Skip to Main content Skip to Navigation
Other publications

Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons

Benoit Siri 1 Mathias Quoy 2 Bruno Delord 3 Bruno Cessac 4, 5 Hugues Berry 1
1 ALCHEMY - Architectures, Languages and Compilers to Harness the End of Moore Years
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
5 ODYSSEE - Computer and biological vision
DI-ENS - Département d'informatique de l'École normale supérieure, CRISAM - Inria Sophia Antipolis - Méditerranée , ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, ENPC - École des Ponts ParisTech
Abstract : The aim of the present paper is to study the effects of Hebbian learning in random recurrent neural networks with biological connectivity, i.e. sparse connections and separate populations of excitatory and inhibitory neurons. We furthermore consider that the neuron dynamics may occur at a (shorter) time scale than synaptic plasticity and consider the possibility of learning rules with passive forgetting. We show that the application of such Hebbian learning leads to drastic changes in the network dynamics and structure. In particular, the learning rule contracts the norm of the weight matrix and yields a rapid decay of the dynamics complexity and entropy. In other words, the network is rewired by Hebbian learning into a new synaptic structure that emerges with learning on the basis of the correlations that progressively build up between neurons. We also observe that, within this emerging structure, the strongest synapses organize as a small-world network. The second effect of the decay of the weight matrix spectral radius consists in a rapid contraction of the spectral radius of the Jacobian matrix. This drives the system through the ``edge of chaos'' where sensitivity to the input pattern is maximal. Taken together, this scenario is remarkably predicted by theoretical arguments derived from dynamical systems and graph theory.
Document type :
Other publications
Complete list of metadata

Cited literature [45 references]  Display  Hide  Download
Contributor : Hugues Berry <>
Submitted on : Monday, June 18, 2007 - 3:39:04 PM
Last modification on : Monday, January 25, 2021 - 3:16:03 PM
Long-term archiving on: : Thursday, April 8, 2010 - 8:40:00 PM


Files produced by the author(s)


  • HAL Id : inria-00155580, version 1
  • ARXIV : 0706.2602


Benoit Siri, Mathias Quoy, Bruno Delord, Bruno Cessac, Hugues Berry. Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons. 2007. ⟨inria-00155580⟩



Record views


Files downloads