θ?
(S,J))],

from (7) we have

P (∆BIC(S, J) < 0) = P (2n[Mn(S0, J0) − Mn(S, J)] + γ(S,J) ln(n) < 0)

= P

(

Mn(S0, J0) − M(S0, J0) + M(S0, J0) − M(S, J) + M(S, J) − Mn(S, J) +
γ(S,J) ln(n)

2n
< 0

)

.

Thus, for all ε > 0, according to Lemma 5 in Appendix D,

P (∆BIC(S, J) < 0) ≤ P (M(S0, J0) − Mn(S0, J0) > ε) + P (Mn(S, J) − M(S, J) > ε)

+ P

(

M(S0, J0) − M(S, J) +
γ(S,J) ln(n)

2n
< 2ε

)

. (8)

From Proposition 1, stated hereafter, ∀(S, J), Mn(S, J)
P
→

n→∞
M(S, J). Thus,

∀ε > 0, P (Mn(S, J) − M(S, J) > ε) ≤ P (|Mn(S, J) − M(S, J)| > ε) →
n→∞

0.
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14 Maugis & Celeux & Martin-Magniette

Now,

P

(

M(S0, J0) − M(S, J) +
γ(S,J) ln(n)

2n
< 2ε

)

≤ P

(

M(S0, J0) − M(S, J) − 2ε <

∣

∣

∣

∣

γ(S,J) ln(n)

2n

∣

∣

∣

∣

)

.

But
γ(S,J) ln(n)

2n →
n→∞

0 and M(S0, J0) − M(S, J) > 0 because (S, J) ∈ V1. Taking ε =

M(S0,J0)−M(S,J)
4 > 0, we get

P

(

M(S0, J0) − M(S, J) +
γ(S,J) ln(n)

2n
< 2ε

)

≤ P

(

M(S0, J0) − M(S, J)

2
<

∣

∣

∣

∣

γ(S,J) ln(n)

2n

∣

∣

∣

∣

)

→
n→∞

0.

Finally, P (∆BIC(S, J) < 0) →
n→∞

0.

Case (S, J) ∈ V2. In this case, because of the unicity assumption in (H1), we have S = S0

and J0 ⊂ J ⊆ S0.

P (∆BIC(S, J) < 0) = P

(

2

n
∑

i=1

ln

[

f(yi|θ̂(S0, J0))

f(yi|θ̂(S0, J))

]

+ γ(S0,J) ln(n) < 0

)

= P

(

2 ln

[

freg(y
Sc

0 |yJ0 , B̂, Ω̂)

freg(ySc
0 |yJ , B̂, Ω̂)

]

+
[

ν(S0,J) − ν(S0,J0)

]

ln(n) < 0

)

.

Denoting An = ln
[

freg(y
Sc
0 |yJ0 ,B̂,Ω̂)

freg(y
Sc
0 |yJ ,B̂,Ω̂)

]

the loglikelihood ratio between the regression models,

since J0 ⊂ J , we have,

An
L
→

n→∞
−χ2(ν(S0,J) − ν(S0,J0)),

and the test statistic An is uniformly tight

∀ξ > 0,∃M > 0, ∀n, P (|An| > M) < ξ. (9)

From Lemma 5 in Appendix D,

P (∆BIC(S, J) < 0) = P

(

An +

[

ν(S0,J) − ν(S0,J0)

2

]

ln(n) < 0

)

≤ P (−An > M) + P
([

ν(S0,J) − ν(S0,J0)

]

ln(n) < 2M
)

≤ P (|An| > M) + P
([

ν(S0,J) − ν(S0,J0)

]

ln(n) < 2M
)

.

Since (S, J) ∈ V2, ν(S0,J) − ν(S0,J0) > 0,
[

ν(S0,J) − ν(S0,J0)

]

ln(n) →
n→∞

+∞. Therefore

P
([

ν(S0,J) − ν(S0,J0)

]

ln(n) < 2M
)

→
n→∞

0,

INRIA



Variable Selection for Clustering 15

which is equivalent to

∀ξ > 0, ∃N0, ∀n > N0, P
([

ν(S0,J) − ν(S0,J0)

]

ln(n) < 2M
)

< ξ. (10)

Finally, by (9) and (10) we obtain

∀ξ > 0, ∃M > 0, ∃N0 ∈ N
?, ∀n > N0, P (|An| > M)+P

([

ν(S0,J) − ν(S0,J0)

]

ln(n) < 2M
)

< 2ξ.

Hence
∀(S, J) ∈ V2, P (∆BIC(S, J) < 0) →

n→∞
0.

The following proposition will imply that ∀(S, J), Mn(S, J)
P
→

n→∞
M(S, J).

Proposition 1.

Under assumption (H1), (H2), ∀(S, J) ∈ V, 1
n

n
∑

i=1

ln
[

h(yi)

f(yi|θ̂(S,J))

]

P
→

n→∞
KL[h, f(.|θ?

(S,J))].

