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Abstract: The synchronous modeling paradigm provides strong execution correctness guar-
antees to embedded system design while making minimal environmental assumptions. In most
related frameworks, global execution correctness is achieved by ensuring endochrony: the in-
sensitivity of (logical) time in the system from (real) time in the environment. Interestingly, en-
dochrony can be statically checked, making it fast to ensure design correctness. Unfortunately,
endochrony is not preserved by composition, making it difficult to exploit with component-based
design concepts in mind. Compositionality can be achieved by weakening the objective of en-
dochrony but at the cost of an exhaustive state-space exploration. These observations raise a
tradeoff between performance and precision. Our aim is to balance this tradeoff by proposing a
formal design methodology that adheres to a weakened global design objective, namely, the non-
blocking composition of weakly endochronous processes, while preserving local endochrony
objectives. This yields an ad-hoc yet cost-efficient approach to compositional synchronous mod-
eling.
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Mise en ceuvre compositionelle de sy&sines isochrones

Résune : Le paradigme synchrone met en ceuvre déthwdes formelles permettant de garantir

la correction d’'un programme en faisant peu d’hygsta sur son environnement (dé&ution).

Cette correction est as&# par la propété d’endochronie: I'insensibitdu temps logique, dans

le programme, au temps r 'eel, dans I'environnement. L'endochroniegbeuterifiee par ana-

lyse statique. elle donne donc facilement et rapidement 'assurance qu’un programme est correct.
Malheureusement, elle n’est pas stable par composition, cela complique donc son utilisation dans
le cas d’'une conception modulaire de programmes. La composiggpellit cependarétre ob-

tenue en affaiblissant la propte d’endochronie, mais au prix d’'une mise en ceuvre plasstse

car reassitant I'exploration de I'espacétdts du programme. Cela nous confraaten dieme

entre performance et @cision, entre simplioit et compositional@. Notre objectif est d’aller au

dela de cequilibre en proposant uneéthodologie de conception foed sur I'objectif global

de composer des modules non-blocants et sur I'objectif local d’assurer I'endochronie (de chaque
module). La prop@t obtenue est compositionelle et Iditde sa @rification est faible.

Mots-clés : méthodes formelles, syshes embardes, analyse de programmes, paradigme syn-
chrone



Compositional design of isochronous systems 3

1 Introduction

The synchronous paradigm to embedded system design provides strong execution correctness
guarantees while requiring minimal assumptions on the execution environment. In most syn-
chronous formalisms, this is achieved by locally verifying that computation (in the system) is in-
sensitive to communication delays (from the environment), i.e., that the system is endochronous
(“time is defined from inside”).

Example Procesdilter emitsx every time the value of its inputchanges. Output tags, are
timely related to input tags _4: Proces$ilter is endochronous.

x:(t1,1) (t2,0) (t3,0) (t4,1) — |y =filter(z)| — y: (t2,1) (t4,1)

In the data-flow formalism Signal, for instance, design is driven by the safety objective of
endochrony: endochrony guarantees a synchronization of computations and communications that
is independent of possible network latency. Unfortunately, endochrony is not a compositional
property: it is not preserved by synchronous composition.

Example The synchronous composition éifter with an endochronous merge equation (to
mean ‘4 equals ifc theny elsez”) is no longer endochronous: timing of the outpiits not
related to one of the inputsandy.

C Z(to,O) (tg,l) (t4,1) (t7,0)
e (t,1) (t4,1) — |d = merge(c,y,z)| — d: (to,1) (t2,1) (tg,1) (t7,0)
z Z(to, 1) (t7, 0)

In [18], it is shown that compositionality can be achieved by weakening the objective of en-
dochrony: a weakly endochronous system is a deterministic system that can perform independent
communications in any order as long as this does not alter its state (i.e. it satisfies the diamond
property). It is further shown that the non-blocking composition of weakly endochronous pro-
cesses is isochronous.

Example The untimed asynchronous composition of procefis@sandmerge is isochronous:
synchronous and asynchronous compositions yield the same flow of values.

x:1001
c:0110 — |z =filter(y) || d = merge(c,y,2)|— d:1110
2:1010

However, checking that a system is weakly endochronous requires an exhaustive exploration
of its state-space to guarantee that its behavior is independent from the order of inbound commu-
nications. This raises a tradeoff between performance (incurred by state-space exploration) and
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4 J.-P. Talpin et al.

flexibility (gained from compositionality). We aim at balancing this trade-off by proposing a for-
mal design methodology that weakens the global design objective (non-blocking composition)
and preserves design objectives secured locally (by accepting endochronous components).

Our approach consists in globally maintaining a compositional design objective (non-blocking
composition) while preserving properties secured locally (endochrony). This yields a less gen-
eral yet cost-efficient approach to compositional modeling that is able to encompass most of
the practical engineering situations. It is particularly aimed at efficiently reusing most of the
existing program analysis and compilation algorithms of Signal. To support the present design
methodology, we have designed a simple controller synthesis and code generation scheme [16].

Plan

The article starts in Sectidr] 2 with an introduction to Signal and its polychronous model of
computation. Sectiop| 3 defines the necessary analysis framework and $éction 4 present our
contributed formal properties and methodology. It is applied to the exposition of a concurrent
code generation scheme in Secfipn 5. We review related works in Sggtion 6 and conclude.

2 An introduction to Polychrony

In Signal, a process (writteR or Q) consists of the synchronous composition (not&d)) of
equations on signals (written = y f z). A signalz represents an infinite flow of values. It is
sampled according to the discrete pace of its clock, notedin equationr = y f z defines the
output signalx by the relation of its input signalg and z through the operatof. A process
defines the simultaneous solution of the equations it is composed of.

PQ :=zxz=yfz|P|Q|P/x (process)

As a result, an equation partially relates signals in an abstract timing model, represented by clock
relations, and a process defines the simultaneous solution of the equations in that timing model.
Signal defines the following kinds of primitive equations:

* A functional equationr = y f z defines an arithmetic or boolean relatiprbetween its
operandgy, z and the result.

» A delay equationr = y pre v initially defines the signat by the valuev and then by the
value of the signal; from the previous execution of the equation. In a delay equation,
the signalst andy are assumed to be synchronous, i.e. either simultaneously present or
simultaneously absent at all times.

» A samplingz = y when z definesr by y whenz is true and bothy andz are present. In a
sampling equation, the output signais present iff both input signalgandz are present
andz holds the valuérue.

* A mergex = y default z definesr by y wheny is present and by otherwise. In a merge
equation, the output signal is present iff either of the input signals: is present.

INRIA



Compositional design of isochronous systems 5

The process$’/x restricts the lexical scope of the signaio the proces®. In the remainder,
we write )V (P) for the set of free signal namesof P (they occur in an equation d? and their
scope is not restricted). A free signal is an output iff it occurs on the left hand-side of an equation.
Otherwise, it is an input signal.

