
HAL Id: inria-00156049
https://inria.hal.science/inria-00156049v1
Submitted on 19 Jun 2007 (v1), last revised 25 Jun 2007 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic Choice Operators as Constraint
Combinators: Application to the Statistical Structural

Testing Problem
Matthieu Petit, Arnaud Gotlieb

To cite this version:
Matthieu Petit, Arnaud Gotlieb. Probabilistic Choice Operators as Constraint Combinators: Appli-
cation to the Statistical Structural Testing Problem. [Research Report] 2007. �inria-00156049v1�

https://inria.hal.science/inria-00156049v1
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
??

??
--

F
R

+
E

N
G

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Probabilistic Choice Operators as Constraint
Combinators: Application to the Statistical

Structural Testing Problem

Matthieu Petit and Arnaud Gotlieb

N° ????

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex (France)

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

Probabilistic Choice Operators as Constraint
Combinators: Application to the Statistical Structural

Testing Problem

Matthieu Petit∗ and Arnaud Gotlieb

Thème SYM — Systèmes symboliques
Projet Lande

Rapport de recherche n° ???? — — 19 pages

Abstract: Probabilistic Concurrent Constraint Programming (PCCP) extends concur-
rent constraint languages by providing probabilistic choice operators. These operators have
proved to be useful in implementing randomized algorithms as well as stochastic processes.
In this report, we present an instance of PCCP where probabilistic choice operators are
modelled with constraint combinators. This modeling allow us to deal with a new kind of
problems where the probabilistic choice is only partially known. An implementation under
the form of a library of SICStus Prolog is in progress. The major practical application of
our work is the statistical structural testing problem in software testing.

Key-words: Probabilistic Concurrent Constraint Programming, Probabilistic Choices
Combinator, Statistical Structural Testing

∗ This work is part of the GENETTA project granted by the Brittany region.

Des Opérateurs de Choix Probabilistes comme des
Combinateurs de Contraintes : Application au

Problème du Test Statistique Structurel

Résumé : La Programmation Concurrente par Contraintes Probabilistes (PCCP) étend
la Programmation Concurrente par Contraintes par des opérateurs de choix probabilistes.
Ces opérateurs ont prouvé leur utilit dans l’implantation d’algorithmes “randomisés” ainsi
que dans la modélisation de processus stochastiques. Dans ce rapport, nous présentons
une instance de PCCP dans laquelle les opérateurs de choix probabilististes sont modélisés
comme un combinateurs de contraintes. Cette modélisation permet de traiter de nouveaux
problèmes pour lesquels le choix probabiliste n’est que partiellement connu. Une implanta-
tion sous la forme d’une librairie de SICStus Prolog est présentée. La majeure application
de notre travail est le test statistique structurelle.

Mots-clés : Programmation Concurrente par Contraintes Probabilistes, Combinateur de
choix probabilistes, Test Statistique Structurel

Prob. Choice Op. as Constraint Combinators: application to the SST problem 3

1 Introduction

Probabilistic Concurrent Constraint Programming (PCCP) was concurrently introduced by
Di Pierro and Wiklicky [5] and Gupta, Jagadeesan and Saraswat [10] to model randomized
algorithms [6] and stochastic processes [9] in a declarative way. In both cases, a probabilistic
choice operator was added to Concurrent Constraint Programming (CCP) [17] to introduce
probabilistic behaviours in concurrent constraint processes. A probabilistic choice between
two CCP processes can be thought of as flipping a coin : head the first process is triggered,
tail the second process is triggered.

In CCP, concurrent processes interact via a common constraint store, which is a con-
junction of constraints on the possible values of variables. The computational model acts
by accumulating constraints into the constraint store and by checking whether the store
entails constraints. In [5], the classical non–deterministic choice operator [18] of CCP is
extended with probabilities to form a probabilistic choice operator whereas [10] introduces
an operator that constrains an internal random variable. In [5], random choices operate
over processes whereas in [10] random choices operate over values of variables. It is worth
noticing that for both operators, random draws must be done over an instantiated prob-
ability distribution. According to our knowledge, only one implementation of PCCP has
been proposed [1]. It takes the form of a meta-interpreter in Prolog and implements the
probabilistic non-deterministic choice operator of [5].

In our work, we propose to extend the probabilistic choice operator introduced in [10]
by defining it as a constraint combinator. Combinators are meta-constraints that express
complex relations between variables and constraints. The main contribution of our approach
resides in the possibility of expressing probabilistic choice relations without requiring all the
parameters to be instantiated. In particular, we allow expressing random drawings over an
unknown probability distribution. By this, we increase the declarativity of the probabilistic
choice operator and open the door to the modelling of a new kind of problems. As a very
basic example, consider the simulation of a dice drawing. When the dice is unbiased (its
probability distribution is then fully instantiated), the following PCCP process simulates
the dice drawing:

choose(X, [1, 2, 3, 4, 5, 6] − [1, 1, 1, 1, 1, 1], tell(X = Dice)).