Proof.
For making easier the reading of this proof, the notation Card(S) is replaced by ]S. Let
(S, J) ∈ V. By the law of large numbers, if E[| ln(h(X))|] < ∞,

1

n

n
∑

i=1

ln [h(yi)]
P
→

n→∞
EX [ln(h(X))]. (11)

And, if the Proposition 2 can be applied with the family

G(S,J) := {ln[f(.|θ)]; θ ∈ Θ′
(S,J)}

thus
1

n

n
∑

i=1

ln
[

f(yi|θ̂(S,J))
]

P
→

n→∞
EX [ln f(X|θ?

(S,J))]. (12)

Then (11) and (12) give the result. Thus we have to prove that (H2) allows to verify the
hypotheses of the Proposition 2 and EX [| ln h(X)|] < ∞.
Firstly, according to (H2), Θ′

(S,J) is a compact metric space. Moreover, for all x in R
Q,

θ(S,J) ∈ Θ′
(S,J) 7→ ln[f(x|θ(S,J))] is continuous. Let us verify now that there is an envelope

function G of G(S,J) being h-integrable. Recalling that

ln[f(x|θ(S,J))] = ln[fclust(x
S |α)] + ln[freg(x

Sc

|xJ , B,Ω)],

these two terms are bounded separately.
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16 Maugis & Celeux & Martin-Magniette

Study of the first term:

Due to ‖xS −µk‖
2
Σ−1

k
≥ 0, |Σk|

− 1
2 ≤ a− ]S

2 according to Lemma 3 and
K
∑

k=1

pk = 1, the upper

bound of this first term is given by

ln[fclust(x
S |α)] = ln

[

K
∑

k=1

pk|2πΣk|
− 1

2 exp

(

−
‖xS − µk‖

2
Σ−1

k

2

)]

≤ ln

[

K
∑

k=1

pk(2πa)−
]S
2

]

≤ −
]S

2
ln [2πa]

where ‖xS − µk‖
2
Σ−1

k
= (xS − µk)′Σ−1

k (xS − µk).
For obtaining a lower bound, the concavity of the logarithm function is used thus

ln[fclust(x
S |α)] ≥

K
∑

k=1

pk ln

[

|2πΣk|
− 1

2 exp

(

−
1

2
‖xS − µk‖

2
Σ−1

k

)]

= −
]S

2
ln[2π] −

1

2

K
∑

k=1

pk

{

ln [|Σk|] +
[

‖xS − µk‖
2
Σ−1

k

]}

since ∀k, |Σk| ≤ b]S according to Lemma 3 and

‖xS − µk‖
2
Σ−1

k
≤

‖xS − µk‖2

a

≤
2(‖xS‖2 + ‖µk‖

2)

a

≤
2(‖xS‖2 + η2)

a

because µk ∈ B(η, ]S). Thus,

ln[fclust(x
S |α)] ≥ −

]S

2
ln[2π] −

1

2

K
∑

k=1

pk

{

ln[b]S ] +
2

a
(‖x‖2 + η2)

}

= −
]S

2
ln[2πb] −

‖x‖2 + η2

a
.

Finally the first term is bounded by

−
]S

2
ln[2πb] −

‖x‖2 + η2

a
≤ ln[fclust(x

S |α)] ≤ −
]S

2
ln [2πa] . (13)
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Variable Selection for Clustering 17

Study of the second term:

Let wJ denote

(

1
xJ

)

∈ R
1+]J .

ln
[

freg(x
Sc

|xJ , B,Ω)
]

= ln

[

|2πΩ|−1/2 exp

(

−
1

2
‖xSc

− BwJ‖2
Ω−1

)]

= −
]Sc

2
ln[2π] −

1

2
ln[|Ω|] −

1

2
‖xSc

− BwJ‖2
Ω−1.

Using Lemma 3, the following upper bound is found

ln
[

freg(x
Sc

|xJ , B,Ω)
]

≤ −
]Sc

2
ln[2πa].

According to Lemma 3, |Ω| ≤ b]Sc

and ‖xSc

− BwJ‖2
Ω−1 ≤ a−1‖xSc

− BwJ‖2. In addition,

‖xSc

− BwJ‖2 ≤ 2(‖xSc

‖2 + ‖BwJ‖2)

≤ 2(‖xSc

‖2 + |||B|||2‖wJ‖2)

≤ 2(‖xSc

‖2 + ρ2[1 + ‖xJ‖2])

because ‖wJ‖2 = 1 + ‖xJ‖2 and B ∈ B(ρ, ]Sc, 1 + ]J). Moreover, ‖xSc

‖2 ≤ ‖x‖2 and
‖xJ‖2 ≤ ‖x‖2 hence

‖xSc

− BwJ‖2 ≤ 2([1 + ρ2]‖x‖2 + ρ2).

Then a lower bound of ln[freg(x
Sc

|xJ , B,Ω)] is

ln
[

freg(x
Sc

|xJ , B,Ω)
]

≥ −
]Sc

2
ln[2πb] −

ρ2

a
−

1 + ρ2

a
‖x‖2.