Example We define the procesiiter depicted in Section 1. It receives a boolean input signal
y and produces an output signakvery time the value of the input changes. The local signal
holds the previous value of the inpytt all times. Whery first arrive, z is initialized to true. If

y andz differ then the output is true, otherwise it is absent.

x=filter(y) o (x= true when (y#z)| z=y pre true) /z

2.1 Model of computation

The formal semantics of Signal in defined in the polychronous model of computation [9]. The
polychronous MoC is a refinement of Lee’s tagged signal madel [14]. In this model, symbolic
tagst or u denote periods in time during which execution takes place. Time is defined by a partial
order relation< on tags { < u means that occurs before:). A chain is a totally ordered set of
tags and defines the clock of a signal: it samples its values over a series of totally related tags.
Events, signals, behaviors and processes are defined as follows:

- anevents the pair ofatag € T and a value € V

- asignalis a function from achainof tags to values

- abehaviorb is a function from names to signals

- aproces is a set of behaviors of same domain

- areactionr is a behavior with one time tag

Example The meaning of procesiter is denoted by a set of behaviors on the signadsdy.
Line one, below, we choose a behavior for the input signall the equation. Line two defines
the meaning of the local signalby the previous value af. Notice that it is synchronous to(it
has the same set of tags). Line three, the output sigisatiefined at the time tagsat whichy
andz hold different values, as expected in the previous example.

yr— (tlv 1) (t27 0) (t37 0) (t4> 1) (t57 1) (t67 0)
Z = (th 1) (tg, 1) (tg, 0) (t4, 0) <t5, 1) (tﬁ, 1)
xTr +— (tg,l) (t4,].) (tﬁ,l)
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6 J.-P. Talpin et al.

Notations We introduce the notations that are necessary to the formal exposition of the poly-
chronous model of computation. We wrifg(s) for the chain of tags of a signalandmin s
andmax s for its minimal and maximal tag. We writg(b) for the domain of a behavidr (a

set of signal names). The restriction of a behavito X is notedb|x (i.e. V(b|x) = X). Its
complementary, x satisfied = b|x Wb,x (i.e. V(b,x) = V(b) \ X). We overload the use af

and) to talk about the tags of a behavipand the set of signal names of a process

Synchrony and asynchrony Informaly, two behavior$ andc are clock-equivalentwritten
b ~ ¢, iff they are equal up to an isomorphism on tags. For instance,

<y0—>(t1, 1)(75270)(75370)) - (?JH(Ul, 1)(U370)(U570))

T (t2,1) T (us, 1)

The synchronization of a behavibwith a behavior is notedb < ¢ and is defined as the effect
of “stretching” its timing structure. A behavieris astretchingof a behaviow, writtenb < ¢, iff
V(b) = V(c) and there exists a bijectighon tags s.t.

Vi,u,t < f(t) A\ (t <u < f(t) < f(u))

Va € V(b), T(c(x)) = f(T(b(x))) AVEE T(b(x)), b(x)(t) = c(z)(f(t))
b andc areclock-equivalentwrittenb ~ c¢, iff there exists a behaviats.t.d < b andd < c. The
synchronous compositign| ¢ of two processes andq is defined by combining behaviobse p
andc € ¢ that are identical o = V(p) N V(q), the interface betweemnandg.

plg={bUc|(bc)epxqgAbli=cli NI=V(p)NV(q)}

Asynchrony Similarly, two behavior$ andc areflow-equivalentwrittenb = ¢, iff they have
the same domain and all signals carry the same values in the same order. For instance,

(yr—>(t1, 1)(t2,0)(t3,0)) ~ (yH(Ul, 1)(U270)(U370))

T (t2,1) x—(ug, 1)

Desynchronization is defined as the effect of “relaxing” the timing structure of a behavior: a
behaviorc is arelaxationof b, writtend C ¢, iff V(b) = V(c¢) and, forallx € V(b), b|, < ¢|,. Two
behaviors andc areflow-equivalentwrittenb ~ ¢, iff there exists a behaviat s.t.b J d C c.

The asynchronous compositipr| ¢ of two processes andq is defined by the set of behaviors

d that are flow-equivalent to behavidrs p andc € ¢ along the interfacé = V(p) N V(q).

p||q:{d|(b,c)€p><q/\ byyUceyr <djyr ANblp Ed|r D el A [:V(p)ﬁV(q)}

Concatenation The semantic$P] of a Signal proces®, presented next, is defined by a set
of behaviors that are inductively constructed by the concatenation of reactions. A reaision
a behavior with (at most) one time tagWe write 7 (r) for the tag of a non empty reaction
An empty reaction of the signal¥ is noted®|y. The empty signal is notefil A reactionr is
concatenable to a behavibiff V(b) = V(r), and, for allz € V(b), max(b(z)) < 7 (r(x)). If

S0, concatenatingto b is defined by

Ve e V(b),Yu e Tb)UT(r),(b-r)(x)(u) =if u € T(r(x)) then r(x)(u) else b(z)(u)

INRIA



Compositional design of isochronous systems 7

Example Two reactions of signal-wise related time tags can be concatenated, writteno
form a behavior. For instance,

() () - G2 )

2.2 Semantics of Signal

The semantic§P] of a Signal proces#® is a set of behaviors that are inductively defined by the
concatenation of reactions.

Initially, we assume thab|,,,y € [P]. The semantics of a delay = y prev is defined by
appending a reaction of tagt to a behavion. It initially definesz by the valuev (whenb is
empty) and then by the previous valueydfi.e. b(y)(u) whereu is the maximal tag ob).

b € [z = ywhenz], t—b(y)(u), m(y) £OANbF# Dy
u=max(7 (b(y))), r(z) =

t= T(?“),

t— v, r(y) ZONb=0yy
0, r(y) =0Ab= 00y,

Similarly, the semantics of a sampling= y when =z definesr by y whenz is true.

r(y), r(z)(t) = true }

[x =yprev] = {b'r

b € [x = ywhen z],
u = max(T(b(y))), r(x) =
t="1T(r),

0, r(z)(t) = false
0, r(z) =1

Finally, x = y default =z definese by y wheny is present and by otherwise.

r(y), r(y) #0 }
r(z), r(y) =10

The meaning of the synchronous compositf is the synchronous compositidi® | Q] =
[P]]]Q] of the meaning o and@. The meaning of restriction is defined b /x| = {c|b €

[PTA e < (bra)}-

[x = ywhenz] = {b-r

[x = ydefault z] = {b 17 |b € [x = ydefault 2], r(z) =

Example The meaning of the equatian=true when (y # (y pre true)) consists of a set of
behaviors with two signalg andy. On line one, below, we choose a behavior for the input signal
y of the equation. On line two, we define the signal for the expregspoa true by application

of the function[]. Notice thaty andy pre true are synchronous (they have the same set of tags).
On line three, the output signalis defined at the time tagswheny andy pre true hold differ-

ent values, as expected in the previous example.

y — (t1, true) (t2, false) (ts, false) (t4, true) (ts, true) (ts, false)
y pre true — (ty, true) (o, true) (s, false) (4, false) (ts, true) (g, true)
T (t9, true) (t4, true) (t, true)

RR n° 6227



8 J.-P. Talpin et al.

Formal properties The formal properties considered in the remainder pertain the insensitivity
of timing relations in a process (its local clock relations) to external communication delays.
The property of endochrony, Definitign 1, guarantees that the synchronization performed by a
process is independent from latency in the network. Formally, ldie a set of input signals

of p, whenever the procegsadmits two input behaviorlg; andc|; that are assumed to be flow
equivalent (timing relations have been altered by the network) thalvays reconstructs the
same timing relations ih andc (up to clock-equivalence).

