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Abstract: The synchronous modeling paradigm provides strong execution correctness guar-
antees to embedded system design while making minimal environmental assumptions. In most
related frameworks, global execution correctness is achieved by ensuring endochrony: the in-
sensitivity of (logical) time in the system from (real) time in the environment. Interestingly, en-
dochrony can be statically checked, making it fast to ensure design correctness. Unfortunately,
endochrony is not preserved by composition, making it difficult to exploit with component-based
design concepts in mind. Compositionality can be achieved by weakening the objective of en-
dochrony but at the cost of an exhaustive state-space exploration. These observations raise a
tradeoff between performance and precision. Our aim is to balance this tradeoff by proposing a
formal design methodology that adheres to a weakened global design objective, namely, the non-
blocking composition of weakly endochronous processes, while preserving local endochrony
objectives. This yields an ad-hoc yet cost-efficient approach to compositional synchronous mod-
eling.

Key-words: formal methods, embedded systems, program analysis, synchronous paradigm



Mise en œuvre compositionelle de systèmes isochrones

Résuḿe : Le paradigme synchrone met en œuvre des méthodes formelles permettant de garantir
la correction d’un programme en faisant peu d’hypothèse sur son environnement (d’exécution).
Cette correction est assurée par la propríet́e d’endochronie: l’insensibilité du temps logique, dans
le programme, au temps r ’eel, dans l’environnement. L’endochronie peutêtre v́erifiée par ana-
lyse statique. elle donne donc facilement et rapidement l’assurance qu’un programme est correct.
Malheureusement, elle n’est pas stable par composition, cela complique donc son utilisation dans
le cas d’une conception modulaire de programmes. La compositionalié peut cependantêtre ob-
tenue en affaiblissant la propriét́e d’endochronie, mais au prix d’une mise en œuvre plus coûteuse
car ńećessitant l’exploration de l’espace détats du programme. Cela nous confronteà un dil̀eme
entre performance et précision, entre simplicité et compositionalit́e. Notre objectif est d’aller au
del̀a de cet́equilibre en proposant une méthodologie de conception fondée sur l’objectif global
de composer des modules non-blocants et sur l’objectif local d’assurer l’endochronie (de chaque
module). La propríet́e obtenue est compositionelle et le coût de sa v́erification est faible.

Mots-clés : méthodes formelles, systèmes embarqúes, analyse de programmes, paradigme syn-
chrone



Compositional design of isochronous systems 3

1 Introduction

The synchronous paradigm to embedded system design provides strong execution correctness
guarantees while requiring minimal assumptions on the execution environment. In most syn-
chronous formalisms, this is achieved by locally verifying that computation (in the system) is in-
sensitive to communication delays (from the environment), i.e., that the system is endochronous
(“time is defined from inside”).

Example Processfilter emitsx every time the value of its inputy changes. Output tagst2,4 are
timely related to input tagst1..4: Processfilter is endochronous.

x : (t1, 1) (t2, 0) (t3, 0) (t4, 1) → y = filter(x) → y : (t2, 1) (t4, 1)

In the data-flow formalism Signal, for instance, design is driven by the safety objective of
endochrony: endochrony guarantees a synchronization of computations and communications that
is independent of possible network latency. Unfortunately, endochrony is not a compositional
property: it is not preserved by synchronous composition.

Example The synchronous composition offilter with an endochronous merge equation (to
mean “d equals ifc theny elsez”) is no longer endochronous: timing of the outputd is not
related to one of the inputsc andy.

c :(t0, 0) (t2, 1) (t4, 1) (t7, 0)
y : (t2, 1) (t4, 1)
z :(t0, 1) (t7, 0)

→ d = merge(c, y, z) → d : (t0, 1) (t2, 1) (t4, 1) (t7, 0)

In [18], it is shown that compositionality can be achieved by weakening the objective of en-
dochrony: a weakly endochronous system is a deterministic system that can perform independent
communications in any order as long as this does not alter its state (i.e. it satisfies the diamond
property). It is further shown that the non-blocking composition of weakly endochronous pro-
cesses is isochronous.

Example The untimed asynchronous composition of processesfilter andmerge is isochronous:
synchronous and asynchronous compositions yield the same flow of values.

x : 1 0 0 1
c : 0 1 1 0
z : 1 0 1 0

→ x = filter(y) ‖ d = merge(c, y, z) → d : 1 1 1 0

However, checking that a system is weakly endochronous requires an exhaustive exploration
of its state-space to guarantee that its behavior is independent from the order of inbound commu-
nications. This raises a tradeoff between performance (incurred by state-space exploration) and

RR n° 6227



4 J.-P. Talpin et al.

flexibility (gained from compositionality). We aim at balancing this trade-off by proposing a for-
mal design methodology that weakens the global design objective (non-blocking composition)
and preserves design objectives secured locally (by accepting endochronous components).

Our approach consists in globally maintaining a compositional design objective (non-blocking
composition) while preserving properties secured locally (endochrony). This yields a less gen-
eral yet cost-efficient approach to compositional modeling that is able to encompass most of
the practical engineering situations. It is particularly aimed at efficiently reusing most of the
existing program analysis and compilation algorithms of Signal. To support the present design
methodology, we have designed a simple controller synthesis and code generation scheme [16].

Plan

The article starts in Section 2 with an introduction to Signal and its polychronous model of
computation. Section 3 defines the necessary analysis framework and Section 4 present our
contributed formal properties and methodology. It is applied to the exposition of a concurrent
code generation scheme in Section 5. We review related works in Section 6 and conclude.

2 An introduction to Polychrony

In Signal, a process (writtenP or Q) consists of the synchronous composition (notedP ||Q) of
equations on signals (writtenx = y f z). A signalx represents an infinite flow of values. It is
sampled according to the discrete pace of its clock, notedx̂. An equationx = y f z defines the
output signalx by the relation of its input signalsy andz through the operatorf . A process
defines the simultaneous solution of the equations it is composed of.

P, Q ::= x = y f z | P ||Q | P/x (process)

As a result, an equation partially relates signals in an abstract timing model, represented by clock
relations, and a process defines the simultaneous solution of the equations in that timing model.
Signal defines the following kinds of primitive equations:

• A functional equationx = y f z defines an arithmetic or boolean relationf between its
operandsy, z and the resultx.

• A delay equationx = y pre v initially defines the signalx by the valuev and then by the
value of the signaly from the previous execution of the equation. In a delay equation,
the signalsx andy are assumed to be synchronous, i.e. either simultaneously present or
simultaneously absent at all times.

• A samplingx = y when z definesx by y whenz is true and bothy andz are present. In a
sampling equation, the output signalx is present iff both input signalsy andz are present
andz holds the valuetrue.

• A mergex = y default z definesx by y wheny is present and byz otherwise. In a merge
equation, the output signal is present iff either of the input signalsy or z is present.

INRIA



Compositional design of isochronous systems 5

The processP/x restricts the lexical scope of the signalx to the processP . In the remainder,
we writeV(P ) for the set of free signal namesx of P (they occur in an equation ofP and their
scope is not restricted). A free signal is an output iff it occurs on the left hand-side of an equation.
Otherwise, it is an input signal.