Finally the second term is bounded by

−
]Sc

2
ln[2πb] −

ρ2

a
−

1 + ρ2

a
‖x‖2 ≤ ln

[

freg(x
Sc

|xJ , B,Ω)
]

≤ −
]Sc

2
ln[2πa]. (14)

Using (13), (14) and ]S + ]Sc = Q, each function of the family G(S,J) is bounded by

−
Q

2
ln[2πb] −

ρ2 + η2

a
−

2 + ρ2

a
‖x‖2 ≤ ln

[

f(x|θ(S,J))
]

≤ −
Q

2
ln [2πa] .

Thus, for all θ(S,J) ∈ Θ′
(S,J) and all x ∈ R

Q,

| ln[f(x|θ(S,J))]| ≤ C1(a, b,Q, η, ρ) + C2(ρ, a)‖x‖2

defining the envelope function G, where C1(a, b,Q, η, ρ) and C2(ρ, a) are two positive con-
stantes.
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18 Maugis & Celeux & Martin-Magniette

To verify that G is h-integrable, we have to show that
∫

‖x‖2h(x)dx < ∞.

∫

‖x‖2h(x)dx =

∫

‖x‖2f(x|θ?
(S0, J0))dx

=

∫

(‖xS0‖2 + ‖xSc
0‖2)fclust(x

S0 |α?)freg(x
Sc

0 |xJ0 , B?,Ω?)dxSc
0dxS0

≤

∫

‖xS0‖2fclust(x
S0 |α?)dxS0

+

∫

2(‖xSc
0 − B?wJ0‖2 + ‖B?wJ0‖2)fclust(x

S0 |α?)freg(x
Sc

0 |xJ0 , B?,Ω?)dxSc
0dxS0

=

∫

‖xS0‖2fclust(x
S0 |α?)dxS0 + 2

∫

‖B?wJ0‖2fclust(x
S0 |α?)dxS0

+

∫

2‖xSc
0 − B?wJ0‖2fclust(x

S0 |α?)freg(x
Sc

0 |xJ0 , B?,Ω?)dxSc
0dxS0

= A1 + A2 + A3. (15)

The behavior of the three integrals A1, A2 and A3 is studied separately.

A1 =

∫

‖xS0‖2fclust(x
S0 |α?)dxS0

=
K
∑

k=1

pk

∫

‖xS0‖2φ(xS0 |µk,Σk)dxS0

≤
K
∑

k=1

pk[2‖µk‖
2 + 2 tr(Σk)]

according to Lemma 4. Thus, from Lemma 3 and since
∑K

k=1 pk = 1,

A1 ≤ 2η2 + 2b]S0.

A2 =

∫

‖B?wJ0‖2fclust(x
S0 |α?)dxS0

≤

∫

ρ2(1 + ‖xS0‖2)fclust(x
S0 |α?)dxS0

≤ ρ2

∫

fclust(x
S0 |α?)dxS0 + ρ2A1

≤ ρ2 + ρ2[2η2 + 2b]S0].
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A3 =

∫

‖xSc
0 − B?wJ0‖2fclust(x

S0 |α?)freg(x
Sc

0 |xJ0 , B?,Ω?)dxSc
0dxS0

=

∫

fclust(x
S0 |α?)

∫

‖xSc
0 − B?wJ0‖2|2πΩ?|−1/2 exp

[

−
1

2
‖xSc

0 − B?wJ0‖2
Ω?

]

dxSc
0dxS0

≤

∫

fclust(x
S0 |α?)

∫

‖xSc
0 − B?wJ0‖2(2πb)−]Sc

0/2 exp

[

−
1

2b
‖xSc

0 − B?wJ0‖2

]

dxSc
0dxS0

because |Ω?|−1/2 ≤ b−]Sc
0/2 and ‖xSc

0 −B?wJ0‖2
Ω? ≥ b−1‖xSc

0 −B?wJ0‖2 according to Lemma
3. Thus, from Lemma 4,

A3 ≤

∫

fclust(x
S0 |α?)dxS0 ×

∫

‖y‖2φ(y|0, bI]Sc
0
)dy

= b]Sc
0.

So turning back (15),
∫

‖x‖2h(x)dx ≤ 2(b]Sc
0 + ρ2) + (1 + 2ρ2)(2η2 + 2b]S0) and finally G

is h-integrable. Since ln(h) ∈ G(S0, J0), it implies that E[| ln h(X)|] ≤ E[G(X)] < ∞ and the
law of large numbers can be applied to obtain (11).

6 Numerical experiments

This section is devoted to the presentation of numerical experiments to illustrate the behav-
ior of our methodology. First in Section 6.1, datasets presented in Raftery and Dean (2006)
are considered to compare the behavior of both approaches. In Section 6.2, results of nu-
merical experiments on simulated datasets are reported. Those numerical experiments aim
to highlight some important features of the variable selection model we consider. Finally an
application of the methodology for clustering a genomic dataset is described in Section 6.3.

6.1 Real datasets examples

Results on two real datasets, considered in Raftery and Dean (2006), where the correct
number of clusters is supposed to be known are summarized.

Iris Data This well-known dataset consists of 150 samples of equally distributed Iris
species described with four measurements (Anderson, 1935). We do not detail the results of
our variables selection procedure since they do not differ from those of the Raftery and Dean
procedure. Mixture model [pLkCk] with K = 3 clusters with three clustering variables (all
but sepal length which is explained with by the three clustering variables) has been selected
with our procedure.