Definition 1 A proces is endochronousf there existd C V(p) s.t., forallb,c € p, b
impliesb ~ c.

I%C|1

Example To checkthat the filter is endochronous, consider two of its possiblettaug: with
flow-equivalentinput signalgy) = (t1, 1)(t2,0)(¢3,0)(t4, 1) ande(y) = (uq, 1)(uz, 0)(us, 0)(uq, 1)
(they share no tags, but carry the same flow of values). The filter necessarily constructs the output
signalsh(z) = (t2,1)(t4, 1) ande(x) = (uq, 1)(u4, 1). One notices thadt andc are equivalent by

a bijection(¢; — u;)o<i<5 ONn tags: they are clock-equivalent. Hence, the filter is endochronous.
This is no longer the case if it is composed with processye.

The weaker definition of endochrony, presented next, requires a definition of the union, writ-
tenr U s, of two reactions: ands. We say that two reactionands are independent iff they have
disjoint domains. Two independent reactions of same time tam be merged, asU s.

Vo € V(r), (rus)(z) = if r(z) # () then r(x) else s(x)

For instance,
(y = (t2,0)) U(z = (2,1)) = (y = (t2,0)z = (I2,1))

Definition[2, below, defines the compositional property of weak endochrony in the poly-
chronous model of computation. Informally, processs weakly endochronous iff it is deter-
ministic and can perform independent reactio@sds in any order. Note that, by Definitidr) 1,
endochrony implies weak-endochrony (dilter is weakly endochronous).

Definition 2 A proces® is weakly-endochronousf

1. p is deterministic:3I C V(p), Vb,c€p, b|;=c|; = b=c

2. for all independent reactionsand s, p satisfies:
@ifb-r-septhenb-sep
(b)ifb-repandb-s e pthenb- (rus) €p
(©ifb-(rus),b-(rut)epthenb-r-s, b-r-tep

Example For instance, the synchronous composition of procefisgsand merge is weakly
endochronous: it is deterministic and all combinations of reactions consisting of the signals
x,y, z andc belong to its possible behaviors.

Definition 3 p andq areisochronousff p|g~p || ¢

INRIA



Compositional design of isochronous systems 9

A process is non-blocking iff, in any reachable state (characterized by a beh@vibthas
a path to a stuttering state (characterized by a reac)iohotice that the composition dilter
andmerge is non-blocking.

Definition 4 p is non-blockingiff Vb € p,3r,b-r € p

In [18], it is proved that weakly endochronous procegsaadq areisochronousf they are
non-blocking (a locally synchronous reactionpadr ¢ yields a globally asynchronous execution

pl q).

3 Formal analysis

For the purpose of program analysis and program transformation, the control-flow tree and the
data-flow graph of multi-clocked Signal specifications are constructed. These data structures
manipulate clocks and signal names.

3.1 Clock and scheduling relations

A clock ¢ denotes a series of instants (a chain of time tags). The dlotla signal: denotes the
instants at which the signalis present. The clocl] (resp.[—z]) denotes the instants at which
x is present and holds the value true (resp. false).

c:=2|[x]|[-z] (clock)

A clock expressiore is either the empty clock, note@ a signal clocke, or the conjunction
e1 A ey, the disjunctiore; V ey, the symmetric difference, \ e of e; andes.

ex=0]|cleg ANes|e; Vesler \ ea (clock expression)

Signals and clocks are related by synchronization and scheduling relations /hidéesthedul-
ing relationa —¢ b specifies that the calculation of the noldea signal or a clock, cannot be
scheduled before that of the nod&hen the clock: is present.

a,b:=x|z (node)

A clock relationc = e specifies that the signal cloeks present iff the clock expressierns true.
Just as ordinary processBsrelationsk are subject to compositioR| S and to restrictior /x.

R,S :=c=e|a—°b|(R]|S)|R/z (timing relation)

RR n° 6227



10 J.-P. Talpin et al.

3.2 Clock inference system

The inference systen®? : R associates a procegswith its implicit timing relationsR. De-
duction starts from the assignment of clock relations to primitive equations and is defined by
induction on the structure d?: the deduction for compositioR | Q) and for P/« are are induced

by the deduction$’ : R and@ : S for P and@.

P:RANQ:S=P|Q:R|S P:R= Plz:R/z

In a delay equatiom = y pre v, the input and output signals are synchronous, writteny, and
do not have any scheduling relation.

x=yprev: (& =7)

In a sampling equatiom = y when z, the clock of the output signal is defined by that of;
and sampled byz]. The inputy is scheduled before the output when bgthnd|z| are present,
writteny —% x.

r=ywhenz: (& =gA[z]|ly =" )
In a merge equatiom = y default z the output signat is present if either of the input signajs
or z are present. The first input signals scheduled before when it is present, writtep —7 .
Otherwisez is scheduled before, written z —*\7 2.

r=ydefaultz: (2 =gV 2|y =¥ x|z AV )
A functional equation: = y f z synchronizes and serializes its input and output signals.
c=yfz:(@=9==2ly—-"z]z-"2)

We write R |= S to mean thatR satisfiesS in the Boolean algebra in which timing relations
are expressed: compositidh| S stands for conjunction and restrictiéty = for existential quan-
tification (some examples are given below). For all boolean signalV(R), we assume that
RE= 2 =[z]V|[-z]andR = [z] A [-z] = 0.

Example To outline the use of clock and scheduling relation analysis in Signal, we consider the
specification and analysis of a one-place buffer. Probefsr implements two functionalities:
flip andcurrent.

x=buffer(y) o (x=current(y) | flip(x,y))
The procesdlip synchronizes the signalsandy to the true and false values of an alternating
boolean signal.
flip(z,y) < (s=t pre true |t=not s |2 =[t] | §=[~t]) /st
The processurrent stores the value of an input signgand loads it into the output signalupon
request.

:)szcurrent(y)déf (r=ydefault (r pre false ) |z=rwhenz |r=2 V 3) /r

INRIA



Compositional design of isochronous systems 11

The inference systerR : R infers the clock relations that denote the synchronization constraints
implied by processuffer. There are four of them:

F=5§ t=avy 1=[] §=][

From these equations, we observe that probefier has three clock equivalence classes. The
clockss, £, # are synchronous and define the master clock synchronization claséfef. Two
other synchronization classes= [t] andy = [—t], are samples of the signal

F=4=1t &=1[ §=][

Together with scheduling analysis, the inference system yields the timing relajign of the
process under analysis.

af (Z=[]|g=[~t]|F=2Vy
Rbuffer_<8_>§t”yﬁg}r |r —% 2 /rst

From Ryufer, We deduce® = £. Sincet is a boolean signal, = [t] v [—t] (a signal is always true
or false when present). By definition &%, © = [t] andy = [—t] (x andy are sampled from
t). Hence, we havé = i Vv j and can deduce th#, g, = (7 = ).