Example We define the processfilter depicted in Section 1. It receives a boolean input signal
y and produces an output signalx every time the value of the input changes. The local signalz
holds the previous value of the inputy at all times. Wheny first arrive,z is initialized to true. If
y andz differ then the outputx is true, otherwise it is absent.

x=filter(y)
def
= (x= true when (y 6=z) || z=y pre true ) /z

2.1 Model of computation

The formal semantics of Signal in defined in the polychronous model of computation [9]. The
polychronous MoC is a refinement of Lee’s tagged signal model [14]. In this model, symbolic
tagst or u denote periods in time during which execution takes place. Time is defined by a partial
order relation≤ on tags (t ≤ u means thatt occurs beforeu). A chain is a totally ordered set of
tags and defines the clock of a signal: it samples its values over a series of totally related tags.
Events, signals, behaviors and processes are defined as follows:

- aneventis the pair of a tagt ∈ T and a valuev ∈ V
- asignal is a function from achainof tags to values
- abehaviorb is a function from names to signals
- aprocessp is a set of behaviors of same domain
- a reactionr is a behavior with one time tagt

Example The meaning of processfilter is denoted by a set of behaviors on the signalsx andy.
Line one, below, we choose a behavior for the input signaly of the equation. Line two defines
the meaning of the local signalz by the previous value ofy. Notice that it is synchronous toy (it
has the same set of tags). Line three, the output signalx is defined at the time tagsti at whichy
andz hold different values, as expected in the previous example.

y 7→ (t1, 1) (t2, 0) (t3, 0) (t4, 1) (t5, 1) (t6, 0)
z 7→ (t1, 1) (t2, 1) (t3, 0) (t4, 0) (t5, 1) (t6, 1)
x 7→ (t2, 1) (t4, 1) (t6, 1)

RR n° 6227



6 J.-P. Talpin et al.

Notations We introduce the notations that are necessary to the formal exposition of the poly-
chronous model of computation. We writeT (s) for the chain of tags of a signals andmin s
andmax s for its minimal and maximal tag. We writeV(b) for the domain of a behaviorb (a
set of signal names). The restriction of a behaviorb to X is notedb|X (i.e. V(b|X) = X). Its
complementaryb/X satisfiesb = b|X ] b/X (i.e. V(b/X) = V(b) \X). We overload the use ofT
andV to talk about the tags of a behaviorb and the set of signal names of a processp.

Synchrony and asynchrony Informaly, two behaviorsb andc areclock-equivalent, written
b ∼ c, iff they are equal up to an isomorphism on tags. For instance,(

y 7→(t1, 1)(t2, 0)(t3, 0)
x 7→ (t2, 1)

)
∼

(
y 7→(u1, 1)(u3, 0)(u5, 0)
x 7→ (u3, 1)

)
The synchronization of a behaviorb with a behaviorc is notedb ≤ c and is defined as the effect
of “stretching” its timing structure. A behaviorc is astretchingof a behaviorb, writtenb ≤ c, iff
V(b) = V(c) and there exists a bijectionf on tags s.t.
∀t, u, t ≤ f(t) ∧ (t < u⇔ f(t) < f(u))
∀x ∈ V(b), T (c(x)) = f(T (b(x))) ∧ ∀t ∈ T (b(x)), b(x)(t) = c(x)(f(t))

b andc areclock-equivalent, writtenb ∼ c, iff there exists a behaviord s.t.d ≤ b andd ≤ c. The
synchronous compositionp || q of two processesp andq is defined by combining behaviorsb ∈ p
andc ∈ q that are identical onI = V(p) ∩ V(q), the interface betweenp andq.

p || q = {b ∪ c | (b, c) ∈ p× q ∧ b|I = c|I ∧ I = V(p) ∩ V(q)}

Asynchrony Similarly, two behaviorsb andc areflow-equivalent, written b ≈ c, iff they have
the same domain and all signals carry the same values in the same order. For instance,(

y 7→(t1, 1)(t2, 0)(t3, 0)
x 7→ (t2, 1)

)
≈

(
y 7→(u1, 1)(u2, 0)(u3, 0)
x 7→(u1, 1)

)
Desynchronization is defined as the effect of “relaxing” the timing structure of a behavior: a
behaviorc is arelaxationof b, writtenb v c, iff V(b) = V(c) and, for allx ∈ V(b), b|x ≤ c|x. Two
behaviorsb andc areflow-equivalent, written b ≈ c, iff there exists a behaviord s.t.b w d v c.
The asynchronous compositionp ‖ q of two processesp andq is defined by the set of behaviors
d that are flow-equivalent to behaviorsb ∈ p andc ∈ q along the interfaceI = V(p) ∩ V(q).

p ‖ q =
{
d | (b, c) ∈ p× q ∧ b/I ∪ c/I ≤ d/I ∧ b|I v d|I w c|I ∧ I = V(p) ∩ V(q)

}
Concatenation The semantics[[P ]] of a Signal processP , presented next, is defined by a set
of behaviors that are inductively constructed by the concatenation of reactions. A reactionr is
a behavior with (at most) one time tagt. We writeT (r) for the tag of a non empty reactionr.
An empty reaction of the signalsX is notedØ|X . The empty signal is noted∅. A reactionr is
concatenable to a behaviorb iff V(b) = V(r), and, for allx ∈ V(b), max(b(x)) < T (r(x)). If
so, concatenatingr to b is defined by

∀x ∈ V(b),∀u ∈ T (b) ∪ T (r), (b · r)(x)(u) = if u ∈ T (r(x)) then r(x)(u) else b(x)(u)

INRIA



Compositional design of isochronous systems 7

Example Two reactions of signal-wise related time tags can be concatenated, writtenr · s, to
form a behavior. For instance,(

y 7→(t1, 1)
x 7→

)
·
(

y 7→(t2, 0)
x 7→(t2, 1)

)
=

(
y 7→(t1, 1)(t2, 0)
x 7→ (t2, 1)

)

2.2 Semantics of Signal

The semantics[[P ]] of a Signal processP is a set of behaviors that are inductively defined by the
concatenation of reactions.

Initially, we assume thatØ|V(p) ∈ [[P ]]. The semantics of a delayx = y pre v is defined by
appending a reactionr of tag t to a behaviorb. It initially definesx by the valuev (whenb is
empty) and then by the previous value ofy (i.e. b(y)(u) whereu is the maximal tag ofb).

[[x = y pre v]] =

b · r

∣∣∣∣∣∣
b ∈ [[x = y when z]],
u = max(T (b(y))),
t = T (r),

r(x) =

∣∣∣∣∣∣
t 7→ b(y)(u), r(y) 6= ∅ ∧ b 6= Øxy

t 7→ v, r(y) 6= ∅ ∧ b = Øxy

∅, r(y) = ∅ ∧ b = Øxy


Similarly, the semantics of a samplingx = y when z definesx by y whenz is true.

[[x = y when z]] =

b · r

∣∣∣∣∣∣
b ∈ [[x = y when z]],
u = max(T (b(y))),
t = T (r),

r(x) =

∣∣∣∣∣∣
r(y), r(z)(t) = true
∅, r(z)(t) = false
∅, r(z) = ∅


Finally, x = y default z definesx by y wheny is present and byz otherwise.

[[x = y default z]] =

{
b · r

∣∣∣∣b ∈ [[x = y default z]], r(x) =

∣∣∣∣r(y), r(y) 6= ∅
r(z), r(y) = ∅

}
The meaning of the synchronous compositionP ||Q is the synchronous composition[[P ||Q]] =
[[P ]] || [[Q]] of the meaning ofP andQ. The meaning of restriction is defined by[[P/x]] = {c | b ∈
[[P ]] ∧ c ≤ (b/x)}.

Example The meaning of the equationx = true when (y 6= (y pre true )) consists of a set of
behaviors with two signalsx andy. On line one, below, we choose a behavior for the input signal
y of the equation. On line two, we define the signal for the expressiony pre true by application
of the function[[]]. Notice thaty andy pre true are synchronous (they have the same set of tags).
On line three, the output signalx is defined at the time tagsti wheny andy pre true hold differ-
ent values, as expected in the previous example.

y 7→ (t1, true ) (t2, false ) (t3, false ) (t4, true ) (t5, true ) (t6, false )
y pre true 7→ (t1, true ) (t2, true ) (t3, false ) (t4, false ) (t5, true ) (t6, true )

x 7→ (t2, true ) (t4, true ) (t6, true )

RR n° 6227
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Formal properties The formal properties considered in the remainder pertain the insensitivity
of timing relations in a processp (its local clock relations) to external communication delays.
The property of endochrony, Definition 1, guarantees that the synchronization performed by a
processp is independent from latency in the network. Formally, letI be a set of input signals
of p, whenever the processp admits two input behaviorsb|I andc|I that are assumed to be flow
equivalent (timing relations have been altered by the network) thenp always reconstructs the
same timing relations inb andc (up to clock-equivalence).

Definition 1 A processp is endochronousiff there existsI ⊂ V(p) s.t., for allb, c ∈ p, b|I≈c|I
impliesb ∼ c.