The distribution probability is represented by a list of weights ([1, 1, 1, 1, 1, 1]) that yields
to a 1

6
probability of drawing each of the six possible dice face. However, the simulation

of dice drawing becomes non-feasible whenever the bias of the dice is unknown or just
known via some constraints (for example, knowing that the 6-face of the dice is two times
more overloaded than the 1-face). As previously said, PCCP requires indeed the probability
distribution of its probabilistic operator to be fully instantiated. By defining the probabilistic
choice operator as a constraint combinator, such a problem can be simulated via the following
request:

tell(W6 = 2 ∗ W1) || choose(X, [1, 2, 3, 4, 5, 6] − [W1,W2,W3,W4,W5,W6], tell(X = Dice))

RR n° 0123456789

4 M. Petit and A. Gotlieb

This basic example is representative of a more realistic class of problems where the un-
known is actually the probability distribution. We met these problems whenever working
on statistical structural testing, which is a well-established software testing technique [20].
Statistical structural testing aims at finding a distribution probablity over the input domain
of a program that maximizes the coverage of some structural criteria, such as all statements
or all paths. Up to now, there is no satisfactory automated technique for biasing the choice
of test data that meet this objective.

This report introduces probabilistic choice operators modelled as constraint combina-
tors, also known as global constraints. We implemented these combinators under the form
of a SICStus Prolog library called PCC(FD) built over clp(fd) (a.k.a. finite domains con-
straints). A preliminary version of this library is available [15]. In this report, we focus on
the practical applications of this library to the statistical structural testing problem rather
than focussing on the implementation details. By giving some insights on the filtering ca-
pacities of these combinators, we explain how they can be used to efficiently solve practical
problems where the unknown is actually the probability distribution.

The report is organized as follows : Section 2 briefly recalls the syntax and semantics
of PCCP; Section 3 describes the operational semantics of the main probabilistic choice
constraint combinator while Section 4 presents the implementation of several probabilistic
constraint combinators in SICStus Prolog. Section 5 details the application of this library
to the statistical structural testing problem. Finally, Section 6 indicates several perspectives
to this work.

2 Probabilistic Concurrent Constraint Programming

Before presenting PCCP, we start by recalling some syntax and semantics elements of the
classical concurrent constraint programming paradigm (CCP) introduced by Saraswat [17].

2.1 Concurrent Constraint Programming

In CCP, processes are executed concurrently and can interact with each other through a
common constraint store. A CCP language is parameterized by a constraint system [18],
which is composed of a set of primitive constraints and an entailment relation. The syntax
of a CCP language can be given using the following grammar :

Process ::= tell(C) | if C then Process |new X inProcess |Process‖Process.

where tell(C) adds the constraint C to the constraint store, if C then Process asks whether
C is entailed by the current constraint store and adds the constraints of Process if C is
entailed, new X in Process adds the constraints of Process to the store while hiding the
variable X from other processes, and finally, ‖ represents the parallel composition that can
be interpreted as a logical conjunction in a Logic Programming environment. Well known
examples of CCP languages include cc(FD)[11], AKL[12] or Oz/Mozart[19] just to name a
few.

INRIA

Prob. Choice Op. as Constraint Combinators: application to the SST problem 5

2.2 Probabilistic Choice Operator

In [10], Gupta et al. proposed to add a probabilistic choice operator to CCP. The operator
choose(X,LawX , P rocess) injects a random variable X along with a probabilistic law LawX

into a concurrent process Process. LawX contains a list of possible values for X, [v1, . . . , vn]
along with a list of non negative weights [w1, . . . , wn] associated to each vi. In this oper-
ator, X cannot be constrained outside the concurrent process, i.e. X is local to Process.
Operationally, choose(X, [v1, . . . , vn]− [w1, . . . , wn], P rocess) executes ProcessX←vi

with a
probability pi where ProcessX←v denotes the concurrent process P where X has been sub-
stituted by v and pi denotes the probability of the event X = vi which is computed by the
following formula:

pi =
wi

∑n

j=1
wj

.

2.3 Operational semantics

Running processes of PCCP can be formally described by using a probabilistic transitions
system (Γ, 7→p) where Γ denotes the set of states of the transition system, also called con-
figurations. A configuration is a pair 〈Process, σ〉 where Process denotes all the remaining
processes to be executed while σ is the constraint store. As usual, the transition relation
7→p is defined with the help of axiomatic rules that are available in [9]. Let σ0 be an initial
constraint store, then the set of terminal configurations tc(Process, σ0) in the operational
semantics of PCCP are defined as:

tc(Process, σ0) = {σ | 〈Process, σ0〉 7→
∗

p̄ σ 67→p}.

where p̄ denotes the probability to reach σ and 7→∗p̄ denotes the transitive closure of the
transition relation. In PCCP, only consistent constraint stores (consistent terminal config-
urations ctc(Process, σ0)) are considered for further computations:

ctc(Process, σ0) = {σ | 〈Process, σ0〉 7→
∗

p̄ σ 67→p and consistent(σ)}

Just to make things more concrete, we illustrate the processing of a PCCP request on a
basic example extracted from [9]:

Example 1.

P = choose(X, [0, 1] − [1, 1], tell(X = Z)) ‖
choose(Y, [0, 1] − [1, 1], if Z = 1 then tell(Y = 1)).

Roughly speaking, three possible terminal configurations can be obtained: Z is constrained
to 0 with the probability 1

2
(event X = 0), Z is constrained to 1 with the probability 1

4

(event X = 1∧ Y = 1) and false is obtained with the probability 1

4
(event X = 1∧ Y = 0).