3.3 Clock hierarchy

The internal data-structures manipulated by the Signal compiler for program analysis and code
generation consist of a clock hierarchy and of a scheduling graph. The clock hierarchy represents
the control-flow of a process by a partial order relation. The scheduling graph defines a fine-
grained scheduling of otherwise synchronous signals.

The structure of a clock hierarchy is denoted by a partial order relatiott is defined by
inductive application of the following rules :

(1) for all boolean signals of R, definez < [z] andz < [~z]. This means that, if we know
thatx is present, then we can determine whethés true or false.

(2) if b = cis deductible fromR then definé < c andc < b, writtenb ~ ¢. This means that
if b andc are synchronous, and if either of the cloéksr ¢ is known to be present, then
the presence of the other can be determined.

B IfFRED =c feo, f € {NV,\}, b2 = ¢, by 2 ¢ andby is maximal (in the sense that
b, = bfor anyb such thab < ¢; andb < ¢;) thenb, < b,. This means that i, is defined
by c; f ¢ in g and if both clocks:; andc, can be determined once their common upper
boundb, is known, therb, can also be determined whénis known.

Definition 5 Thehierarchy=< of a process” : R s the transitive closure of the maximal relation
defined by the following axioms and rules:

RR n° 6227



12 J.-P. Talpin et al.

1. for all boolean signals;, z < [z] andz < [—z]

2.if R = b= cthenb < candc < b, writtenb ~ ¢

.ifREb =c feo, f €{NV,\}, b2 = 1, by < ¢ andby is maximal therby < b;.
We refer tac... as the clock equivalence classcah the hierarchy<

A well-formed hierarchy has no relatién= ¢ that contradicts Definition|5. For instance, the
hierarchy of the process = yand z| 2 = y when y is ill-formed, sincey ~ [y]. A process with
an ill-formed hierarchy may block.

Definition 6 A hierarchy= is ill-formed iff eitherz > [z]| or & > [—z], for anyz, or b; < by
foranyb, = ¢; f ¢ such thate; = by < ¢ andb, < by

Example The hierarchy of the buffer is constructed by application of the first and second rules
of Definition@. Rule 2 defines three clock equivalence cla$ses ¢}, {2, [t]} and {7, [-t]}.

Pr~gn~t
t] ~ 2 [—t] ~ 9

Rule 1 places the first class above the two others and yields the following structure

Fr~g~t
/ \
t] ~ 7

[=t] ~ 9

Next, one has to define a proper scheduling of all computations to be performed within each
clock equivalence class (e.g. to scheduleeforet) and across them (e.g. to scheduler y
beforer). This task is devoted to scheduling analysis, presented next.

3.4 Disjunctive form

But, before that, Polychrony attempts to eliminate all clocks that are expressed using symmetric
difference from the graph of a process. This transformation consists in rewriting clock expres-
sions of the forme; \ e, present in the synchronization and scheduling relationgiofa way

that does no longer denote the absence of an eyemiut that is instead computable from the
presence or the value of signals.

Example In the case of procesairrent, for instance, consider the alternative inpyte false
in the first equation:
r = ydefault (r pre false)

Its clock is7 \ g, meaning that the previous value ofs assigned te only if y is absent. To
determine thay is absent, one needs to relate this absence to the presence or the value of another
signal.
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In the present case, there is an explicit clock relation inafkernate process:y = [—t]. It
says thay is absent ifft is present and true. Therefore, one can test the valuenstead of the
presence or absencein order to deterministically assign eithgor r pre false tor

y = pre false

In [?], it is shown that the symmetric differenee\ d between two clocks andd has a
disjunctive form only ifc andd have a common minimurhin the hierarchy=< of the process,
ie.,

cr-b=d

We say that the timing relatioR is in disjunctive form iff it has no clock expression defined by
symmetric difference. The implicit reference to absence incurred by symmetric difference can
be defined as \ d=%fc A d and can be isolated using logical decomposition rules :

def _

« conjunctionc A d = ¢V d and disjunctiore V d 'z

cAd.

* positive[z] v [—z] and negativg—z] Y [z] signal occurrences.

The reference to the absence of a signatotedz, is eliminated if (and only if) one of the
possible elimination rules applies:
« The zerorules A 7 & 0, because a signal is either present or absent, exclusively.
f

* The "one” rule: ¢ A (& V ) ' ¢, because the presence or the absence of a signal is
subsumed by any cloak

* The synchrony rule: ifi ~ 2 thenz 43, to mean that if: cannot be eliminated buitis
synchronous to the cloak thend can possibly be eliminated possibly instead.

Example In the case of processirrent in the example of the buffer one has that
gr[t] 2~ Pt

Hencei =t < ¢ and thereforé \ ¢ can be interpreted d§.

Timing relations are in disjunctive form iff they has no clock defined by a symmetric differ-
ence relation. For instance, suppose that [z| and thatc = b < d. Then, the expressian\ d
can be eliminated because it can be expressedawith-x].

Definition 7 A processP of timing R and hierarchy=< is well-clockediff < is well-formed and
R is disjunctive.
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3.5 Scheduling graph

Given the control-flow backbone produced using the hierarchization algorithm and clock equa-
tions in disjunctive form, the compilation of a Signal specification reduces to finding a proper
way to schedule computations within and across clock equivalence classes. The inference sys-
tem of the previous section defines the precise scheduling between the input and output signals
of processuffer. Notice thatt is needed to compute the clockaindy.

s =t y—Yr r—"x

As seen in the previous section, however, the calculation of clocks in disjunctive form induces
additional scheduling constraints, and, therefore, one has to take them into account at this stage.
This is done by refining thé& with a reinforced oneS, satisfyingS | R, and by ordered
application of the following rules:

1. S = & —% zforall z € V(P). This means that the calculation ofcannot take place
before its clocks is known.

2. if REi=[ylorR E &= [-y]thenS  y —¥ &. This means that, if the clock of is
defined by a sample af, then it cannot be computed before the valug & known.

3.ifREZ=gf2with f € {V,A} thenS = § —¥ 2|2 —* &. This means that, if the
clock of x is defined by an operation on two clocksand z, then it cannot be computed
before these two clocks are known.

Reinforcing the scheduling graph of the buffer yields a refinement of its inferred graph with a
structure implied by the calculation of clocks (we just ommitted clocks on arrows to lighten the
depiction). Notice that is now scheduled before the clockandy.

f%tﬁ‘f‘)xeref

N/

§s—=s y—=Y
Code can be generated starting from this refined structure only if the graph is acyclic. To
check whether it is or not, we compute its transitive closure:
1. if R Ea —°bthenR = a —° b. This just tells that the construction of the transitive
closure relation starts from the scheduling graph of the process.

2. ifREa—»bandR | a »? bthenR = a -4 b. If bis scheduled after at clocke
and at clockd then so it is at clock Vv d

. ifREa—»bandR = b - zthenR = a - 2. If bis scheduled after at clockc
andz afterb at clockd thenz is necessarily scheduled afteat clocke A d

The complete grapRk of a process is acycliciff R = a —¢ a impliesR |~ e = 0 for all nodes
a of R. The graph of our example is.