Example To check that the filter is endochronous, consider two of its possible traceb andc with
flow-equivalent input signalsb(y) = (t1, 1)(t2, 0)(t3, 0)(t4, 1) andc(y) = (u1, 1)(u2, 0)(u3, 0)(u4, 1)
(they share no tags, but carry the same flow of values). The filter necessarily constructs the output
signalsb(x) = (t2, 1)(t4, 1) andc(x) = (u2, 1)(u4, 1). One notices thatb andc are equivalent by
a bijection(ti 7→ ui)0<i<5 on tags: they are clock-equivalent. Hence, the filter is endochronous.
This is no longer the case if it is composed with processmerge.

The weaker definition of endochrony, presented next, requires a definition of the union, writ-
tenrt s, of two reactionsr ands. We say that two reactionr ands are independent iff they have
disjoint domains. Two independent reactions of same time tagt can be merged, asr t s.

∀x ∈ V(r), (r t s)(x) = if r(x) 6= ∅ then r(x) else s(x)

For instance,
(y 7→ (t2, 0)) t (x 7→ (t2, 1)) = (y 7→ (t2, 0)x 7→ (t2, 1))

Definition 2, below, defines the compositional property of weak endochrony in the poly-
chronous model of computation. Informally, processp is weakly endochronous iff it is deter-
ministic and can perform independent reactionsr ands in any order. Note that, by Definition 1,
endochrony implies weak-endochrony (e.g.filter is weakly endochronous).

Definition 2 A processp is weakly-endochronousiff
1. p is deterministic:∃I⊂V(p),∀b,c∈p, b|I =c|I ⇒ b=c
2. for all independent reactionsr ands, p satisfies:

(a) if b · r · s ∈ p thenb · s ∈ p
(b) if b · r ∈ p andb · s ∈ p thenb · (r t s) ∈ p
(c) if b · (r t s), b · (r t t) ∈ p thenb · r · s, b · r · t ∈ p

Example For instance, the synchronous composition of processesfilter andmerge is weakly
endochronous: it is deterministic and all combinations of reactions consisting of the signals
x, y, z andc belong to its possible behaviors.

Definition 3 p andq are isochronousiff p || q ≈ p ‖ q

INRIA



Compositional design of isochronous systems 9

A processp is non-blocking iff, in any reachable state (characterized by a behaviorb), it has
a path to a stuttering state (characterized by a reactionr). Notice that the composition offilter
andmerge is non-blocking.

Definition 4 p is non-blockingiff ∀b ∈ p, ∃r, b · r ∈ p

In [18], it is proved that weakly endochronous processesp andq areisochronousif they are
non-blocking (a locally synchronous reaction ofp or q yields a globally asynchronous execution
p ‖ q).

3 Formal analysis

For the purpose of program analysis and program transformation, the control-flow tree and the
data-flow graph of multi-clocked Signal specifications are constructed. These data structures
manipulate clocks and signal names.

3.1 Clock and scheduling relations

A clock c denotes a series of instants (a chain of time tags). The clockx̂ of a signalx denotes the
instants at which the signalx is present. The clock[x] (resp.[¬x]) denotes the instants at which
x is present and holds the value true (resp. false).

c ::= x̂ | [x] | [¬x] (clock)

A clock expressione is either the empty clock, noted0, a signal clockc, or the conjunction
e1 ∧ e2, the disjunctione1 ∨ e2, the symmetric differencee1 \ e2 of e1 ande2.

e ::= 0 | c | e1 ∧ e2 | e1 ∨ e2 | e1 \ e2 (clock expression)

Signals and clocks are related by synchronization and scheduling relations, notedR. A schedul-
ing relationa →c b specifies that the calculation of the nodeb, a signal or a clock, cannot be
scheduled before that of the nodea when the clockc is present.

a, b ::= x | x̂ (node)

A clock relationc = e specifies that the signal clockc is present iff the clock expressione is true.
Just as ordinary processesP , relationsR are subject to compositionR ||S and to restrictionR/x.

R,S ::= c=e | a→c b | (R ||S) |R/x (timing relation)

RR n° 6227
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3.2 Clock inference system

The inference systemP : R associates a processP with its implicit timing relationsR. De-
duction starts from the assignment of clock relations to primitive equations and is defined by
induction on the structure ofP : the deduction for compositionP ||Q and forP/x are are induced
by the deductionsP : R andQ : S for P andQ.

P : R ∧Q : S ⇒ P ||Q : R ||S P : R⇒ P/x : R/x

In a delay equationx = y pre v, the input and output signals are synchronous, writtenx̂ = ŷ, and
do not have any scheduling relation.

x = y pre v : (x̂ = ŷ)

In a sampling equationx = y when z, the clock of the output signalx is defined by that of̂y
and sampled by[z]. The inputy is scheduled before the output when bothŷ and[z] are present,
writteny →x̂ x.

x = y when z : (x̂ = ŷ ∧ [z] || y →x̂ x)

In a merge equationx = y default z the output signalx is present if either of the input signalsy
or z are present. The first input signaly is scheduled beforex when it is present, writteny →ŷ x.
Otherwisez is scheduled beforex, writtenz →ẑ\ŷ x.

x = y default z : (x̂ = ŷ ∨ ẑ || y →ŷ x || z →ẑ\ŷ x)

A functional equationx = y f z synchronizes and serializes its input and output signals.

x = y f z : (x̂ = ŷ = ẑ || y →x̂ x || z →x̂ x)

We write R |= S to mean thatR satisfiesS in the Boolean algebra in which timing relations
are expressed: compositionR ||S stands for conjunction and restrictionR/x for existential quan-
tification (some examples are given below). For all boolean signalx in V(R), we assume that
R |= x̂ = [x] ∨ [¬x] andR |= [x] ∧ [¬x] = 0.

Example To outline the use of clock and scheduling relation analysis in Signal, we consider the
specification and analysis of a one-place buffer. Processbuffer implements two functionalities:
flip andcurrent.

x=buffer(y)
def
= (x=current(y) || flip(x, y))

The processflip synchronizes the signalsx andy to the true and false values of an alternating
boolean signalt.

flip(x, y)
def
= (s= t pre true || t= not s || x̂=[t] || ŷ=[¬t]) /st

The processcurrent stores the value of an input signaly and loads it into the output signalx upon
request.

x=current(y)
def
= (r=y default (r pre false ) || x=r when x̂ || r̂= x̂ ∨ ŷ) /r

INRIA
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The inference systemP : R infers the clock relations that denote the synchronization constraints
implied by processbuffer. There are four of them:

r̂ = ŝ t̂ = x̂ ∨ ŷ x̂ = [t] ŷ = [¬t]

From these equations, we observe that processbuffer has three clock equivalence classes. The
clocksŝ, t̂, r̂ are synchronous and define the master clock synchronization class ofbuffer. Two
other synchronization classes,x̂ = [t] andŷ = [¬t], are samples of the signalt.

r̂ = ŝ = t̂ x̂ = [t] ŷ = [¬t]

Together with scheduling analysis, the inference system yields the timing relationRbuffer of the
process under analysis.

Rbuffer
def
=

(
x̂ = [t] || ŷ = [¬t] || r̂ = x̂ ∨ ŷ
s→ŝ t || y →ŷ r || r →x̂ x

)
/rst

FromRbuffer, we deducêr = t̂. Sincet is a boolean signal,̂t = [t] ∨ [¬t] (a signal is always true
or false when present). By definition ofRbuffer, x̂ = [t] andŷ = [¬t] (x andy are sampled from
t). Hence, we havêr = x̂ ∨ ŷ and can deduce thatRbuffer |= (r̂ = t̂).

3.3 Clock hierarchy

The internal data-structures manipulated by the Signal compiler for program analysis and code
generation consist of a clock hierarchy and of a scheduling graph. The clock hierarchy represents
the control-flow of a process by a partial order relation. The scheduling graph defines a fine-
grained scheduling of otherwise synchronous signals.

The structure of a clock hierarchy is denoted by a partial order relation�. It is defined by
inductive application of the following rules :

(1) for all boolean signalsx of R, definex̂ � [x] andx̂ � [¬x]. This means that, if we know
thatx is present, then we can determine whetherx is true or false.

(2) if b = c is deductible fromR then defineb � c andc � b, written b ∼ c. This means that
if b andc are synchronous, and if either of the clocksb or c is known to be present, then
the presence of the other can be determined.