By eliminating the third possible answer, we get ctc(P, true) = {Z = 0, Z = 1}.

RR n° 0123456789

6 M. Petit and A. Gotlieb

3 Probabilistic choice as a constraint combinator

In PCCP, the probabilistic choice operator requires the couple Domain−Distribution to be
fully instantiated. In this section, we relax this requirement by introducing the probabilistic
choice operator choose as a constraint combinator. As previously claimed, this allows us to
reason on probabilistic choices that are only partially known. In this view, the probability
distribution associated to X is just constrained by a set of constraints on its possible values.
This allows to establish a relation between the probabilistic choice and the set of its possible
probability distribution. In the rest of the report, we instantiate PCCP to the case of finite
domains constraints although this is not a strong requirement of our approach. In fact, FD

is the adequate domain for our software testing application, described in Sec.5.

3.1 Probabilistic laws over finite domains

We start by giving the definition of shape of a probabilistic law over FD. The form is as
follows:

Definition 1. Let V1, . . . , Vn and W1, . . . ,Wn be 2n finite domain variables, then [V1, . . . , Vn]
− [W1, . . . ,Wn] denotes a probabilistic law over finite domains for the random variable X iff
the probability of the event X = Vi is equal to Wi�

n
j=1

Wj
.

3.2 Uncertainty on the probabilistic law

The simulation (random drawing) of values for the random variable X is always possible
when LawX is fully determined, i.e. when all the finite domain variables of its probabilistic
law are instantiated. Uncertainty on the probability distribution only appears whenever the
variables of the probabilistic law LawX can take several possible values. This uncertainty
is characterized by the following definition:

Definition 2. Let X a random variable, LawX = [V1, . . . , Vn]− [W1, . . . ,Wn] its probability
law. We defined the set of the possible probability distributions to X, called SLX , as follows:

SLX =
{

[w1, . . . , wn]
∣

∣w1 ∈ dom(W1), . . . , wn ∈ dom(Wn)
}

where dom(W) is the domain of a variable W .

is an over approximation of the possible probabilistic laws for X. The uncertainty on
the probability law is caused by the uncertainty on the probability distribution. Indeed,
the simulation of values for X is always possible when the probability distribution is fully
valuated.

Example 2. Consider the example of dice drawing given in the introduction:

tell(W6 = 2 · W1) || choose(X, [1, 2, 3, 4, 5, 6] − [W1,W2,W3,W4,W5,W6], tell(X = Dice))

INRIA

Prob. Choice Op. as Constraint Combinators: application to the SST problem 7

Suppose that dom(W1) = 1..2, dom(W2) = 2..2, dom(W3) = 2..2, dom(W4) = 2..2,
dom(W5) = 2..2 and dom(W6) = 2..4, then the uncertainty on the unknown bias of the
dice is given by the following set:

SLX = { [1, 2, 2, 2, 2, 2], [1, 2, 2, 2, 2, 3], [1, 2, 2, 2, 2, 4],
[2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, 3], [2, 2, 2, 2, 2, 4]}.

It is worth noticing that only two probabilistic laws over six satisfy the constraint W6 = 2·W1.
Hence, SLX is indeed an over approximation of the possible probabilistic laws for X.

When considered over finite domains, the combinator choose

(X, [V1, . . . , Vn]− [W1, . . . ,Wn], P rocess) builds a relation between the simulation of values
for X and the set of finite domain variables of its probabilistic law. Technically, X is not a
finite domain variable (albeit it can only take a finite set of possible values), it is a random
variable, meaning that the choice over its possible values is done at random. However, using
the definition of SLX , the relation choose(X, [V1, . . . , Vn] − [W1, . . . ,Wn], P rocess) allows
us to reason and filter over the possible random values of X. In the next section, we give
an operational description of this process.

3.3 Operational description of choose

The constraint combinator choose(X, [V1, . . . , Vn] − [W1, . . . ,Wn], P rocess) is managed by
the solver into the finite domain constraint propagation mechanism. The solver exploits the
relation between X and SLX to prune the domain of X in order to accelerate the convergence
toward a fix point and reason even in the absence of certainty over the probabilistic choice.
First of all, the combinator choose just succeeds whenever X is valuated. In this case, the
constraints of Process are set up into the (dynamic) constraint system. When X cannot be
instantiated during the constraint propagation step, then a filtering algorithm is launched
to prune the possible values of X, i.e. to remove any finite domain variable Vi of the domain
of the possible values for X that can be randomly drawn When no more pruning can be
performed, the constraint combinator falls into an asleep state. It is awoken whenever the
domain of at least one variable of the probabilistic law is modified.

The pruning algorithm launched during constraint propagation exploits the fact that X

can be drawn very early at random in [V1, . . . , Vn] according to the probability distribution
defined by [W1, . . . ,Wn]. Although the pruning algorithm plays a prevalent role in the
acceleration of convergence, it is not given here as we preferred to focus on the applications
of the constraint combinator choose rather than focusing on technical details. However, all
the details of the filtering process can be found elsewhere [16]. Note just that the complexity
of the filtering algorithm is only linear w.r.t. the length of the domain of the random variable
X [16].