Leptograpsus crabs Data This dataset (Campbell and Mahon, 1974) consists of 200
subjects, divided into 100 of species orange and 100 of species blue, each with 50 males
and 50 females. Each crab is described with five measurements: width of frontal lip (FL),
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20 Maugis & Celeux & Martin-Magniette

rear width (RW), length along the mid-line of the carapace (CL), maximum width of the
carapace (CW) and body depth (BD) in mm. When no variable selection is done and the
number of groups is not fixed, we obtain the clustering model [pLC] with seven clusters
by maximizing BICclust. The corresponding error rate with the four class species is 42%,
as can be seen from the confusion matrix in Table 1. But, if the number of clusters is

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7
class 1 18 0 0 32 0 0 0
class 2 18 0 0 0 32 0 0
class 3 0 0 0 0 0 28 22
class 4 0 24 21 0 0 0 5

Table 1: Confusion table between the clusters and the class species with all variables and
K = 7 for the Crabs dataset.

fixed to four and no variable selection is done, the error rate comes down to 7% with model
[pLD′

kADk] as seen from the confusion matrix in Table 2. Now, using our variable selection

cluster 1 cluster 2 cluster 3 cluster 4
class 1 42 8 0 0
class 2 0 49 1 0
class 3 0 0 0 50

class 4 0 0 45 5

Table 2: Confusion table between the clusters and the class species with all variables and
K = 4 for the Crabs dataset.

procedure with a number of clusters varying from two to ten, a four cluster solution for
model [pLD′

kADk] with clustering variables FL, RW, CW and BD is selected and variable
CL is explained by all the clustering variables. Thus the error rate of the selected clustering
is 7% as in Raftery and Dean (2006). Here again there is little difference between both
approaches. Note that the variable selection procedures do not improve the error rate. And
their gain, as for Iris dataset, concerns essentially the interpretation of the variable roles.
The point to be remarked here is that assuming equal proportions leads to a much more
interesting clustering model for this dataset.

cluster 1 cluster 2 cluster 3 cluster 4
class 1 0 9 41 0
class 2 0 49 1 0
class 3 49 0 1 0
class 4 3 0 0 47

Table 3: Confusion table between the clusters and the class species with our variable selection
procedure and K = 4 for the Crabs dataset.
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6.2 Simulation data

First example This is the first simulated example in Law et al. (2004). The dataset con-
sists of 800 points from a mixture of four equiprobable Gaussian distributions N (µi, I), i ∈
{1, 2, 3, 4} where

µ1 =

(

0
3

)

µ2 =

(

1
9

)

µ3 =

(

6
4

)

µ4 =

(

7
10

)

.

Eight noisy variables, sampled from a N (0, 1) density, have been appended to these data .
The true model is (K0 = 4,m0 = [pLI], S0 = {1, 2}, J0 = ∅). As in Raftery and Dean (2006),
if a variable selection procedure is not introduced in the regression, all the variables are
declared significant for the clustering by our algorithm. On the contrary, with the variable
selection procedure in the regression, our algorithm finds the true model with an error rate
of 0, 25%. By comparison, mixmod, using all the variables, chooses the model (K0,m0) and
provides the same error rate. But the model incorporating a variable selection procedure is
more parsimonious, and its interpretation of the variable roles is more significant.

Second example Each dataset consists of 800 data points from a mixture of four equiprob-
able Gaussian distributions N (µi,Σi) with

µ1 =

(

−a
−a

)

µ2 =

(

−a
a

)

µ3 =

(

a
−a

)

µ4 =

(

a
a

)

where a ∈ {2, 3, 5} and

Σ1 =

(

1 0
0 2

)

Σ2 =

(

3 0
0 0.5

)

Σ3 =

(

1 0
0 1

)

Σ4 = Σ1.

Five noisy variables, sampled from a N (0, 1) density, have been appended to these data.
The true model is (K0 = 4,m0 = [pLkBk], S0 = {1, 2}, J0 = ∅). The results summarized
in Table 4, show that our procedure selects the true role of the variables, the true number
of clusters and a model m in the diagonal family, in the three considered cases. It can be
remarked that our procedure outperforms mixmod, which does not proceed to a variable
selection, when the clusters are poorly separated (a = 2). Actually, variable selection in
clustering can be expected the more useful in such cases.