(3) if R |= b1 = c1 f c2, f ∈ {∧,∨, \}, b2 � c1, b2 � c2 andb2 is maximal (in the sense that
b2 � b for anyb such thatb � c1 andb � c2) thenb2 � b1. This means that ifb1 is defined
by c1 f c2 in g and if both clocksc1 andc2 can be determined once their common upper
boundb2 is known, thenb1 can also be determined whenb2 is known.

Definition 5 Thehierarchy� of a processP : R is the transitive closure of the maximal relation
defined by the following axioms and rules:
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1. for all boolean signalsx, x̂ � [x] andx̂ � [¬x]
2. if R |= b = c thenb � c andc � b, writtenb ∼ c
3. if R |= b1 = c1 f c2, f ∈ {∧,∨, \}, b2 � c1, b2 � c2 andb2 is maximal thenb2 � b1.

We refer toc∼ as the clock equivalence class ofc in the hierarchy�

A well-formed hierarchy has no relationb � c that contradicts Definition 5. For instance, the
hierarchy of the processx = y and z || z = y when y is ill-formed, sinceŷ ∼ [y]. A process with
an ill-formed hierarchy may block.

Definition 6 A hierarchy� is ill-formed iff eitherx̂ � [x] or x̂ � [¬x], for anyx, or b1 � b2

for anyb1 = c1 f c2 such thatc1 � b2 � c2 andb2 � b1

Example The hierarchy of the buffer is constructed by application of the first and second rules
of Definition 5. Rule 2 defines three clock equivalence classes{r̂, ŝ, t̂}, {x̂, [t]} and{ŷ, [¬t]}.

r̂ ∼ ŝ ∼ t̂
[t] ∼ x̂ [¬t] ∼ ŷ

Rule 1 places the first class above the two others and yields the following structure

r̂ ∼ ŝ ∼ t̂
oooooo

PPPPPP

[t] ∼ x̂ [¬t] ∼ ŷ

Next, one has to define a proper scheduling of all computations to be performed within each
clock equivalence class (e.g. to schedules beforet) and across them (e.g. to schedulex or y
beforer). This task is devoted to scheduling analysis, presented next.

3.4 Disjunctive form

But, before that, Polychrony attempts to eliminate all clocks that are expressed using symmetric
difference from the graphg of a process. This transformation consists in rewriting clock expres-
sions of the forme1 \ e2 present in the synchronization and scheduling relations ofg in a way
that does no longer denote the absence of an evente2, but that is instead computable from the
presence or the value of signals.

Example In the case of processcurrent, for instance, consider the alternative inputr pre false
in the first equation:

r = y default (r pre false )

Its clock is r̂ \ ŷ, meaning that the previous value ofr is assigned tor only if y is absent. To
determine thaty is absent, one needs to relate this absence to the presence or the value of another
signal.
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In the present case, there is an explicit clock relation in thealternate process:̂y = [¬t]. It
says thaty is absent ifft is present and true. Therefore, one can test the value oft instead of the
presence or absence ofy in order to deterministically assign eithery or r pre false to r

y →[¬t] r [t] ← r pre false

In [?], it is shown that the symmetric differencec \ d between two clocksc andd has a
disjunctive form only ifc andd have a common minimumb in the hierarchy� of the process,
i.e.,

c � b � d

We say that the timing relationR is in disjunctive form iff it has no clock expression defined by
symmetric difference. The implicit reference to absence incurred by symmetric difference can
be defined asc \ d=defc ∧ d and can be isolated using logical decomposition rules :

• conjunctionc ∧ d
def
= c ∨ d and disjunctionc ∨ d

def
= c ∧ d.

• positive[x]
def
= x̂ ∨ [¬x] and negative[¬x]

def
= x̂ ∨ [x] signal occurrences.

The reference to the absence of a signalx, notedx̂, is eliminated if (and only if) one of the
possible elimination rules applies:

• The zero rule:̂x ∧ x̂
def
= 0, because a signal is either present or absent, exclusively.

• The ”one” rule: c ∧ (x̂ ∨ x̂)
def
= c, because the presence or the absence of a signal is

subsumed by any clockc.

• The synchrony rule: ifd ∼ x̂ thenx̂
def
= d, to mean that if̂x cannot be eliminated but̂x is

synchronous to the clockd, thend can possibly be eliminated possibly instead.

Example In the case of processcurrent in the example of the buffer one has that

ŷ ∼ [¬t] x̂ ∼ [t] r̂ ∼ t̂

Hencex̂ � t̂ � ŷ and thereforêr \ ŷ can be interpreted as[t].

Timing relations are in disjunctive form iff they has no clock defined by a symmetric differ-
ence relation. For instance, suppose thatd ∼ [x] and thatc � b � d. Then, the expressionc \ d
can be eliminated because it can be expressed withc ∧ [¬x].

Definition 7 A processP of timingR and hierarchy� is well-clockediff � is well-formed and
R is disjunctive.
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3.5 Scheduling graph

Given the control-flow backbone produced using the hierarchization algorithm and clock equa-
tions in disjunctive form, the compilation of a Signal specification reduces to finding a proper
way to schedule computations within and across clock equivalence classes. The inference sys-
tem of the previous section defines the precise scheduling between the input and output signals
of processbuffer. Notice thatt is needed to compute the clocksx̂ andŷ.

s→ŝ t y →ŷ r r →x̂ x

As seen in the previous section, however, the calculation of clocks in disjunctive form induces
additional scheduling constraints, and, therefore, one has to take them into account at this stage.
This is done by refining theR with a reinforced one,S, satisfyingS |= R, and by ordered
application of the following rules:

1. S |= x̂ →x̂ x for all x ∈ V(P ). This means that the calculation ofx cannot take place
before its clock̂x is known.

2. if R |= x̂ = [y] or R |= x̂ = [¬y] thenS |= y →ŷ x̂. This means that, if the clock ofx is
defined by a sample ofy, then it cannot be computed before the value ofy is known.

3. if R |= x̂ = ŷ f ẑ with f ∈ {∨,∧} thenS |= ŷ →ŷ x̂ || ẑ →ẑ x̂. This means that, if the
clock of x is defined by an operation on two clocksy andz, then it cannot be computed
before these two clocks are known.

Reinforcing the scheduling graph of the buffer yields a refinement of its inferred graph with a
structure implied by the calculation of clocks (we just ommitted clocks on arrows to lighten the
depiction). Notice thatt is now scheduled before the clocksx̂ andŷ.

t̂ // t //

��:
::

:: x̂ // x roo r̂oo

ŝ // s

OO

ŷ // y

BB�����

Code can be generated starting from this refined structure only if the graph is acyclic. To
check whether it is or not, we compute its transitive closure:

1. if R |= a →c b thenR |= a �c b. This just tells that the construction of the transitive
closure relation� starts from the scheduling graph→ of the process.

2. if R |= a �c b andR |= a �d b thenR |= a �c∨d b. If b is scheduled aftera at clockc
and at clockd then so it is at clockc ∨ d

3. if R |= a �c b andR |= b �d z thenR |= a �c∧d z. If b is scheduled aftera at clockc
andz afterb at clockd thenz is necessarily scheduled aftera at clockc ∧ d

The complete graphR of a processP is acycliciff R |= a �e a impliesR |= e = 0 for all nodes
a of R. The graph of our example is.

Definition 8 A processP of timing relationsR is acyclic iff the transitive closure� of its
scheduling relationsR satisfy, for all nodesa, if a �e a thenR |= e = 0.
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3.6 Sequential code generation

Together with the control-flow graph implied by the timing relations of a process, the scheduling
graph is used by Polychrony to generate sequential or distributed code. To sequentially schedule
this graph, Polychrony further refines it in order to remove internal concurrency without affecting
its composability with the environment. This is done by observing the following rule.

Definition 9 The scheduling graph ofS reinforcesR iff, for any graphT such thatR ||T is
acyclic, thenR ||S ||T is acyclic.

Starting from a sequential schedule and a hierarchy of processbuffer, Polychrony generates
simulation code split in several files.

int main() {
bool code;
buffer_OpenIO();
code = buffer_initialize();
while (code) code = buffer_iterate();
buffer_CloseIO();

}

The main C file consists of opening the input-output streams of the program, of initializing the
value of delayed signals and iteratively executing a transition function until no values are present
along the input streams (return code0). Simulation is finalized by closing the IO streams.