Definition 8 A processP of timing relationsR is acyclic iff the transitive closure— of its
scheduling relations? satisfy, for all nodes, if a —¢ a thenR = e = 0.
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3.6 Sequential code generation

Together with the control-flow graph implied by the timing relations of a process, the scheduling
graph is used by Polychrony to generate sequential or distributed code. To sequentially schedule
this graph, Polychrony further refines it in order to remove internal concurrency without affecting
its composability with the environment. This is done by observing the following rule.

Definition 9 The scheduling graph of reinforcesR iff, for any graph7 such thatR|T is
acyclic, thenR | S| T is acyclic.

Starting from a sequential schedule and a hierarchy of prdanéss, Polychrony generates
simulation code split in several files.
int main() {
bool code;
buffer_OpenlO();
code = buffer_initialize();
while (code) code = buffer_iterate();
buffer_CloselO();

}

The main C file consists of opening the input-output streams of the program, of initializing the
value of delayed signals and iteratively executing a transition function until no values are present
along the input streams (return cdeje Simulation is finalized by closing the 10 streams.

The most interesting part is the transition function. It translates the structure of the hierarchy
and of the serialized scheduling graph in C code. It also makes a few optimizations along the
way. For instance; has disappeared from the generated code. Since the value storéaim
one iteration to another is the same as that, @fis used in place of it for that purpose.

In the C code, the three clock equivalence classes of the hierarchy correspond to three blocks:
line 2 (classs ~ ), lines3 — 5 (class[t] ~ ¢) and lines6 — 9 (class[-t] ~ ). The sequence
of instructions between these blocks follows the sequeneey — « of the scheduling graph.

Line 10 is the finalization of the transition function. It stores the value thaiil hold next time.

01. bool buffer_iterate () {

02. t = Is;

03. if t{

04. if Ir_buffer y (&y) return FALSE;
05. }

06. if 1t

07. X =Yy,

08. w_buffer_x (x);
09. }

10. s =t

11. return TRUE;

12. }

Also notice that the return code is true, lihg, when the transition function finalizes, but
false if it fails to get the signa} from its input stream, liné. This is fine for simulation code, as
we expect the simulation to end when the input stream sample reaches the end. Embedded code
does, of course, operate differently. It either waitsyar suspends execution of the transition
function until it arrives.
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3.7 Endochrony revisited

The above code generation scheme yields a way to analyze, transform and execute endochronous
specifications. The buffer process, for instance satisfies this property. Literally, it means that the
buffer is locally timed. In the transition function of the buffer, this is easy to notice by observing
that, at all times, the function synchronizes on either receiyifigm its environment or sending
x to its environment. Hence, the activity of the transition function is locally paced by the instants
at which the signals andy are present.

However, remember that the structure of control in the transition function is constructed using
the hierarchy of process buffer. In the case of an internally timed process, this structure has the
particular shape of a tree.

if t{

if Ir_buffer_y (&y) return FALSE;
} else {

X =Y;

w_buffer_x (x);

}

At any time, one can always start reading the statéthe buffer, and calculate Then, ift
is true, one emitg and, otherwise, one receivgsThe presence of any signal in procéssfer
is determined from the value of a signal higher in the hierarchy or, at last, from its root.

Fdt
— ™~
] ~ 2 [t] ~ g
Formally, whatever the exact time samplesndt, at which it receives an input signal or the
time samples; andu, at which it sends an output signalthe buffer always behaves according
to the same timing relations; occurs strictly before; ands is always used at andu;.

! !

) tl 2(:2 tl tQ
! ! / /
tl U1 tQ U9 1 U1 2 u2

uy Us uy ub

82

The timing relations between the signalsand y of the buffer are independent from latency
incurred by communications with its environment: this is the formal definition of endochrony
given in [9].

4 Compositional design criterion

We shall revisit the above schema in light of the compositional design methodology to be pre-
sented. We start by formulating a decision procedure that uses the clock hierarchy and the
scheduling graph of a Signal process to compositionally check the property of isochrony.
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Compilability We start by considering the class of Signal proceg3dlat are reactive and
deterministic.

Definition 10 A processP is compilableiff it is acyclic and its relations? are well-clocked.

Property 1 A compilable proces# is reactive and deterministic.

Proof An immediate consequence of Property 5,[in/[20], where a well-clocked and acyclic
process is proved to be deterministic.

Roots of a hierarchy Next, we consider the structure of a compilable Signal specification. Itis
possibly paced by several, independent, input signals. It necessarily corresponds to a hierarchy
=< that has several roots. To represent them, we refet°tas the minimal clock equivalence
classes of<, and to=¢ as the tree of roat in the hierarchy.

<°={c.|c€min X}  =<°={(¢,d)}U <4 le <d

When the hierarchy of a process has a unique root, it is endochronous: he presence of any clock
is determined by the presence and values of clocks above it in the hierarchy.

Definition 11 A proces is hierarchiciff its hierarchy has a unique root.

Property 2 A compilable and hierarchic procegds endochronous.
Proof A detailed proof appears in [20].

Example The hierarchies of procediter (Section 1), left, and of the buffer, right, are both
hierarchic: they are endochronous. ket ([y] A [—z]) V ([-y] A [2]) andf = ([-y] A [22]) V
(I A D), A
yn~z r~§~t
7Ny T
T

T~e f y[-t]

By contrast, a process with several roots necessarily defines concurrent threads of execution.
Indeed, and by definition of a hierarchy, its roots cannot be expressed or calculated (or, a for-
tiori, synchronized or sampled) one with the others. Hence, they naturally define the source of
concurrency for the verification of weak endochrony.
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4.1 Model checking weak endochrony

Checking that a compilable procegsss weakly endochronous reduces to proving that the roots
of a process hierarchy satisfy property (2a) of definifipn 2 by using bounded model checking.
Property (2a) can be formulated as an invariant in Signal and submitted to its model checker
Sigali [10].

(1) i = Statelndependent (x,y) def
[cxii1] = 2| cxy = cxyqq pre false

| [cyee1] = 9| cyr = cyeeq pre false

/ CT, CT41
| i = (notcx,orcy;) or (cxyy 1 or notey,yq)or (cxy and cy;) CYt, CYpy1

The invariant returned bytatelndependent (x, y) is defined for all pairs of root clock equiva-
lence classes. It says thatyifs present ang absent at time (i.e. cx; A —cy;) and ify is present
andz absent at time + 1 (i.e. ~cx;11 A cyirq) thenz andy can both be present at tinidi.e.
cxy A cyy), Written (—exy V cyy) V (cxir V —eyr) Vo(exy A cyy).
Properties (2b-2c) can similarly be checked with the propefiekerindependent and FlowIndependent .
Property OrderIndependent is defined by(cz; A —cy;) A (cyy A —cxy) = (cxy A cyy). It means
thatx andy are independently available at all times.

(2) i = OrderIndependent (x,y) =
(' [ex] = 2| [cy = §]i = (notca, or cy,) or (cay or notcy,) or (cxyand cyy) ) Jexy, cys

Property Flowlndependent is defined for any signal € V(p) by cz; A ((cxy A —cyy) A (cyy A
acxy)) = ez A ((expgr A —eyisr) Vo (CYpsr A cxigq)).