Third example The same mixture of four equiprobable Gaussian distributions described
in the previous example is considered. An additional variable is defined by y3

i = 3y1
i + εi,

εi being a Gaussian noise N (0, 0.5) independent of y1
i , for i = 1, . . . , n. And, five noisy

variables, sampled from a N (0, 1) density, have been appended. The true model is (K0 =
4,m0 = [pLkBk], S0 = {1, 2}, J0 = {1}). The results are summarized in Table 5. Our
variable selection procedure improves the clustering (error rates are much smaller than with
mixmod) and chooses the right variable roles.
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our algorithm mixmod

a K̂ m̂ Ŝ Ĵ error rate K̂ m̂ error rate
5 4 [pLkBk] {1,2} ∅ 0% 4 [pLBk] 0%
3 4 [pLBk] {1,2} ∅ 1% 4 [pLBk] 0, 875%
2 4 [pLBk] {1,2} ∅ 6, 875% 4 [pLI] 11, 25%

Table 4: Clustering results with our algorithm and mixmod for the second simulated exam-
ple.

our algorithm mixmod

a K̂ m̂ Ŝ Ĵ error rate K̂ m̂ error rate
5 4 [pLkBk] {1,2} {1} 0% 4 [pLkCk] 0%
3 4 [pLkBk] {1,2} {1} 0, 875% 5 [pkLC] 11, 875%
2 4 [pLBk] {1,2} {1} 9, 25% 5 [pLC] 22, 875%

Table 5: Results with our algorithm and mixmod for the third simulated example.

Remark about identifiability of the proposed model. Apparently, in this example, the role
of vectors y3 and y1 can be exchanged since, we have y1

i = y3
i /3 − εi. But, y1

i and εi

are independent while y3
i and εi are not independent. And the conditional distribution

of y1 knowing y3 is not a Gaussian distribution in general. For this very reason, models
(S = {1, 2}, J = {1}) and (S = {3, 2}, J = {3}) are not equivalent.

Waveform dataset The waveform dataset, available at the UCI repository (Blake et
al., 1999), is composed of three groups based on a random convex combination of two of
three waveforms sampled at integers with noise added. A detailed description is available
in Breiman et al. (1984). The dataset, studied in this paper, is extracted at random
from this waveform dataset and consists of 900 observations divided into 300 of each group
and described by 40 variables where the nineteen last are noisy variables, sampled from a
N (0, 1) density. Among all models and with a cluster number varying between two and
ten, mixmod selects a Gaussian mixture [pkLI] with six clusters. This clustering reveals
the group construction according to the three wave functions. When our variable selection
procedure is applied with K ∈ {3, 6} and with spherical and diagonal models. The selected
model is

(K̂ = 6, m̂ = [pLI], Ŝ = (3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19), Ĵ = (8, 11, 15)).

All of the noisy variables and seven ”real” variables are declared irrelevant. This resulting
variable partition gives additional information on the clustering. Moreover the final clus-
tering is coherent with the construction of the sample: three clusters correspond to the
three wave functions and the three others to convex combinations of two wave functions, as
illustrated in Figure 2.
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Figure 2: On the left, average profiles of the three real groups and on the right, average
profiles of the six clusters found with our variable selection procedure.

6.3 Application to transcriptome data

For few years, the number of transcriptome data has been increased so that it is now feasible
to investigate them with a global point of view. Studying transcriptomes under different
physiological conditions or different stress situations allows us either to better understand
how an organism works or to obtain more information on a subset of genes of interest. For
that purpose clustering methods such as hierarchical clustering or K-means algorithm are
commonly applied to find clusters of co-expressed genes (see for instance Sharan, Elkon, and
Shamir, 2002, or Jiang, Tang and Zhang, 2004, and references therein). Indeed it is usually
considered that co-expressed genes are often implicated in a same biological function and
consequently are potential candidates to be co-regulated genes. In contrast to clustering
methods based on distance, our method which belongs to model-based clustering methods,
allows to take data variability into account, and select relevant variables which could be
informative from a biological point of view.

To assess the behavior of our method on such type of data, it is applied on transcriptome
data of the model plant Arabidopsis thaliana. Considered data are extracted from the
database catdb developed by Brunaud et al. (2007). An advantage of this database is
that all data are produced with a microarray catma (Crowe et al. 2003) on the same
platform with the same protocol. Moreover in catdb statistical analyses required to remove
the technical biases (normalization) and to determine the genes significantly differentially
expressed (differential analysis) between two conditions are identical for all transcriptome
experiments. The reader is referred to Lurin et al. (2004) for a description of such an
analysis. From a statistical point of view, it means that the technical variability of the
dataset is controllable and it is possible to consider that the level of technical variability
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is homogeneous among the experiments. We focus on 1020 genes of Arabidopsis thaliana
declared differentially expressed at least once in the time course of the hypotocotyl growth
switch (Project 6 in Table 6). The aim of the biologists is to study them to characterize more
precisely their biological functions and to determine their role in the hypotocotyl growth.
The behavior of these 1020 genes on seven transcriptome projects have been studied. Each
project is composed of a set of experiments dedicated to a specific biological question (see
Table 6). Finally Q = 27 experiments partitioned into T = 7 block variables are available.
Each gene is described with a vector yg ∈ R

27, the component ygj corresponding to the test
statistic calculated in the experiment j for the differential analysis.

Project exper. num. aim of the project
1 8 transcriptome of the circadian cycle
2 4 transcriptome response to iron signaling
3 4 transcriptome profiling from cell division to differentiation
4 3 transcriptome profiling from a protoplast culture
5 3 transcriptome response to nematode infection
6 3 transcriptome time course of the hypotocotyl growth switch
7 2 transcriptome of the hypotocotyl growth switch to isoxaben treatment

Table 6: Description of the transcriptome projects used to define the seven block variables.
The number of experiments and the aim of each project are given in columns 2 and 3.