RR n° 0123456789

8 M. Petit and A. Gotlieb

4 The PCC(FD) library

In this section, a library of three probabilistic choice operators defined as new combinators
of the constraint system is presented. The implementation of these combinators is based
on the clp(FD) library of SICStus prolog [2], by making use of its global constraint def-
inition interface. Before switching on the description of combinators, let us just explain
the predicate ptc(Goal,Var List,Result) which empirically computes the set of terminal
configurations in PCC(FD).

4.1 Empirical computation of the set of terminal configurations

Given a Prolog goal Goal along with a list of variables Var_L ist, the ptc predicates launches
a given number (5000) of Goal runs, records the resulting constraint store projection (i.e.
projection of domains on Var_List) after the constraint propagation step, and computes
the occurrence rate of each constraint store projection. By using this predicate, one can
study the probabilistic behaviour of our constraint combinators in PCC(FD).

4.2 Probabilistic combinators in PCC(FD)

The three combinators distinguish themselves on the three possible notations of the prob-
abilistic choice we gave above. In all the three cases, the probabilistic choice Domain −
Distribution takes the form of Prolog terms that can be either closed or disclosed. A
closed term is associated to a fully instantiated probabilistic choice whereas a disclosed term
represents uncertainty on the probabilistic choice. The three combinators are:

- choose, where Domain is a list of values and Distribution is a list of finite domain
variables that represent weights;

- choose_range, where Domain is a range represented with two distinct FD variables
Min and Max, and Distribution is a difference list of finite domain variables that
represent weights;

- choose_decision, where Domain is the boolean domain {0, 1} and Distribution is a
couple of distinct finite domain variables that represent weights.

4.3 The choose combinator

The syntax of the combinator choose is as follows:

choose(X,[V1,..Vn]-[W1,..,Wn],Goal,Options)

where X is a random variable and V1,..,Vn,W1,..,Wn are finite domain variables. Recall
that X cannot be constrained elsewhere in the Prolog program as it is local to the combi-
nator. Options is used to parameterize the filtering capacities of the combinator into the
constraint propagation mechanism. Three options are currently available:

INRIA

Prob. Choice Op. as Constraint Combinators: application to the SST problem 9

- no_filtering can be employed to switch off the pruning capacities of the filtering
algorithm. This option is useful for experiments ;

- inconsistency_check can be used to check the consistency of all the possible values
V of X with respect to Goal. This option allows one to parameterize the filtering
algorithm by trying to refute Goal ∧X = V . This option is useful to improve the
pruning capacities of the combinator but requires a lot of memory space. Its usage is
then confined to some specific situations (for example, when Goal is made of a single
constraint) ;

- lvar(L) can be used to enrich the list of variables on which the combinator is awaked.
This option is useful to parameterize the awaking conditions of the combinator.

By default, none of these options are activated.
Let us illustrate the behaviour of the choose combinator on the example 2 of the biased

dice given above.

Example 3. dice(Dice) :-

W1 in 1..2,W2 in 2..2,W3 in 2..2,W4 in 2..2,W5 in 2..2,W6 in 2..4,

2*W1#=W6,

choose(X,[1,2,3,4,5,6]-[W1,W2,W3,W4,W5,W6],[X=Dice],[]).

? - ptc(dice(Dice),[Dice],Result).

Result=[(Dice=1,0.07735),(Dice in 1..2,0.09065),

(Dice=2,0.06285),(Dice in 2..3,0.10175),

(Dice=3,0.05135),(Dice in 3..4,0.11795),

(Dice=4,0.03860),(Dice in 4..5,0.12775),

(Dice=5,0.02575),(Dice in 5..6,0.1401),

(Dice=6,0.16590)]

The results show the different constraint store projections on X obtained after the con-
straint propagation step. For example, (Dice=1,0.07735) means that Dice is equal to 1
with a probability 0.07735. For some cases, the dice has been instantiated although the
probability distribution was not fully known. On the contrary, some other constraint store
projections show domains that contain two values. In this case, the filtering process failed
to instantiate X but dramatically pruned the domain of possible values for X. On this
example, our implementation permits valuating X with a probability of 0.4018 which is an
good performance as these cases correspond to obtaining the dice face without knowing the
bias of the dice.

4.4 The choose range combinator

The choose range combinator implements a probabilistic choice operator for a range of
values. The range is given by [Xmin,Xmax], where Xmin and Xmax are two finite domain

RR n° 0123456789

10 M. Petit and A. Gotlieb

variable. Xmin denotes the lower bound of X wheras Xmax denotes its upper bound. The
probability distribution takes the form of a list as the exact length of the probability distri-
bution is unknown. The probability distribution itself evolves according to the domain of
Xmin and Xmax. Information on Xmin and Xmax is exploited to constrain the shape of the
list.

choose_range(X,[Xmin,Xmax]-[W1,..,WN],Goal,Options)

where N is equal to max(Xmax)-min(Xmin)+1. no_filtering, inconsistency_check and

lvar(L) options are available.
choose_range(X,[Xmin,Xmax]-[W1,..,Wn|Q]-Q,Goal,Options) can be rewritten as
choose(X,[min(Xmin),..,max(Xmax)]-[W1,..,WN],[Goal],Options).