(3) i = Flowlndependent (z,y, z) o
[cxis1] =T | cxy = cxyyqq pre false
| [cyic1]l =0 | cyr = cysyq pre false CTy, CTyyq
| [czit1] = 2 | cze = czyqq pre false / CYt, CYt41
| © = (notcz; or ((not cxy or cyy) or (cxyyq or not cy;11))) CZy, C2441
or (¢z;and ((cxyy1 and not cyyyq) or (not ey 1 and cyyi1)))

When the clock hierarchy of a compilable procéssonsists of multiple roots, we can use
the above properties to verify that it is weakly endochronous.

Property 3 A compilable proces® whose roots satisfy criteria (1-3) is weakly endochronous.

Proof We observe that the formulation of propertigs— 3) directly translate Definitioh|2 in

terms of timed Boolean equations. Since they are expressed in Signal, one can model-check
them against the specification of the procéssinder consideration to verify that it is weakly
endochronous.

INRIA



Compositional design of isochronous systems 19

4.2 Static checking isochrony

Unfortunately, model-checking is unaffordable for purposes such as program transformation or
code generation. In the aim of generating sequential or concurrent code starting from weakly
endochronous specifications, we would like to define a simple and cost-efficient criterion to
allow for a large and easily identifiable class of weakly endochronous programs to be statically
checked and compiled. To this end, we define the following formal design methodology.

Definition 12 If P is compilable and hierarchic then it iveakly hierachic If P and () are
weakly hierarchic P | @ is well-clocked and acyclic theR | @) is weakly hierarchic.

By induction on its structure, a processis weakly hierarchic iff it is compilable and its
hierarchy has roots, , such that, for alll < i < n, X; = V(2"), P, = P|x, is weakly
hierarchic and the pail [;_, P, I’+1) is well-clocked and acyclic.

Theorem 1

1. A weakly hierarchic procesB is weakly endochronous.

2. If P,@ are weakly hierarchic and?|Q is well-clocked and acyclic the® and () are
isochronous.

Proof

1. By definition, a weakly hierarchic procegsconsists in the composition of a series of
processes’ that are individually compilable and hierarchic, hence endochronous. Since
endochrony implies weak endochrony, and since weak endochrony is preserved by com-
position, the compositio® of the P;s is weakly endochronous.

2. Consider the hierarchy of any pair of endochronous procel8sesd P; in P|(Q that
share a common signal of clock . The processe#; and P; have roots; andr; and
synchronize on: at a sub-clock:;, computed using; (since P; is hierarchic) and at a
clockc;, computed using; (sinceP; is hierarchic).

SN N

{Ci7j7cj}

SinceP; | P; is well-clocked, the clocks;, ¢; and hence: have a disjunctive form. Hence,
it cannot be the case thatis defined by the symmetric difference of a clock undeand
another (e.g. under;). Therefore, any reaction initiated i to producez can locally
and deterministically decide to wait for a rendez-vous with a reactidf} abnsumingz.
SinceP; and P; are well-formed, then it cannot be the case that 0, which would mean
that the rendez-vous would never happen. Finally, sif¢é>; is acyclic, the rendez-vous
of ¢; andc; cannot deadlock. This holds for any pair of endochronous procéssesl P;

in P|Q, henceP|Q is non-blocking.
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3. These conditions precisely correspond to the weak isochrony criterion|of [18], namely,
that non-blocking composition (2) of weakly endochronous processes (1) is isochronous.
Consequently, the composition Bfand( is isochronous.

A compositional design methodology Our static criterion for checking the composition of
endochronous processes isochronous defines a cost-effective methodology for the integration
of components in the aim of architecture exploration or simulation. Interestingly, this formal
methodology meets most of the engineering practice and industrial usage of Signal: the real-time
simulation of embedded architectures (e.g. integrated modular avionics) starting from hetero-
geneous functional blocks (endochronous data-flow functions) and architecture service models

(e.g. [11)).

Example of a loosely time-triggered architecture We consider a simple yet realistic case
study build upon the examples we previously presented. We wish to design a simulation model
for a loosely time-triggered architecture (LTTA). The LTTA is composed of three devices, a
writer, abus,and areader. Each device is paced by its own clock.

At the nth clock tick (timet,(n)), thewriter generates the value,(n) and an alternating
flag b, (n). At any timet,(n), the writer's output buffe(y,, b,,) contains the last value that was
written into it. Att,(n), thebusfetchesy,,, b,,) to store in the input buffer of the reader, denoted
by (v, by). At t.(n), thereaderloads the input buffefy,, b,) into the variableg, (n) andb,(n).
Then, in a similar manner as for an alternating bit protocol, the reader exgréelsff v,.(n) has
changed.

reader Ty _ Ty
T Ty
| | P11
tw writer reader| Ir bus L
(Yuws b)) (Yr, b;) bwﬁ(—%
bus (Y, by) s ty writer
Tw Tw

A simulation model of the LTTA To model an LTT architecture in Signal, we consider two
data-processing functions that communicate by writing and reading values on an LTT bus. In
Signal, we model an interface of these functions that exposes their (limited) controlritae
accepts an input,, and defines the boolean flag that is carried along with it over the bus.

(Yw, b)) = writer(xy,, ) oo <£w = b, = [cw] | Yw = Tw | bw = not (b, pre true))
The reader loads its inputs andb, from the bus and filters, upon a switch ob,.

2, = reader(y,, by, ¢;) © (x, = y, whenfilter(b,) | 3, = [c,])
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Thebus buffers and forwards the inputg, andb,, to the reader. The clocdk is not used since
the buffers have local clocks.

(Y, br) = bus(Yu, b, Cp) def ((yr, b.) = buffer(buffer(y.,, by,)))

The procestta is defined by its three componemé&ader, bus andwriter.

x, = Itta(zy, cy, e, ¢;) o (z, = reader(bus(writer(z, cy), ), ¢))

We observe that the hierarchy of the LTTA is composed of four trees. Each tree corresponds to an
endochronous and separately compiled process, connected to the other at four rendez-vous points
(depicted by equivalence relatiorg. The LTTA itself is not endochronous, but it is isochronous
because its four components are endochronous and their composition is well-clocked and acyclic.

Cw fwgwtw ’T‘Argrtr Cr
R ‘ / \ / \ ) ‘
botulce]  ~ 5[t [—tw|gl, ~ [t,]2d =t gt~ gbe]
|
Lfr]Zr

5 A compositional code generation scheme

The above design methodology invites us to revisit the code generation process of Polychrony
in the aim of implementing a separate compilation technique which accommodates the concur-
rent composition of endochronous processes by synthesizing rendez-vous protocols to compo-
sitionally interface processes. As we observe, it defines a new way to regard design using a
synchronous multi-clocked model of computation by the component-based integration of en-

dochronous functionalities, hence favoring modular exploration of the design space. We start
this exposition by a careful analysis on the current features and limitations of Polychrony’s code

generator.