Gaussian mixture model including our variable selection procedure has been performed
with a maximal number of mixture components fixed to Kmax = 20 and with equal volume
(see Table A). The selected model is the model [pkLC] with K̂ = 17 clusters. The relevant
block variables are Projects 1, 3, 4, 6 and 7 and the four last clustering block variables
enter in the regression model. It is worthwhile to remark that Project 6, used to define
the gene subset under study, has been declared relevant for the clustering, as Project 7,
relating also to the hypotocotyl growth switch. Among the 17 clusters with different size
(see Table 7), some already known gene subsets are recovered and some clusters interested
from a biological point of view are highlighted (see for example Figure 3). The result of our
procedure allows biologists to formulate new assumptions. As an example, they will take a
biological interest in 15 genes clustered with four well-studied genes (cluster 13).

cluster 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
nb genes 7 120 25 11 42 424 14 29 43 94 11 149 19 4 6 2 20

Table 7: Size of the 17 estimated clusters.

In a comparison purpose, the data have been modelled with a Gaussian mixture including
all the variables and with equal volume. The selected model is the mixture model [pkLC]
with K̂ = 16 clusters. It shows some genes sets, common to the two clusterings (see Table
8) but the clusters are less homogeneous than with variable selection.
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Figure 3: Graphical representation of genes profiles in Clusters 4 (on the left) and 17 (on the
right). Relevant projects are colored in grey and on the x-axis Pi− j denotes experiment j
in project i.

clustering without variable selection
cl1 cl2 cl3 cl4 cl5 cl6 cl7 cl8 cl9 cl10 cl11 cl12 cl13 cl14 cl15 cl16
21 3 27 18 144 10 35 46 15 8 397 5 97 13 40 141

c
lu

st
e
ri

n
g

w
it

h
v
a
ri

a
b
le

se
le

c
ti

o
n

cl1 7 1 6
cl2 120 107 1 6 1 5
cl3 25 22 1 2
cl4 11 2 6 2 1
cl5 42 1 2 5 2 29 3
cl6 424 2 3 2 3 26 1 373 11 1 2
cl7 14 12 1 1
cl8 29 11 3 11 1 3
cl9 43 1 6 1 1 33 1
cl10 94 1 9 1 83
cl11 11 2 4 1 2 2
cl12 149 5 1 2 2 2 137
cl13 19 1 1 15 2
cl14 4 2 1 1
cl15 6 1 1 4
cl16 2 1 1
cl17 20 19 1

Table 8: Comparison of the two clusterings, with and without variable selection.
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7 Discussion

We have presented a general variable selection methodology for cluster analysis. Following
Raftery and Dean (2006), this methodology considers the problem in the model-based cluster
analysis context. In our approach, the role of the clustering variables with respect to the
other variables is more versatile and can be expected to be more realistic especially for large
dimension problems. As shown in the numerical experiments, this more general definition of
variable role could avoid to overpenalize models with independent variables and our approach
takes into account a common situation where the variables are partitioned into blocks. One
of the interests of our model is to allow for a better and, sometimes subtle, interpretation of
the variable role. For instance, in genomic applications, it could help biologists to improve
functional annotation.

On the theoretical side , we have proved the consistency of our variable selection criterion
under reasonable assumptions. Moreover, the identifiability of the proposed model parame-
ter has been discussed with a simple example. Strictly speaking, there is no identifiability
problem. But, in practice, it can happen that the clustering and the regression roles of two
variables are permuted. However, since the regression equations involved in the resulting
model are easy to be interpreted, ambiguous situations can be controlled by users.

Variable selection procedures need to use greedy algorithms which are expensive espe-
cially for large dimension data sets. Thus, in practical situations, it can be advantageous to
avoid to select the model, the number of clusters and to define the variables status in the
same exercise. We advocate to define the model and the number of clusters first, using all
the variables as clustering variables, and to choose the variables status, in a second step,
with a fixed model and number of clusters. Such a strategy is expected to provide a reliable
and informative selection of the clustering variables in a reasonable amount of time. Finally,
we want to stress that the procedure defined can work with alternative models linking the
clustering and the remaining variables, provided that a BIC-like criterion analogous with
our BICreg criterion can be computed.
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Appendices

A The different Gaussian mixture model forms

This is the list of the 28 different Gaussian mixture model forms available in the mixmod

software. Here a = KQ, c = a + (K − 1) and b = Q(Q+1)
2 :

Family Model Proportion Volume Orientation Shape number of free parameters
Spherical [pLI] equal equal equal NA a + 1

[pLkI] equal variable equal NA a + K

Diagonal [pLB] equal equal coordinate axes equal a + Q

[pLkB] equal variable coordinate axes equal a + Q − 1 + K

[pLBk] equal equal coordinate axes variable a + KQ − K + 1
[pLkBk] equal variable coordinate axes variable a + KQ