The most interesting part is the transition function. It translates the structure of the hierarchy
and of the serialized scheduling graph in C code. It also makes a few optimizations along the
way. For instance,r has disappeared from the generated code. Since the value stored iny from
one iteration to another is the same as that ofr, it is used in place of it for that purpose.

In the C code, the three clock equivalence classes of the hierarchy correspond to three blocks:
line 2 (classŝ ∼ t̂), lines3 − 5 (class[t] ∼ ŷ) and lines6 − 9 (class[¬t] ∼ x̂). The sequence
of instructions between these blocks follows the sequencet → y → x of the scheduling graph.
Line 10 is the finalization of the transition function. It stores the value thats will hold next time.

01. bool buffer_iterate () {
02. t = !s;
03. if t {
04. if !r_buffer_y (&y) return FALSE;
05. }
06. if !t {
07. x = y;
08. w_buffer_x (x);
09. }
10. s = t;
11. return TRUE;
12. }

Also notice that the return code is true, line11, when the transition function finalizes, but
false if it fails to get the signaly from its input stream, line4. This is fine for simulation code, as
we expect the simulation to end when the input stream sample reaches the end. Embedded code
does, of course, operate differently. It either waits fory or suspends execution of the transition
function until it arrives.
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3.7 Endochrony revisited

The above code generation scheme yields a way to analyze, transform and execute endochronous
specifications. The buffer process, for instance satisfies this property. Literally, it means that the
buffer is locally timed. In the transition function of the buffer, this is easy to notice by observing
that, at all times, the function synchronizes on either receivingy from its environment or sending
x to its environment. Hence, the activity of the transition function is locally paced by the instants
at which the signalsx andy are present.

However, remember that the structure of control in the transition function is constructed using
the hierarchy of process buffer. In the case of an internally timed process, this structure has the
particular shape of a tree.

if t {
if !r_buffer_y (&y) return FALSE;

} else {
x = y;
w_buffer_x (x);

}

At any time, one can always start reading the states of the buffer, and calculatet. Then, ift
is true, one emitsx and, otherwise, one receivesy. The presence of any signal in processbuffer
is determined from the value of a signal higher in the hierarchy or, at last, from its root.

r̂ ∼ ŝ ∼ t̂
oooooo

PPPPPP

[t] ∼ x̂ [¬t] ∼ ŷ

Formally, whatever the exact time samplest1 andt2 at which it receives an input signaly, or the
time samplesu1 andu2 at which it sends an output signalx, the buffer always behaves according
to the same timing relations:ti occurs strictly beforeui ands is always used atti andui.

. . . . . . . . . . .
y t1 t2 t′1 t′2
s t1 u1 t2 u2 t′1 u′1 t′2 u′2
x u1 u2 u′1 u′2

The timing relations between the signalsx and y of the buffer are independent from latency
incurred by communications with its environment: this is the formal definition of endochrony
given in [9].

4 Compositional design criterion

We shall revisit the above schema in light of the compositional design methodology to be pre-
sented. We start by formulating a decision procedure that uses the clock hierarchy and the
scheduling graph of a Signal process to compositionally check the property of isochrony.
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Compositional design of isochronous systems 17

Compilability We start by considering the class of Signal processesP that are reactive and
deterministic.

Definition 10 A processP is compilableiff it is acyclic and its relationsR are well-clocked.

Property 1 A compilable processP is reactive and deterministic.

Proof An immediate consequence of Property 5, in [20], where a well-clocked and acyclic
process is proved to be deterministic.

Roots of a hierarchy Next, we consider the structure of a compilable Signal specification. It is
possibly paced by several, independent, input signals. It necessarily corresponds to a hierarchy
� that has several roots. To represent them, we refer to�◦ as the minimal clock equivalence
classes of�, and to�c as the tree of rootc in the hierarchy�.

�◦= {c∼ | c ∈ min �} �c= {(c, d)}∪ �d | c � d

When the hierarchy of a process has a unique root, it is endochronous: he presence of any clock
is determined by the presence and values of clocks above it in the hierarchy.

Definition 11 A processp is hierarchiciff its hierarchy has a unique root.

Property 2 A compilable and hierarchic processp is endochronous.

Proof A detailed proof appears in [20].

Example The hierarchies of processfilter (Section 1), left, and of the buffer, right, are both
hierarchic: they are endochronous. Lete = ([y] ∧ [¬z]) ∨ ([¬y] ∧ [z]) andf = ([¬y] ∧ [¬z]) ∨
([y] ∧ [z]),

ŷ ∼ ẑ

sssss
EE

EE
E

x̂ ∼ e f

r̂ ∼ ŝ ∼ t̂

rrrrrr
NNNNNN

x̂[t] ŷ[¬t]

By contrast, a process with several roots necessarily defines concurrent threads of execution.
Indeed, and by definition of a hierarchy, its roots cannot be expressed or calculated (or, a for-
tiori, synchronized or sampled) one with the others. Hence, they naturally define the source of
concurrency for the verification of weak endochrony.
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4.1 Model checking weak endochrony

Checking that a compilable processp is weakly endochronous reduces to proving that the roots
of a process hierarchy satisfy property (2a) of definition 2 by using bounded model checking.
Property (2a) can be formulated as an invariant in Signal and submitted to its model checker
Sigali [10].

(1) i = StateIndependent (x, y)
def
= [cxt+1] = x̂ || cxt = cxt+1 pre false

|| [cyt+1] = ŷ || cyt = cyt+1 pre false
|| i = ( not cxt or cyt) or (cxt+1 or not cyt+1) or (cxt and cyt)

 /
cxt, cxt+1

cyt, cyt+1

The invariant returned byStateIndependent (x, y) is defined for all pairs of root clock equiva-
lence classes. It says that, ifx is present andy absent at timet (i.e.cxt∧¬cyt) and ify is present
andx absent at timet + 1 (i.e.¬cxt+1 ∧ cyt+1) thenx andy can both be present at timet (i.e.
cxt ∧ cyt), written(¬cxt ∨ cyt) ∨ (cxt+1 ∨ ¬cyt+1) ∨ (cxt ∧ cyt).

Properties (2b-2c) can similarly be checked with the propertiesOrderIndependent andFlowIndependent .
PropertyOrderIndependent is defined by(cxt ∧ ¬cyt) ∧ (cyt ∧ ¬cxt) ⇒ (cxt ∧ cyt). It means
thatx andy are independently available at all times.

(2) i = OrderIndependent (x, y)
def
=(

[cxt] = x̂ || [cyt] = ŷ || i = ( not cxt or cyt) or (cxt or not cyt) or (cxt and cyt)
)
/cxt, cyt

PropertyFlowIndependent is defined for any signalz ∈ V(p) by czt ∧ ((cxt ∧¬cyt)∧ (cyt ∧
¬cxt))⇒ czt ∧ ((cxt+1 ∧ ¬cyt+1) ∨ (cyt+1 ∧ ¬cxt+1)).

(3) i = FlowIndependent (x, y, z)
def
=

[cxt+1] = x̂
|| [cyt+1] = ŷ
|| [czt+1] = ẑ

|| cxt = cxt+1 pre false
|| cyt = cyt+1 pre false
|| czt = czt+1 pre false

|| i = ( not czt or (( not cxt or cyt) or (cxt+1 or not cyt+1)))
or (czt and ((cxt+1 and not cyt+1) or ( not cxt+1 and cyt+1)))


/ cxt, cxt+1

cyt, cyt+1

czt, czt+1

When the clock hierarchy of a compilable processP consists of multiple roots, we can use
the above properties to verify that it is weakly endochronous.

Property 3 A compilable processP whose roots satisfy criteria (1-3) is weakly endochronous.

Proof We observe that the formulation of properties(1 − 3) directly translate Definition 2 in
terms of timed Boolean equations. Since they are expressed in Signal, one can model-check
them against the specification of the processP under consideration to verify that it is weakly
endochronous.
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4.2 Static checking isochrony

Unfortunately, model-checking is unaffordable for purposes such as program transformation or
code generation. In the aim of generating sequential or concurrent code starting from weakly
endochronous specifications, we would like to define a simple and cost-efficient criterion to
allow for a large and easily identifiable class of weakly endochronous programs to be statically
checked and compiled. To this end, we define the following formal design methodology.