5.1 Current scheme

Both sequential, concurrent and distributed code generation schemes in Polychrony rely on the
property of endochrony to generate the code. This observation also holds for code generation in
related synchronous languages, Lustre and Esterel, without much salient difference. However, it
is well-known that endochrony is not preserved by composition. To illustrate that, consider the
following pair of processes, a producer and a consumer. The producer increments itsuoutput
when its inputz is true and increments its outptbtherwise.

(u, x) = producer(a) & < | i=la] lu=1+/upre0) ) d VRN

i =[-a] |z =14+ (xpre0)
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The consumer adds the valuesofo the county whenb is true andl otherwise. Hierarchies are
depicted on the right.

~

def ’l/) - b l; ~ ’l/}
y = consumer(b,z) = | | & = whenb RN
| v = (vpre0)+ (xdefaultl) [b] ~ 2 [—b]

The signalr default 1 is implicitly created. It has the same clockiasts value is that of: at the
clock [b] and1 at the clock[—b]. Notice that the producer and the consumer are endochronous
(their hierarchies are trees). Now, consider the compositigraducer andconsumer in the

main process below.

- det (u,x) = producer(a)
(u,v) = main(a, b) = < “ v = consumer(b, x)

Polychrony produces a hierarchy in which two synchronized boolean sigpalsdC), are added

on top of the hierarchies of the producer and the consumer. This allows to (artificially) form an
endochronous simulation process that relies on the environment to determine when 4o read
and/orb.

Co~Ch
— T R
[Ca] ~a [Cy) ~ b~ D
— ™~ — S~
la] ~ @ [-a] ~ & ~ [b] [b]

This structure yields the generation of code that differs from what we have seen so far in that
the transition function now expects the cloeks andC), to be synchronously delivered by the
environment, instead of being computed internally.

bool main_iterate() { }
if (Ir_main_C_a(&C_a)) return FALSE; }
if (Ir_main_C_b(&C_b)) return FALSE; C_63 = (C_a ? C_: FALSE),
if (C_b) { if (C)) !'=b)
if (Ir_main_b(&b)) return FALSE; polychrony_exception
} ("Exception for (C_, b)");
if (C_a) { if (C_b) {
if (Ir_main_a(&a)) return FALSE; if (C__63) XZX_36 = Xx;
C_ = lg else XZX 36 = 1,
if (@) { V = v + XZX_36;
u=1+u w_main_v(v);
w_main_u(u); }
} C_ = FALSE;
if (C) { return TRUE;
X =1+Xx }

In the C code, the functions.main _C a, r _-main _C.b, r _-main _a andr _main _b read the
input signals’,,, Cy, a, b and the functionsv.main _u andw_main _v write the outputs; andw.
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The compiler places the clocksa],  and[b] in the same equivalence class. However, one

easily notices that the equationa] = [b], incurred by the composition of the producer and
the consumer, is non-trivial. At present, it is bailed out as a so-called “clock constraint” by
Polychrony.

To handle this clock constraint, Polychrony can either generate a proof obligation, which
will have to be checked by the user, or generate defensive code to raise an exception if the clock
constraint is violated during execution. In the generated code beltav,'# b , an exception
is reported by the simulation loop.

The functionality of Polychrony to detect and report such a constraint is central in the code
generation scheme that will be presented next. Let us have a second look at the present situation:

- the producer and the consumer are endochronous

- the signalr is defined in one process, the producer

- its clock z is used in both processes

In the composition of the consumer and the producer, one can hence ddfina shared
variable and use its clock constraint to define when it can deterministically be defined and/or
used by either the processes.

5.2 Contributed code generation scheme

Our contribution builds upon this simple idea, that is suitable for the simulation of otherwise
deterministic specifications, and uses the facility of Polychrony to report clock constraints (such
as[b] = [—a]) and to export independent clocks (suchCgsand C}) to build a scheduler that
satisfies the expected safety properties.

In this aim, and first of all, we would like to avoid increasing the interface of the program
(with C,, or Cy) in order to have an efficient (sequential or concurrent) execution scheme. In the
present code generation scheme of PolychréfyandC), are added to rebuild an endochronous
simulation loop.

In the present case, however, the composition of the producer and the consumer is weakly
endochronous: the very interleaving @fand b during execution is not relevant to the correct
propagation of input and output values. The transitions involving ardy only b may be exe-
cuted in any order. However, transitions involving batandb need to be synchronized. This is
precisely where the clock constraiht = [—~a] comes into play.

Building a controller

Using the information provided by Polychrony, namely, the exportation of non-hierarchized
clocks C, and C}, the report of a clock constraint on shared signals sucfsjas: [—a], we
can easily build a process for controlling the execution of the composition of the producer and
the consumer so as to keep it within a suitable safety objective.

To allow for a correct resynchronization on the values othe controller needs to obey the
requirement expressed by the clock constraiaf = [b] while imposing no additional synchro-
nization constraint (on or b).
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Nicely, this controller can be expressed and synthesized in Signal. It uses the clock constraint
of the shared variablgr = when nota = when b) to synchronize instants that need to be.

The controller accepts the input signalandb and feeds the producer and the consumer
with copiesc andd until one of the constraints is mdtwhen nota| or [whenb]. As soon as
this occurs, it stops reading input from the signab( b), suspending the corresponding process,
until the other meets the constraint.

¢ = scheduler(a, r4,7)
| d = scheduler(b,ry, )
(¢,d) = controller(a, b) o | 7o = notadefault (r, pre false) | /raryr
|7y =0  default (r} pre false)
| m=rsandm,

The controller contains two schedulers that are responsible for suspending and resuming the
input signalse andb (hence the producer and the consumer) in order to correctly schedule the
operations in the sequential implementation of the rendez-vous.

= true whenc,

| 7, = notadefaultr!,

| !, =1, pre false

| e, = (true when (r pre false ))
default (false whenr?)
default true

| ¢, = (¢ and notr,)orr

| v = (xzcellc,) wheng,

=>
|

def

y = scheduler(z,r,,r) = JCxCy

Last, we need to patch the main program with the controller to correctly feed the producer and
the consumer with the values @fandb that satisfy the clock constraint.

(u, ) = producer(c)
v = consumer(d, x) | /edx
| (¢,d) = controller(a,b)

(u,v) = main(a,b) = | |

Notice that each of the producer and the consumer is able to independently react when either
[—a] or [b] holds, as no synchronization needs to take place in those cases.

Sequential code generation scheme

The controller is build upon the clocks exported and the constraints reported by Polychrony.
This provides sufficient information to generate the necessary code to control the execution of
the composition of endochronous processes.

In the controllednain program, variables prefixed wiglre_ register the values of signal (of
corresponding suffix) until the next cycle. The generatadriables translate the synchroniza-
tion obligation implied by the reported clock constraintras ra && rb . Functions named
{rlw}_main_  x read and write the signal
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As opposed to the generated code presented S&johe present program does not need its
master clocks to be synchronized:aand Cb are local variables, not input signals. As a result,
the interface of the composition of the producer and the consumer is the union of interfaces.