General [pLC] equal equal equal equal a + b

[pLkC] equal variable equal equal a + b + K − 1
[pLD′AkD] equal equal equal variable a + b − (K − 1)(Q − 1)
[pLkD′AkD] equal variable equal variable a + b − (K − 1)Q
[pLD′

k
ADk] equal equal variable equal a + Kb − (K − 1)Q

[pLkD′
k
ADk] equal variable variable equal a + Kb − (K − 1)(Q − 1)

[pLCk] equal equal variable variable a + Kb − (K − 1)
[pLkCk] equal variable variable variable a + Kb

Spherical [pkLI] variable equal equal NA c + 1
[pkLkI] variable variable equal NA c + K

Diagonal [pkLB] variable equal coordinate axes equal c + Q

[pkLkB] variable variable coordinate axes equal c + Q + K − 1
[pkLBk] variable equal coordinate axes variable c + KQK + 1
[pkLkBk] variable variable coordinate axes variable c + KQ

General [pkLC] variable equal equal equal c + b

[pkLkC] variable variable equal equal c + b + K − 1
[pkLD′AkD] variable equal equal variable c + b − (K − 1)(Q − 1)
[pkLkD′AkD] variable variable equal variable c + b − (K − 1)Q
[pkLD′

k
ADk] variable equal variable equal c + Kb − (K − 1)Q

[pkLkD′
k
ADk] variable variable variable equal c + Kb − (K − 1)(Q − 1)

[pkLCk] variable variable variable variable c + Kb − (K − 1)
[pkLkCk] variable variable variable variable c + Kb

Table 9: List of model forms available in mixmod

B Multidimensional Multivariate Regression

Let H be a n× V observed matrix of V response variables on each of n individuals. Let M
be a n × A known matrix which represents a matrix of A observed variables on each of the

RR n° 6211



28 Maugis & Celeux & Martin-Magniette

n individuals. The regression model is defined by

Hi = (H1
i , . . . , HV

i ) = (ak +
A
∑

j=1

βk
j M i

j , k = 1, . . . , V ) + Ei where Ei ∼ NV (0,Ω).

It can be written
H = XB + E,

with

H =







H1
1 . . . HV

1
...

...
H1

n . . . HV
n






, X =







1 M1
1 . . . MA

1
...

...
...

1 M1
n . . . MA

n






and B =











a1 . . . aV

β1
1 . . . βV

1

...
...

β1
A . . . βV

A











The following theorem is proved in Mardia, Kent and Bibby (1979, Theorems 6.2.1) or
Anderson (2003).

Theorem 2. If (X ′X)−1 exists then defining P = I − X(X ′X)−1X ′, the ml estimates of
B and Ω are

B̂ = (X ′X)−1X ′H and Ω̂ =
1

n
H ′PH. (16)

BIC criterion for multidimensional multivariate regression is now derived. The model
likelihood for data H is

f(H|M,B,Ω) = |2πΩ|−n/2 exp

[

−
1

2
tr[(H − XB)Ω−1(H − XB)′]

]

. (17)

The integrated likelihood is defined by

f(H|M) =

∫

f(H|M,B,Ω)π(B,Ω)d(B,Ω)

where π is the prior distribution of the parameters. It can be written

f(H|M) =

∫

enLn(B,Ω)d(B,Ω)

where

nLn(B,Ω) = −
n

2
ln[|2πΩ|] −

1

2
tr
[

(H − XB)Ω−1(H − XB)′
]

+ ln[π(B,Ω)].

Using Laplace approximation along a line detailed in Burnham and Anderson (2002) or in
Lebarbier and Mary-Huard (2006), we get

f(H|M) = enLn(B?,Ω?)

(

2π

n

)ν/2

| − L′′
n(B?,Ω?)|−1/2[1 + O(n−1/2)],
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where (B?,Ω?) = argmax Ln((B,Ω) and ν = (A + 1)V + V (V +1)
2 is the number of free

parameters in the regression model. Replacing (B?,Ω?) by (B̂, Ω̂) = argmax
B,Ω

f(H|M,B,Ω)

defined by (16) and |−L′′
n(B?,Ω?)| by the Fisher information I(B̂,Ω̂) which must be bounded,

we get

2 ln[f(H|M)] = 2nLn(B̂, Ω̂) + ν ln

(

2π

n

)

− ln[I(B̂,Ω̂)] + O(n−1/2).

From

2nLn(B̂, Ω̂) = −n ln(|2πΩ̂|) − tr
[

(H − XB̂)Ω̂−1(H − XB̂)′
]

+ 2 ln(π(B̂, Ω̂))

and remarking that

tr
[

(H − XB̂)Ω̂−1(H − XB̂)′
]

= nV,

we get

2 ln[f(H|M)] = −n ln[|2πΩ̂|] − nV + ν ln

(

2π

n

)

− ln(I(B̂,Ω̂)) + 2 ln[π(B̂, Ω̂)] + O(n−1/2)

≈ −n ln[|2πΩ̂|] − nV − ν ln(n).

We conclude that the BIC criterion for multivariate regression is

BICreg(H|M) = −n ln[|2πΩ̂|] − nV − ν ln(n) (18)

and in the simple regression context, (V = 1 and Ω = σ2 > 0), it becomes

BICreg(H|M) = −n ln[2πσ̂2] − n − (A + 2) ln(n).