Definition 12 If P is compilable and hierarchic then it isweakly hierachic. If P and Q are
weakly hierarchic,P ||Q is well-clocked and acyclic thenP ||Q is weakly hierarchic.

By induction on its structure, a processP is weakly hierarchic iff it is compilable and its
hierarchy has rootsr1..n such that, for all1 ≤ i < n, Xi = V(�ri), Pi = P |Xi

is weakly
hierarchic and the pair(

∏i
j=1 Pj, Pi+1) is well-clocked and acyclic.

Theorem 1
1. A weakly hierarchic processP is weakly endochronous.
2. If P, Q are weakly hierarchic andP ||Q is well-clocked and acyclic thenP and Q are
isochronous.

Proof

1. By definition, a weakly hierarchic processP consists in the composition of a series of
processesPi that are individually compilable and hierarchic, hence endochronous. Since
endochrony implies weak endochrony, and since weak endochrony is preserved by com-
position, the compositionP of thePis is weakly endochronous.

2. Consider the hierarchy of any pair of endochronous processesPi and Pj in P ||Q that
share a common signalx of clock x̂. The processesPi andPj have rootsri andrj and
synchronize on̂x at a sub-clockci, computed usingri (sincePi is hierarchic) and at a
clock cj, computed usingrj (sincePj is hierarchic).

ri

��
��

�
KKKKKK rj

ssssss

99
99

9

{ci, x̂, cj}

SincePi ||Pj is well-clocked, the clocksci, cj and hencêx have a disjunctive form. Hence,
it cannot be the case thatx̂ is defined by the symmetric difference of a clock underri and
another (e.g. underrj). Therefore, any reaction initiated inPi to producex̂ can locally
and deterministically decide to wait for a rendez-vous with a reaction ofPj consuminĝx.
SincePi andPj are well-formed, then it cannot be the case thatx̂ = 0, which would mean
that the rendez-vous would never happen. Finally, sincePi ||Pj is acyclic, the rendez-vous
of ci andcj cannot deadlock. This holds for any pair of endochronous processesPi andPj

in P ||Q, henceP ||Q is non–blocking.
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3. These conditions precisely correspond to the weak isochrony criterion of [18], namely,
that non-blocking composition (2) of weakly endochronous processes (1) is isochronous.
Consequently, the composition ofP andQ is isochronous.

A compositional design methodology Our static criterion for checking the composition of
endochronous processes isochronous defines a cost-effective methodology for the integration
of components in the aim of architecture exploration or simulation. Interestingly, this formal
methodology meets most of the engineering practice and industrial usage of Signal: the real-time
simulation of embedded architectures (e.g. integrated modular avionics) starting from hetero-
geneous functional blocks (endochronous data-flow functions) and architecture service models
(e.g. [11]).

Example of a loosely time-triggered architecture We consider a simple yet realistic case
study build upon the examples we previously presented. We wish to design a simulation model
for a loosely time-triggered architecture (LTTA). The LTTA is composed of three devices, a
writer, abus,and areader. Each device is paced by its own clock.

At the nth clock tick (timetw(n)), thewriter generates the valuexw(n) and an alternating
flag bw(n). At any timetw(n), the writer’s output buffer(yw, bw) contains the last value that was
written into it. At tb(n), thebusfetches(yw, bw) to store in the input buffer of the reader, denoted
by (yb, bb). At tr(n), thereaderloads the input buffer(yb, bb) into the variablesyr(n) andbr(n).
Then, in a similar manner as for an alternating bit protocol, the reader extractsyr(n) iff br(n) has
changed.

writer reader
? ?

? ?
· (yb, bb) - ·bus

xw

tw

(yw, bw)

xr

tr

(yr, br)

tb writer

bus

reader

6 6

6 6 6

xw xw

xr xr

bw

xw

A simulation model of the LTTA To model an LTT architecture in Signal, we consider two
data-processing functions that communicate by writing and reading values on an LTT bus. In
Signal, we model an interface of these functions that exposes their (limited) control. Thewriter
accepts an inputxw and defines the boolean flagbw that is carried along with it over the bus.

(yw, bw) = writer(xw, cw)
def
=

(
x̂w = b̂w = [cw] || yw = xw || bw = not (bw pre true )

)
The reader loads its inputsyr andbr from the bus and filtersxr upon a switch ofbr.

xr = reader(yr, br, cr)
def
= (xr = yr when filter(br) || ŷr = [cr])
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Thebus buffers and forwards the inputsyw andbw to the reader. The clockcb is not used since
the buffers have local clocks.

(yr, br) = bus(yw, bw, cb)
def
= ((yr, br) = buffer(buffer(yw, bw)))

The processltta is defined by its three componentsreader, bus andwriter.

xr = ltta(xw, cw, cb, cr)
def
= (xr = reader(bus(writer(xw, cw), cb), cr))

We observe that the hierarchy of the LTTA is composed of four trees. Each tree corresponds to an
endochronous and separately compiled process, connected to the other at four rendez-vous points
(depicted by equivalence relations∼). The LTTA itself is not endochronous, but it is isochronous
because its four components are endochronous and their composition is well-clocked and acyclic.

ĉw r̂wŝw t̂w

sssss
RRRRRRRR r̂rŝr t̂r

mmmmmmmm
KKKKK

ĉr

b̂wx̂w[cw] ∼ x̂b
w[tw] [¬tw]ŷb

w ∼ [tr]x̂
b
r [¬tr]ŷ

b
r
∼ ŷrb̂r[cr]

[fr]x̂r

5 A compositional code generation scheme

The above design methodology invites us to revisit the code generation process of Polychrony
in the aim of implementing a separate compilation technique which accommodates the concur-
rent composition of endochronous processes by synthesizing rendez-vous protocols to compo-
sitionally interface processes. As we observe, it defines a new way to regard design using a
synchronous multi-clocked model of computation by the component-based integration of en-
dochronous functionalities, hence favoring modular exploration of the design space. We start
this exposition by a careful analysis on the current features and limitations of Polychrony’s code
generator.

5.1 Current scheme

Both sequential, concurrent and distributed code generation schemes in Polychrony rely on the
property of endochrony to generate the code. This observation also holds for code generation in
related synchronous languages, Lustre and Esterel, without much salient difference. However, it
is well-known that endochrony is not preserved by composition. To illustrate that, consider the
following pair of processes, a producer and a consumer. The producer increments its outputu
when its inputa is true and increments its outputx otherwise.

(u, x) = producer(a)
def
=

(
û = [a] ||u = 1 + (u pre 0)
|| x̂ = [¬a] || x = 1 + (x pre 0)

) â

��
�� BBB

BB

[a] ∼ û [¬a] ∼ x̂
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The consumer adds the value ofx to the countv whenb is true and1 otherwise. Hierarchies are
depicted on the right.

y = consumer(b, x)
def
=

 v̂ = b̂
|| x̂ = when b
|| v = (v pre 0) + (x default 1)

 b̂ ∼ v̂

yy
yy ??

??

[b] ∼ x̂ [¬b]

The signalx default 1 is implicitly created. It has the same clock asb, its value is that ofx at the
clock [b] and1 at the clock[¬b]. Notice that the producer and the consumer are endochronous
(their hierarchies are trees). Now, consider the composition ofproducer andconsumer in the
main process below.

(u, v) = main(a, b)
def
=

(
(u, x) = producer(a)

|| v = consumer(b, x)

)
Polychrony produces a hierarchy in which two synchronized boolean signalsCa andCb are added
on top of the hierarchies of the producer and the consumer. This allows to (artificially) form an
endochronous simulation process that relies on the environment to determine when to reada
and/orb.