We illustrate the choose range combinator on an implementation of the (weak) Miller-
Rabin primality test. This well known primality test is based on a randomized algorithm
that can be implemented in PCC(FD). The core of the test is built on the contrapositive
form of the Fermat’s little theorem, saying that if n is a prime number and x ∈ N

∗ such as
gcd(x, n) = 1, then

xn−1 ≡ 1 mod n. (1)

If there exists x ∈ N
∗ such as gcd(x, n) = 1 and xn−1 6≡ 1 mod n, then n is a composite

number (i.e. not a prime number). Trivial algebraic manipulations show that x can be chosen
in {2, . . . , n − 1} For great values of n, it is unreasonable to verify that ∀x ∈ {2, . . . , n − 1}
the equation (1) is satisfied (a NP hard problem), hence values for x are chosen according
to a uniform probability distribution. This randomized algorithm is easily modelled (for
any number N) by making use of the choose_range combinator, as shown in Fig. 1. In

Figure 1 An implementation of the (weak) Miller-Rabin primality test in PCC(FD)

primal_testing(N,K) :-

Xmax #= N-1,

itere(N,Xmax,K).

itere(_N,_Xmax,0).

itere(N,Xmax,K) :-

choose_range(X,[2,Xmax]-uniform,[fermat_test(X,N)],Options),

K1 is K-1,

itere(N,Xmax,K1).

the model, fermat_test(X,N) is true iff the equation (1) is satisfied. itere/3 set up K

non-primality tests and uniform is used to represent a uniform probability distribution.
This declarative view of the primality test allows us to create a new relation for primality

testing: we constrain N to be a prime number with a certain probability. The goal fails
whenever N is shown to be a composite number and then the predicate primal_testing

allows us to generate (likely) prime numbers:

INRIA

Prob. Choice Op. as Constraint Combinators: application to the SST problem 11

?- N in 2..335544431,primal_testing(N,20),labeling([],[N]).

N = 2 ?;

N = 3 ?;

N = 5 ?;

N = 7 ?;

N = 11 ?;

...

yes

This toy-example shows that randomized algorithm can be employed to define new relations
which are easily implemented within PCC(FD). However, for generating prime numbers,
current limitations of the clp(fd) library of SICStus Prolog (namely, the 25-bits limit of the
bounds of finite domains) forbid the approach to scale to more interesting cryptographic
applications where one looks for 200-digits prime numbers.

4.5 The choose decision combinator

The choose decision combinator implements a probabilistic boolean choice between two
processes. This probabilistic boolean choice is represented as a list [W1,W2] of two finite
domain variables. The term neg(Constraint) denotes the negation of Constraint. The
probabilistic choice arises between Constraint,Goal1 and neg(Constraint),Goal2:

choose_decision(Constraint,[W1,W2],Goal1,Goal2,Options)

no_filtering, inconsistency_check and lvar(L) options are available. Note that
choose_decision(Constraint,[W1,W2],Goal1,Goal2,Options) can be rewritten as
choose(X,[0,1]-[W1,W2],[ask(X=0,[Constraint,Goal1]),ask(X=1,[neg(Cons-

traint),Goal2],Options)]).
This combinator has been introduced to simulate the behaviour of the conditional and

loop statements in imperative programming. It is mainly devoted to the statistical structural
testing problem we will discuss later in the next section.

5 Application to the statistical structural testing prob-
lem

In this section, we present our modeling of the statistical structural testing problem as
a PCCP(FD) problem. We start by recalling some background on this software testing
problem.

5.1 Background

Structural software testing aims at increasing our trust in the correctness of a given (imper-
ative) program. Major difficulties reside in an automatic selection of a test suite which is a

RR n° 0123456789

12 M. Petit and A. Gotlieb

representativ sampling of program under test behaviours. When the test suite is randomly
generated according to a given probability distribution, one speaks of statistical structural
testing (SST) [20].

The SST problem lies in the difficulty of finding a probability distribution over the input
domain that maximizes the probability to cover each element of the testing criterion. The
structural testing criteria are based on the coverage of the control flow or data flow graph
model of the program under test [21]. The all paths criterion aims at covering all paths of
the control flow graph. As an example, consider the all paths criterion, the goal of statistical
structural testing for all paths is to find a probability distribution such as each path has
the same probability to be executed. In this case, giving the same probability to each path
leads to maximize the probability of covering each path but for other criteria this is not
so simple. This problem was initially studied by Thv́enod-Fosse and Waeselynck [20] and
more recently Gouraud,Denis, Gaudel and Marre proposed new automated solutions based
on combinatorial structures [8].

5.2 A constraint-based approach to the statistical structural testing
problem

To address the problem of deriving an input probability distribution from the program
structure, we propose translating it into a PCC(FD) program and solve a given request
generated from the static source code analysis. Before explaining the translation and the
generation of the request, we start by giving an overview of the overall approach.

5.2.1 An overview of the approach

Our approach is based on a two-step process. Firstly the imperative program is translated
into a PCC(FD) program. Each statement is inductively translated into a primitive con-
straint or a constraint combinator. For this translation, we followed the scheme proposed
in [7] which makes use of the static single assignment form (SSA form) [3]. During the
translation free finite domain variables are inserted in the decisions of the program in order
to capture probabilistic information associated to the statistical structural testing problem.
Secondly, a static analysis of the imperative program leads to generate a set of structural
constraints on the free variables of the probabilistic distribution. Solving a PCC(FD) re-
quest that set up these constraints as well as the constraints of the translation allows us to
generate a fully instantiated probability distribution that solve the problem. The most in-
teresting point is that our approach exploits static as well as dynamic information for finding
the probability distribution, while other statistical structural testing approaches don’t.