C The backward variable selection in regression

The procedure now described is comparing the models in competition with criterion BICreg

defined in (18). Let yc a variable to be explained with a linear regression model on a set S
of dependent variables.

Initialisation S[c] = S, jE = ∅ and jI = ∅.

The algorithm is making use of an exclusion and an inclusion steps now described.

Exclusion step For all j in S[c], compute

Bdiffreg(y
j) = BICreg(y

c|yS[c]) − BICreg(y
c|yS[c]−j).

Then, compute
jE = argmin

j∈S[c]

BICdiffreg(y
j).
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• If Bdiffreg(y
jE ) ≤ 0,

– S[c] = S[c] − jE

– if jE = jI stop,

– otherwise go to the inclusion step;

• otherwise

– if jI = ∅ stop,

– otherwise go to the inclusion step.

Inclusion step For all j in S − S[c], compute

Bdiffreg(y
j) = BICreg(y

c|yS[c]∪j) − BICreg(y
c|yS[c]).

Then, compute
jI = argmax

j∈S−S[c]

Bdiffreg(y
j).

• If Bdiffreg(y
jI ) > 0,

– if jI = jE stop

– otherwise S[c] = S[c] ∪ jI and go to the exclusion step,

• otherwise go to the exclusion step.

Starting from the exclusion step, the backward variable selection algorithm consists of al-
ternating the exclusion and the inclusion steps.

D Technical results related to the consistency proof

Proposition 2.

Assume that

1. (X1, . . . , Xn) is a n-sample with unknown density h.

2. Θ is a compact metric space.

3. θ ∈ Θ 7→ ln[f(x|θ)] is continuous for every x ∈ R
Q.

4. G is an envelope function of G := {ln[f(.|θ)]; θ ∈ Θ} which is h-integrable.

5. θ? = argmax
θ∈Θ

KL[h, f(.|θ)]

6. θ̂ = argmax
θ∈Θ

∑n
i=1 f(Xi|θ).
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Then 1
n

n
∑

i=1

ln
[

f(Xi|θ̂)
]

P
→

n→∞
EX [ln f(X|θ?)].

Proof.

∣

∣

∣

∣

∣

EX [ln f(X|θ?)] −
1

n

n
∑

i=1

ln[f(Xi|θ̂)]

∣

∣

∣

∣

∣

≤
∣

∣

∣EX [ln f(X|θ?)] − EX [ln f(X|θ̂)]
∣

∣

∣

+ sup
θ∈Θ

∣

∣

∣

∣

∣

EX [ln f(X|θ)] −
1

n

n
∑

i=1

ln[f(Xi|θ)]

∣

∣

∣

∣

∣

.

According to the definition of θ?, EX [ln(f(X|θ?))] − EX [ln(f(X|θ̂n))] ≥ 0, thus

∣

∣

∣EX [ln f(X|θ?)] − EX [ln f(X|θ̂)]
∣

∣

∣ = EX [ln f(X|θ?)] −
1

n

n
∑

i=1

ln[f(Xi|θ
?)]

+
1

n

n
∑

i=1

ln[f(Xi|θ
?)] −

1

n

n
∑

i=1

ln[f(Xi|θ̂)]

+
1

n

n
∑

i=1

ln[f(Xi|θ̂)] − EX [ln f(X|θ̂)]

≤ 2 sup
θ∈Θ

∣

∣

∣

∣

∣

EX [ln f(X|θ)] −
1

n

n
∑

i=1

ln[f(Xi|θ)]

∣

∣

∣

∣

∣

.

According to Example 19.8 in Van der Vaart (1998), the bracketing numbers of G are
finite under the assumptions. Hence, using Theorem 19.4 in Van der Vaart (1998), G is

P-Glivenko-Cantelli. Thus sup
θ∈Θ

∣

∣

∣

∣

EX [ln f(X|θ)] − 1
n

n
∑

i=1

ln[f(Xi|θ)]

∣

∣

∣

∣

P
→

n→∞
0, which concludes

the proof.

Lemma 3. Let Σ ∈ Dr where Dr is defined in (H2). Then

1. ar ≤ |Σ| ≤ br and tr(Σ) ≤ br

2. ∀x ∈ R
r, b−1‖x‖2 ≤ ‖x‖2

Σ−1 ≤ a−1‖x‖2

Proof. The proof is based on the eigenvalue decomposition of the variance matrix Σ and
the bounded constraint on the eigenvalues because Σ ∈ Dr.

Lemma 4.

Let φ(.|µ,Σ) be the density of the multivariate Gaussian distribution Nr(µ,Σ). Then

1.
∫

‖y‖2φ(y|0,Σ)dy = tr(Σ)

2.
∫

‖y‖2φ(y|µ,Σ)dy ≤ 2
[

‖µ‖2 + tr(Σ)
]
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Proof. The first result is a classical property of multivariate Gaussian densities. The second
result is deduced from the first one using the triangle inequality.

Lemma 5.

Let A and B be two real random variables,

∀ε ∈ R, P (A + B ≤ 0) ≤ P (A ≤ ε) + P (−B > ε).
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