Ca ∼ Cb
UUUUU

jjjjj

[Ca] ∼ â
oooo SSSSS [Cb] ∼ b̂ ∼ v̂

iiii
PPPP

P

[a] ∼ û [¬a] ∼ x̂ ∼ [b] [¬b]

This structure yields the generation of code that differs from what we have seen so far in that
the transition function now expects the clocksCa andCb to be synchronously delivered by the
environment, instead of being computed internally.

bool main_iterate() {
if (!r_main_C_a(&C_a)) return FALSE;
if (!r_main_C_b(&C_b)) return FALSE;
if (C_b) {

if (!r_main_b(&b)) return FALSE;
}
if (C_a) {

if (!r_main_a(&a)) return FALSE;
C_ = !a;
if (a) {

u = 1 + u;
w_main_u(u);

}
if (C_) {

x = 1 + x;

}
}
C__63 = (C_a ? C_ : FALSE);
if ((C_) != b)

polychrony_exception
("Exception for (C_, b)");

if (C_b) {
if (C__63) XZX_36 = x;

else XZX_36 = 1;
v = v + XZX_36;
w_main_v(v);

}
C_ = FALSE;
return TRUE;

}

In the C code, the functionsr main C a, r main C b, r main a andr main b read the
input signalsCa, Cb, a, b and the functionsw main u andw main v write the outputsu andv.
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The compiler places the clocks[¬a], x̂ and[b] in the same equivalence class. However, one
easily notices that the equation[¬a] = [b], incurred by the composition of the producer and
the consumer, is non-trivial. At present, it is bailed out as a so-called “clock constraint” by
Polychrony.

To handle this clock constraint, Polychrony can either generate a proof obligation, which
will have to be checked by the user, or generate defensive code to raise an exception if the clock
constraint is violated during execution. In the generated code below, if!a != b , an exception
is reported by the simulation loop.

The functionality of Polychrony to detect and report such a constraint is central in the code
generation scheme that will be presented next. Let us have a second look at the present situation:

- the producer and the consumer are endochronous
- the signalx is defined in one process, the producer
- its clockx̂ is used in both processes
In the composition of the consumer and the producer, one can hence definex by a shared

variable and use its clock constraint to define when it can deterministically be defined and/or
used by either the processes.

5.2 Contributed code generation scheme

Our contribution builds upon this simple idea, that is suitable for the simulation of otherwise
deterministic specifications, and uses the facility of Polychrony to report clock constraints (such
as [b] = [¬a]) and to export independent clocks (such asCa andCb) to build a scheduler that
satisfies the expected safety properties.

In this aim, and first of all, we would like to avoid increasing the interface of the program
(with Ca or Cb) in order to have an efficient (sequential or concurrent) execution scheme. In the
present code generation scheme of Polychrony,Ca andCb are added to rebuild an endochronous
simulation loop.

In the present case, however, the composition of the producer and the consumer is weakly
endochronous: the very interleaving ofa andb during execution is not relevant to the correct
propagation of input and output values. The transitions involving onlya or only b may be exe-
cuted in any order. However, transitions involving botha andb need to be synchronized. This is
precisely where the clock constraint[b] = [¬a] comes into play.

Building a controller

Using the information provided by Polychrony, namely, the exportation of non-hierarchized
clocksCa andCb, the report of a clock constraint on shared signals such as[b] = [¬a], we
can easily build a process for controlling the execution of the composition of the producer and
the consumer so as to keep it within a suitable safety objective.

To allow for a correct resynchronization on the values ofx, the controller needs to obey the
requirement expressed by the clock constraint[¬a] = [b] while imposing no additional synchro-
nization constraint (ona or b).
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Nicely, this controller can be expressed and synthesized in Signal. It uses the clock constraint
of the shared variable(x̂ = when not a = when b) to synchronize instants that need to be.

The controller accepts the input signalsa andb and feeds the producer and the consumer
with copiesc andd until one of the constraints is met,[ when not a] or [ when b]. As soon as
this occurs, it stops reading input from the signal (a or b), suspending the corresponding process,
until the other meets the constraint.

(c, d) = controller(a, b)
def
=


c = scheduler(a, ra, r)
|| d = scheduler(b, rb, r)
|| ra = not a default (ra pre false )
|| rb = b default (rb pre false )
|| r = ra and rb

 /rarbr

The controller contains two schedulers that are responsible for suspending and resuming the
input signalsa andb (hence the producer and the consumer) in order to correctly schedule the
operations in the sequential implementation of the rendez-vous.

y = scheduler(x, rx, r)
def
=



x̂ = true when cx

|| rx = not a default r′x
|| r′x = rx pre false
|| cx = ( true when (r pre false ))

default ( false when r′x)
default true

|| cy = (cx and not rx) or r
|| y = (x cell cy) when cy


/cxcy

Last, we need to patch the main program with the controller to correctly feed the producer and
the consumer with the values ofa andb that satisfy the clock constraint.

(u, v) = main(a, b)
def
=

 (u, x) = producer(c)
|| v = consumer(d, x)
|| (c, d) = controller(a, b)

 /cdx

Notice that each of the producer and the consumer is able to independently react when either
[¬a] or [b] holds, as no synchronization needs to take place in those cases.

Sequential code generation scheme

The controller is build upon the clocks exported and the constraints reported by Polychrony.
This provides sufficient information to generate the necessary code to control the execution of
the composition of endochronous processes.

In the controlledmain program, variables prefixed withpre_ register the values of signal (of
corresponding suffix) until the next cycle. The generatedr variables translate the synchroniza-
tion obligation implied by the reported clock constraint asr = ra && rb . Functions named
{r|w}_main_ x read and write the signalx.
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As opposed to the generated code presented Section??, the present program does not need its
master clocks to be synchronized: Ca and Cb are local variables, not input signals. As a result,
the interface of the composition of the producer and the consumer is the union of interfaces.

We observe that, since the producer and the consumer are endochronous, and since their
composition is such that all clocks which can be computed (all have a disjunctive form), the
main program is weakly isochronous in the sense of [17]: any synchronous reaction, initiated
from one side, yields a globally isochronous execution. This yields to a generic methodological
principle, presented next.

bool main_iterate() {

/ * c = scheduler (a, ra, r) * /

if (pre_r) C_a = TRUE;
else if (pre_ra) C_a = FALSE;
else C_a = TRUE;

if (C_a) {
if (!r_main_a(&a)) return FALSE;

}
if (C_a) ra = !a;

else ra = pre_ra;

/ * d = scheduler (b, rb, r) * /

if (pre_r) C_b = TRUE;
else if (pre_rb) C_b = FALSE;
else C_b = TRUE;

if (C_b) {
if (!r_main_b(&b)) return FALSE;

}
if (C_b) rb = b;

else rb = pre_rb;

/ * main * /

r = ra && rb;
C_c = (C_a && !ra) || r;
C_d = (C_b && !rb) || r;

/ * (x,u) = producer (c) * /

C_1 = FALSE;
if (C_c) {

C_1 = !a;
if (a) {

u = 1 + u;
w_main_u(u);

}
if (C_1) x = 1 + x;

}

/ * y = consumer (d,x) * /

C_2 = (C_c ? C_1 : FALSE);
if (C_d) {

if (C_2) X_1 = x;
else X_1 = 1;

v = v + X_1;
w_main_v(v);

}

/ * finalisation * /

pre_ra = ra;
pre_rb = rb;
pre_r = r;
return TRUE;

}

Compositionality

In our example, we observe that, should the main process be composed with an additional en-
dochronous process (or weakly endochronous network), then we would only need to build an
additional controller between those two, based on the same principle as previously mentionned:
to capture the clocks exported by Polychrony and to implement rendez-vous between toplevel
clock constraints (here:̂b = [c]) in the hierarchy.

(u, w) = main2(a, b, c)
def
= ((u, v) = main(a, d) ||w = consumer(e, v) || (d, e) = controller2(b, c)) /de
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Concurrent code generation scheme

The generation of code for concurrent execution differs from sequential code generation by the
construction of clusters that match the physical partition of signals on the target execution ar-
chitecture. In the present case, these clusters are the composed endochronous processes, the
producer and the consumer.