5.2.2 Static Single Assignment form

The SSA form is a version of a program where each variables have a unique definition and
each use of the same variable can be reached by this definition [3]. The SSA form of a
basic block is obtained by a simple renaming (i = i + 1 leads to i2 = i1 + 1). For the

INRIA

Prob. Choice Op. as Constraint Combinators: application to the SST problem 13

Figure 2 SSA form of control statements

if (x < 4) if (x < 4)
u = 10 ; u1 = 10 ;

else else
u = 2; u2 = 2;

u3 = φ(u1, u2);

j = 1; j1 = 1;
/* Heading - while */
j3 = φ(j1, j2);

while (j ∗ u > 16) while (j3 ∗ u3 > 16)
j = j + 1 ; j2 = j3 + 1 ;

control structures, SSA form introduces special assignments, called φ-functions, to merge
several definitions of the same variable. For example, the SSA form of the if then else

is illustrated in the top of Fig. 2. The φ-function of the statement u3 = φ(u1, u2) returns
one of its arguments : if the flow comes from the then- part then the φ-function returns u1,
otherwise u2.
For other control structures such as loops, the φ-functions are introduced in a special heading,
as exemplify in Fig. 2. If the flow comes from the statement j1 =..., then the φ-function
returns j1. On the contrary, if the flow comes from the body of the loop (j2 =...) then, the
φ-function returns j2. The SSA form allows the statements to be interpreted as constraints
or combinators [7].

5.2.3 Translation of the imperative program

Assignment statement. The statement x := expr is translated into X#=E where E is the
syntactic translation of expr.

Compound statement. The statement Stmt1;Stmt2 is translated into a conjunction
(,) of two goals where Goal1 (resp. Goal2) is the translation of Stmt1 (resp. Stmt2).

Conditional statement. The statement if b then Stmt1 else Stmt2 is translated into
choose_decision(C,[W1,W2],Goal1,Goal2,Options) where C is the syntactic translation
of b, Goal1 (resp. Goal2) is the translation of Stmt1 (resp. Stmt2). W1 and W2 are free
variables that are associated to the probability distribution. They will be constrained later.

Loop statement. The statement while b do Stmt is treated as a conditional statement

RR n° 0123456789

14 M. Petit and A. Gotlieb

with a recursive call. In our translation, the statement while b do Stmt is considered as the
statement if b then (Stmt;while b do Stmt). In other words, the loop statement obeys to
a lazy unfolding in our current framework. Note however that we plan to perform a better
translation by making use of a global combinator to simulate the behaviour of the while
statement. But this is outside of the scope of the report.

5.2.4 PCC(FD) request generation

By a static analysis of the program under test, some structural constraints on the expected
probability distribution can be generated. These constraints are based on the selected struc-
tural criterion. More precisely, counting the number of simple paths in the control flow
graph of the program allows us to set up some constraints on the probability distribution.
For example, when analysing a conditional, by computing the number of simple control
flow paths starting from each branches, say n1 and n2, we can set up the following con-
straint n1 ·W1 = n2 ·W2 if W1,W2 are the variables associated to the unknown probability
distribution. This process is fully explained in [14] and it illustrated below.

5.3 Examples

We illustrate our approach on two (academic) examples to show its expressiveness.

5.3.1 First example

The first program is given in Fig.3. Some statements are not shown just to allow the reader
to focus only on the relevant part of the program. To make things clearer, we assume that

Figure 3 Program foo

int foo(int x, int y) {
1. if (x =< 100 && y =< 100)

{
2. if (y > x + 50)
3. . . .
4. if (x ∗ y < 100)
5. . . .
6. }

x, y are constrained to take their values in [0, 1000]. By using our constraint-based approach,
the foo program is automatically translated into the following PCCP(FD) program:

foo(X,Y, [W1,W2,W3,W4,W5,W6]) :-

X in 0..1000,Y in 0..1000,

INRIA

Prob. Choice Op. as Constraint Combinators: application to the SST problem 15

choose_decision(X#=<100#/\Y#=<100,[W1,W2],

[choose_decision(Y#>X+50,[W3,W4],[],Options),

choose_decision(Y*X#<100,[W5,W6],[],Options)],Options).

By a structural analysis, the following relations can be extracted:

N1*W1#=N2*W2,N3*W3#=N4*W4,N5*W5#=N6*W6.

Given the criterion all paths, statistical structural testing aims at generating test data such
that each path of the program has the same probability to be activated. The paths of the
foo program are : 1− 2− 3− 4− 5− 6, 1− 2− 3− 5− 6, 1− 2− 4− 5− 6, 1− 2− 4− 6 and
1 − 6. As four paths activate the branch 1 − 2 and only one activate the branch 1 − 6, the
constraint 4*W1#=W2 is generated. As two paths activate the branch 2−3 and 2−4, then the
constraint 2*W3#=2*W4 is generated the same way. Finally, the following request is obtained:

?- foo(X,Y,[W1,W2,W3,W4,W5,W6]),4*W1#=W2,2*W3#=2*W4,2*W5#=2*W6.

This request corresponds to the constraint propagation step. When one wants to get test
data, it suffices to launch a randomized labelling process on X,Y .

By computing the all terminal configurations of the PCCP(FD) request, we get:

? - ptc([foo(X,Y,[W1,W2,W3,W4,W5,W6]),4*W1#=W2,2*W3#=2*W4,2*W5#=2*W6)],

[X,Y],Result).

Result =

[([X in 0..1, Y in 51..100],0.213), % path 1-2-3-4-5-6

([X in 1..49, Y in 52..100],0.196), % path 1-2-3-4-6

([X in 0..100, Y in 0..100], 0.200), % path 1-3-5-6

([X in 1..100, Y in 1..100], 0.195), % path 1-3-4-6

([X in 0..1000,Y in 0..1000],0.196)] % path 1-6

The distinct constraint store projections correspond to each path of the program1. The
results of ptc are not far from the 1

5
-probability theoretic expected result for each path.

5.3.2 Second example

Secondly, we applied our constraint-based approach of the statistical structural testing prob-
lem to a well-established program of the software testing literature. The program trityp,
initially proposed by Myers [13] and fully studied by DeMillo and Offut [4], takes three non-
negative integers as arguments that represent the relative lengths of the sides of a triangle
and classifies the triangle as scalene, isosceles, equilateral or illegal.

1In this example, all the paths are feasible

RR n° 0123456789

16 M. Petit and A. Gotlieb

Figure 4 Program trityp

int trityp(int i, int j,int k)
1. if ((i == 0) or (j == 0) or (k == 0))
2. trityp = 4 ;
3. else
4. trityp = 0 ;
5. if (i == j)
6. trityp = trityp + 1 ;
7. if (i == k)
8. trityp = trityp + 2 ;
9. if (j == k)
10. trityp = trityp + 3 ;
11. if (trityp == 0)
12. if ((i+j <= k) or (j+k <= i) or (i+k <= j))
13. trityp = 4 ;
14. else
15. trityp = 1 ;
16. else
17. if (trityp > 3)
17. trityp = 3 ;
18. else
19. if ((trityp == 1) and (i+j > k))
20. trityp = 2 ;
21. else
22. if ((trityp == 2) and (i+k > j))
23. trityp = 2 ;
24. else
25. if ((trityp == 3) and (j+k > i))
26. trityp = 2 ;
27. else
28. trityp = 4 ;
29. return(trityp) ;

Although it implements a very simple specification, this program is difficult to handle
for test data generators as it contains several nested conditonals structures and a lot of non-
feasible paths (43 over a total of 57 paths in the published version). Moreover, it is usually
considered as representative of the more general class of decisional programs (programs
without iterative computations) that is mainly employed in the development of real time
embedded software. The program trityp is given in Fig.4.

INRIA

Prob. Choice Op. as Constraint Combinators: application to the SST problem 17

Figure 5 The PCCP(FD) program generated for trityp

trityp(I,J,K,[W1,W2,W3,W4,W5,W6,W7,W8,W9,W10,W11,W12,W13,W14,W15,W16,

W17,W18,W19,W20]):-

choose_decision((I#=0)#\/(J#=0)#\/(K#=0),[W1,W2],[T0#=4,T20#=T0],Goal2,Options),

Goal2 = [choose_decision(I#=J,[W3,W4],[T1#=T0+1, T2#=T1],[T2#=T0],Options),

choose_decision(I#=K,[W5,W6],[T3#=T2+2, T4#=T3],[T4#=T2],Options),

choose_decision(J#=K,[W7,W8],[T5#=T4+3, T6#=T5],[T6#=T4],Options),

choose_decision(T6#=0,[W9,W10],Goal3,Goal4,Options)],

Goal3 = [choose_decision((I+J#=<K)#\/(J+K#=<I)#\/(I+K#=<J),[W11,W12],

[T7#=4, T9#=T7],[T8#=1,T9#=T8],Options),T19#=T9],

Goal4 = [choose_decision(T6#>3,[W13,W14],

[T10#=3,T18#=T10],Goal5,Options),T19#=18],

Goal5 = [choose_decision((T6#=1)#\/(I+J#>K),[W15,W16],

[T11#=2,T18#=T11],Goal6,Options),T18#=T17],

Goal6 = [choose_decision((T6#=2)#\/(I+K#>J),[W17,W18],

[T12#=2,T17#=T12],Goal7,Options), T17#=T16],

Goal7 = [choose_decision((T6#=3)#\/(J+K#>I),[W19,W20],

[T13#=2,T15#=T13],[T13#=4,T15#=T14],Options), T16#=15].

Fig. 5 shows the translation of program trityp into a PCCP(FD) program.
By a static analysis and by choosing the all paths criterion, we get the following con-

straints for the weights associated to each probabilistic choice.

56*W1#=W2,W3#=W4,W5#=W6,W7#=W8,5*W9#=2*W10,W11#=W12,

4*W13#=W14,3*W15#=W16,2*W17#=W18,W19#=W20

In fact, 56 paths activate the branch 1 − 3 whereas only a single path activates the branch
1 − 2. Hence, the constraint 56*W1#=W2 is generated. These analyses are repeated until
all the variables were constrained. Note however that in trityp program, this analysis does
not allow a uniform activation of (feasible) paths of the program. The uniform coverage is
biased by the existence of non-feasible paths. There are indeed only 13 feasible paths which
activate the branch 1− 3. Therefore, the path 1− 2− 29 is more activated than other paths
in the program.