Our compilation technique for sequential code generation can easily be adapted for concur-
rent execution. It allows to define an interface or controller that performs minimum arbitration
with its environment. As a result, producer and consumer are compiled separately and the global
safety guarantee of weak isochrony is relied on assess the safety of the concurrent composition.

pthread_barrier_t * begin_RDV, * end_RDV ;
pthread_barrier_init(begin_RDV, 2);
pthread_barrier_init(end_RDV, 2);

In the example, we have separately compiled the producer and consumer to ready them for
concurrent execution. They use the local read/write functions of the producer and the consumer:
{r|w}_{consumer|producer}_ x). The clock constraint[¬a] = b is again used to syn-
chronize the threads with a barrier: a mutex zoneRDVprotects the shared variablex.

bool consumer() {
if (!r_consumer_b(&b))

return FALSE;
if (b) {

pthread_barrier_wait(begin_RDV);
X_1 = x;
pthread_barrier_wait(end_RDV);

} else X_1 = 1;
v = v + X_1;
w_consumer_v(v);
return TRUE;

}

bool producer() {
if (!r_producer_a(&a))

return FALSE;
if (a) {

u = 1 + u;
w_producer_u(u);

}
if (!a) {

pthread_barrier_wait(begin_RDV);
x = 1 + x;
pthread_barrier_wait(end_RDV);

}
return TRUE;

}

The generated code is otherwise unchanged. We obtain a concurrent code generation scheme
that modularly and compositionally supports separate compilation. It efficiently uses existing
report functionalities of the present implementation of Polychrony to effectively support the syn-
thesis of a controller that is able to assemble endochronous processes so as to maintain a global
objective of weak isochrony.

6 Related Work

In synchronous design formalisms, the design of an embedded architecture is achieved by con-
structing an endochronous model of the architecture and then by automatically synthesizing ad-
hoc synchronization protocols between the elements of this model that will be physically dis-
tributed. This technique is called desynchronization and a thorough survey on it is proposed
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in [12]. In the case of Signal, automated distribution is proposed by Aubry [1]. It consists
in partitioning endochronous specifications and synthesizing inter-partition protocols to ensure
preservation of endochrony.

In [13], Girault et al. propose a different approach for the synchronous languages Lustre and
Esterel. It consists in replicating the generated code of an endochronous specification and in
replacing duplicated instructions by inter-partition communications. As it uses notions of bi-
simulation to safely eliminate blocks, it leads to the construction of a distributed program that
consists of endochronously connected programs. But again, distributed code generation is also
driven by the global preservation of endochrony.

In [18], the so-called property of weak endochrony is proposed. Weak endochrony supports
the compositional construction of globally asynchronous system by adhering to a global objective
of weak-isochrony. In [19], we propose an analysis of Signal programs to check this property.
However, we observe that it is far more costly than necessary, at least for code generation pur-
poses, as it requires an exhaustive state-space exploration. In [8], Dasgupta et al. also propose a
technique to synthesize delay-insensitive protocols for synchronous circuits described with Pétri
Nets.

In the model of latency-insensitive protocols [5], components are denoted by the notion of
pearl (“intellectual property under a shell”). A pearl is required to satisfy an invariant ofpatience
(which, in turn, implies endochrony [20]) and alatency-insensitive protocolwraps the pearl with
a generic client-side controller: a so-called relay station.

The relay station ensures the functional correctness of the pearl by guaranteeing the preser-
vation of signal flows (i.e. isochrony). It implements this function by suspending the pearl’s
incoming traffic as soon as it is reported to exceed its consumption capability. A technique pro-
posed by Casu et al. in [7] refines this protocol to prevent unnecessary traffic suspension by
controlling traffic through pre-determined periodic schedules.

The latency-insensitive protocol is a compositional approach, and can be seen as a ”black-
box” approach, in that no knowledge on the pearl (but its capability to be patient) is required. Just
as desynchronization, Casu’s variant [7] is a “grey-box” approach, where knowledge on the pearl
is needed to synthesize an an-hoc controller and, at the same time, ensure functional correctness.

7 Conclusions

The clock analysis at the core of our approach shares similarities with both approaches (desyn-
chronization and latency insensitivity). It avoids the need for any explicit suspension mechanism
thanks to the determination of precise timing relations.

This yields a cost-effective methodology for the compositional design of globally asyn-
chronous architectures starting from synchronous modules. This methodology balances a trade-
off between cost (of verification) and compositionality (of design). It maintains a compositional
global design objective of isochrony while preserving properties secured locally (endochrony) by
checking that composition is non-blocking. This yields an efficient approach to compositional
modeling embedded architectures which, in addition, meets actual industrial usage.
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The commercial implementation of Signal, Sildex, commercialized by TNI, is widely used
for the real-time simulation of embedded architectures starting from heterogeneous, possibly
foreign, functional blocks (merely endochronous, data-flow functions) and architecture service
models (e.g. the ARINC 653 real-time operating system [11]). As an example, TNI has devel-
oped a real-time, hardware in-the-loop, simulator of all onboard electronic equipments for a car
manufacturer.

Our technique efficiently reuses most of existing compilation tool-suites available for Signal
in order to implement our proposal, which justifies presenting it in sufficient details in the present
article. We are currently upgrading the Polychrony toolset, that supports the Signal specification
formalism, with a simple controller-synthesis and code generation scheme supporting the present
methodology.
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Appendix

The appendix recall the semantics of synchronization and scheduling relations in the poly-
chronous model of computation, presented in [9]. It is complementary material for information
to reviewers. A scheduling structure can be added to the polychronous model of computation
outlined in the present article to define a denotational semantics of scheduling relationsx→c y.
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Scheduling structure To render scheduling relations between events occurring at the same
time tagt, we equip the domain of polychrony with a scheduling relation, notedtx → t′y, defined
on a domain of datesD = T × X , to mean that the event along the signal namedy at t′ may
not happen beforex at t. When no ambiguity is possible on the identity ofb in a scheduling
constraint, we write ittx → ty. We constraint scheduling→ to contain causality so thatt < t′

impliestx →b t′x andtx →b t′x implies¬(t′ < t).
The definitions for the partial order structure of synchrony and asynchrony in the poly-

chronous model of computation extend point-wise to account for scheduling relations. We say
that a behaviorc is astretchingof b, writtenb ≤ c, iff V(b) = V(c) and there exists a bijectionf
onT which satisfies
∀t, t′ ∈ T (b), t ≤ f(t) ∧ (t < t′ ⇔ f(t) < f(t′))
∀x, y ∈ V(b),∀t ∈ T (b(x)),∀t′ ∈ T (b(y)), tx →b t′y ⇔ f(t)x →c f(t′)y

∀x ∈ V(b), T (c(x)) = f(T (b(x))) ∧ ∀t ∈ T (b(x)), b(x)(t) = c(x)(f(t))

Meaning of clocks The meaning[[e]]b of a clocke is defined with respect to a given behavior
b and consists of the set of tags satisfied by the propositione in the behaviorb. The meaning of
the clockx = v (resp.x = y) in b is the set of tagst ∈ T (b(x)) (resp.t ∈ T (b(x)) ∩ T (b(y)))
such thatb(x)(t) = v (resp. b(x)(t = b(y)(t)). In particular,[[x̂]]b = T (b(x)) and [[[x]]]b =
[[x = true ]]b. The meaning of a conjunctione ∧ f (resp. disjunctione ∨ f and differencee \ f )
is the intersection (resp. union and difference) of the meaning ofe andf . Clock0 has no tags.

[[1]]b=T (b) [[0]]b = ∅
[[x = v]]b={t ∈ T (b(x)) | b(x)(t) = v}
[[x = y]]b={t ∈ T (b(x)) ∩ T (b(y)) | b(x)(t) = b(y)(t)}

[[e ∧ f ]]b=[[e]]b ∩ [[f ]]b
[[e ∨ f ]]b=[[e]]b ∪ [[f ]]b
[[e \ f ]]b=b[[e]]b \ [[f ]]b

Meaning of scheduling relations A scheduling specificationy → x at clocke denotes the
behaviorsb onV(e) ∪ {x, y} which, for all tagst ∈ [[e]]b, requiresx to preceedy: if t is in b(x)
then it is necessarily inb(y) and satisfiesty →b tx.

[[y →c x]] = {b | V(b) = V(c) ∪ {x, y} ∧ ∀t ∈ [[c]]b, t ∈ T (b(x))⇒ t ∈ T (b(y)) ∧ ty →b tx}

In [9], we finally show that, whenever a processP has graphR, then[[P ]] ⊆ [[R]].
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