The choose_decision combinator we introduced allows us to deal with non-feasible
paths. Non-feasible paths cannot be all statically detected but constraint reasoning as em-
ployed in our approach permits to early detect some of them. Non-feasible paths correspond
to inconsistent constraint stores. Moreover, this information is available during the compu-
tation of the unknown probability distribution which is a great advantage. However, dealing
efficiently with loops (without systematic unfolding) remains a challenge for our approach to
scale up. The first experimental results we got are encouraging but the class of programs be-
ing addressed is too small to deduce anything from them. Nevertheless, the constraint-based
approach we introduce here for the statistical structural testing problem is very promising
and requires to be fully studied.

RR n° 0123456789

18 M. Petit and A. Gotlieb

6 Future work

This report has introduced an extension of PCCP where the probabilistic choice operator
is considered as a constraint combinator over finite domains. An implementation under the
form of a SICStus Prolog library has been built over clp(fd) and it has been used to address
some academic applications and one real-world application, namely the statistical structural
problem. We are actually working on increasing the deductive capacity of the combinators
by exploiting partial information on the probabilistic choice more efficiently. Soon, we will
propose an interface to allow the user to declare there own probabilistic choice combinators
by providing facilities to make random draws when only partial information on probability
distribution is available. Finally, we will study how to extend these combinators to deal
with uncertainty in stochastic processes, such as random walks or Markov processes.

References

[1] N. Angelopoulos, Di Pierro A., and Wiklicky H. Implementing randomised algorithms
in constraint logic programming. In Joint International Conference and Symposium on
Logic Programming, Manchester, UK, 1998.

[2] M. Carlsson, G. Ottosson, and B. Carlson. An Open–Ended Finite Domain Constraint
Solver. In Proc. of Programming Languages: Implementations, Logics, and Programs,
1997.

[3] R. Cytron, J. Ferrante, B.K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Effi-
cently Computing Static Single Assignment Form and the Control Dependence Graph.
ACM Transactions on Programming Language and Systems, 13(4):451–490, Oct. 1991.

[4] R.A. DeMillo and J.A. Offut. Experimental results from an automatic test case gener-
ator. ACM Transactions on Software Engineering Methodology, 2(2):109–175, 1993.

[5] A. Di Pierro and H. Wiklicky. On probabilistic ccp. In APPIA-GULP-PRODE, pages
225–234, Grado, Italy, 1997.

[6] A. Di Pierro and H. Wiklicky. Implementing randomised algorithms in constraint logic
programming. Proceedings of the ERCIM/Compulog Workshop on Constraints, 2000.

[7] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data generation using constraint
solving techniques. In Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA’98), pages 53–62, Clearwater Beach, FL, USA, March 1998.

[8] S.-D. Gouraud, A. Denise, M.-C. Gaudel, and B. Marre. A new way of automating
statistical testing methods. In Sixteenth IEEE International Conference on Automated
Software Engineering (ASE), pages 5–12. IEEE Computer Society Press, 2001.

INRIA

Prob. Choice Op. as Constraint Combinators: application to the SST problem 19

[9] V. Gupta, R. Jagadeesan, and P. Panangaden. Stochastic processes as concurrent
constraint programs. In Proceedings of Symposium on Principles of Programming Lan-
guages, 1999.

[10] V. Gupta, R. Jagadeesan, and V.A. Saraswat. Probabilistic concurrent constraint pro-
gramming. In Proceedings of CONCUR, pages 243–257. Springer, 1997.

[11] P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation, and evalua-
tion of the constraint language cc(fd). Technical Report CS-93-02, Brown University,
1993.

[12] S. Janson and S. Haridi. Programming paradigms of the Andorra kernel language. In
Logic Programming, Proceedings of the 1991 International Symposium, pages 167–186,
San Diego, USA, 1991.

[13] G. J. Myers. The Art of Software Testing. John Wiley, New York, 1979.

[14] M. Petit and A. Gotlieb. An ongoing work on statistical structural testing via proba-
bilistic concurrent constraint programming. In Proc. of SIVOES-MODEVA workshop,
St Malo, France, November 2004.

[15] M Petit and A. Gotlieb. Library of probabilistic constraint combinators over finite
domain, available at http://www.irisa.fr/lande/petit/tools.html. May 2006.

[16] M. Petit and A. Gotlieb. Constraint-based reasoning on probabilistic choice operators.
Research Report 6165, INRIA, 04 2007.

[17] V.A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

[18] V.A. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concurrent
constraint programming. In Proceedings of Symposium on Principles of Programming
Languages, pages 333–352, Orlando, Florida, 1991.

[19] G. Smolka. The Oz programming model. In Jan van Leeuwen, editor, Computer Science
Today, Lecture Notes in Computer Science, vol. 1000, pages 324–343. Springer-Verlag,
Berlin, 1995.

[20] P. Thévenod-Fosse and H. Waeselynck. An investigation of statistical software testing.
Journal of Sotware Testing, Verification and Reliability, 1(2):5–25, July 1991.

[21] H. Zhu, P. Hall, and J. May. Software unit test coverage and adequacy. ACM Computing
Surveys, 29(4):366–426, December 1997.

RR n° 0123456789

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau -Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