We observe that, since the producer and the consumer are endochronous, and since their
composition is such that all clocks which can be computed (all have a disjunctive form), the
main program is weakly isochronous in the sense of [17]: any synchronous reaction, initiated
from one side, yields a globally isochronous execution. This yields to a generic methodological

principle, presented next.
bool main_iterate() {
/* ¢ = scheduler (a, ra, r) */

if (pre_r) C_a = TRUE;
else if (pre_ra) C_a = FALSE;
else C_a = TRUE;
if (C_a) {
if (Ir_main_a(&a)) return FALSE;
}

if (C_a) ra = la;
else ra = pre_ra;
/* d = scheduler (b, rb, 1) */

if (pre_r) C_b = TRUE;
else if (pre_rb) C_b = FALSE;
else C_b = TRUE;
if (C_b) {
if ('r_main_b(&b)) return FALSE;

}
if (C_b) rb = b;

else rb = pre_rb;
/* main */
r=ra && rb;
Cc=(Cae&&la|r
Cd=(C_b & !tb) | r;

Compositionality

[+ (x,u) = producer (c) */

= FALSE;

c) {

c1 la;

if (a) {
u=1+u
w_main_u(u);

c.1
if (C_

}
if (C 1) x=1+x

}
[+ 'y = consumer (d,x) */

= (Cc ? C.1: FALSE);
( _d) {

if (C_2) X1

else X_1

v = v + X 1;

w_main_v(v);

o

}
/ = finalisation * [

pre_ra
pre_rb
pre r =,

return TRUE;

ra;
rb;

In our example, we observe that, should the main process be composed with an additional en-
dochronous process (or weakly endochronous network), then we would only need to build an
additional controller between those two, based on the same principle as previously mentionned:
to capture the clocks exported by Polychrony and to implement rendez-vous between toplevel
clock constraints (heré: = [c]) in the hierarchy.

(u, w) = main2(a, b, c) o ((u,v) = main(a, d) | w = consumer(e,v) | (d, e) = controller2(b, c)) /de
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Concurrent code generation scheme

The generation of code for concurrent execution differs from sequential code generation by the
construction of clusters that match the physical partition of signals on the target execution ar-
chitecture. In the present case, these clusters are the composed endochronous processes, the
producer and the consumer.

Our compilation technique for sequential code generation can easily be adapted for concur-
rent execution. It allows to define an interface or controller that performs minimum arbitration
with its environment. As a result, producer and consumer are compiled separately and the global
safety guarantee of weak isochrony is relied on assess the safety of the concurrent composition.

pthread_barrier_t *pegin_RDV, =+*end_RDV ;
pthread_barrier_init(begin_RDV, 2);
pthread_barrier_init(end_RDV, 2);

In the example, we have separately compiled the producer and consumer to ready them for
concurrent execution. They use the local read/write functions of the producer and the consumer:
{rlw}_{consumer|producer} x). The clock constraint-a] = b is again used to syn-
chronize the threads with a barrier: a mutex z&¥Vprotects the shared variahle

bool consumer() { bool producer() {
if ('r_consumer_b(&b)) if (Ir_producer_a(&a))
return FALSE; return FALSE;
it (b) { it (@ {
pthread_barrier_wait(begin_RDV); u=1+u
X1 =x; w_producer_u(u);
pthread_barrier_wait(end_RDV); }
} else X 1 =1, if (la) {
v =v + X_1; pthread_barrier_wait(begin_RDV);
w_consumer_v(v); X =1+ x;
return TRUE; pthread_barrier_wait(end_RDV);
} }

return TRUE;
}

The generated code is otherwise unchanged. We obtain a concurrent code generation scheme
that modularly and compositionally supports separate compilation. It efficiently uses existing
report functionalities of the present implementation of Polychrony to effectively support the syn-
thesis of a controller that is able to assemble endochronous processes so as to maintain a global
objective of weak isochrony.

6 Related Work

In synchronous design formalisms, the design of an embedded architecture is achieved by con-
structing an endochronous model of the architecture and then by automatically synthesizing ad-
hoc synchronization protocols between the elements of this model that will be physically dis-
tributed. This technique is called desynchronization and a thorough survey on it is proposed
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in [12]. In the case of Signal, automated distribution is proposed by Aubry [1]. It consists
in partitioning endochronous specifications and synthesizing inter-partition protocols to ensure
preservation of endochrony.

In [13], Girault et al. propose a different approach for the synchronous languages Lustre and
Esterel. It consists in replicating the generated code of an endochronous specification and in
replacing duplicated instructions by inter-partition communications. As it uses notions of bi-
simulation to safely eliminate blocks, it leads to the construction of a distributed program that
consists of endochronously connected programs. But again, distributed code generation is also
driven by the global preservation of endochrony.

In [18], the so-called property of weak endochrony is proposed. Weak endochrony supports
the compositional construction of globally asynchronous system by adhering to a global objective
of weak-isochrony. In_[19], we propose an analysis of Signal programs to check this property.
However, we observe that it is far more costly than necessary, at least for code generation pur-
poses, as it requires an exhaustive state-space exploration. In [8], Dasgupta et al. also propose a
technique to synthesize delay-insensitive protocols for synchronous circuits describeétwith P
Nets.

In the model of latency-insensitive protocals [5], components are denoted by the notion of
pearl (“intellectual property under a shell”). A pearlis required to satisfy an invariapaténce
(which, in turn, implies endochrony [20]) andaiency-insensitive protocelraps the pearl with
a generic client-side controller: a so-called relay station.

The relay station ensures the functional correctness of the pearl by guaranteeing the preser-
vation of signal flows (i.e. isochrony). It implements this function by suspending the pearl’s
incoming traffic as soon as it is reported to exceed its consumption capability. A technique pro-
posed by Casu et al. inl[7] refines this protocol to prevent unnecessary traffic suspension by
controlling traffic through pre-determined periodic schedules.

The latency-insensitive protocol is a compositional approach, and can be seen as a "black-
box” approach, in that no knowledge on the pearl (but its capability to be patient) is required. Just
as desynchronization, Casu’s variant [7] is a “grey-box” approach, where knowledge on the pearl
is needed to synthesize an an-hoc controller and, at the same time, ensure functional correctness.

7 Conclusions

The clock analysis at the core of our approach shares similarities with both approaches (desyn-
chronization and latency insensitivity). It avoids the need for any explicit suspension mechanism
thanks to the determination of precise timing relations.

This yields a cost-effective methodology for the compositional design of globally asyn-
chronous architectures starting from synchronous modules. This methodology balances a trade-
off between cost (of verification) and compositionality (of design). It maintains a compositional
global design objective of isochrony while preserving properties secured locally (endochrony) by
checking that composition is non-blocking. This yields an efficient approach to compositional
modeling embedded architectures which, in addition, meets actual industrial usage.
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The commercial implementation of Signal, Sildex, commercialized by TNI, is widely used
for the real-time simulation of embedded architectures starting from heterogeneous, possibly
foreign, functional blocks (merely endochronous, data-flow functions) and architecture service
models (e.g. the ARINC 653 real-time operating system [11]). As an example, TNI has devel-
oped a real-time, hardware in-the-loop, simulator of all onboard electronic equipments for a car
manufacturer.

Our technique efficiently reuses most of existing compilation tool-suites available for Signal
in order to implement our proposal, which justifies presenting it in sufficient details in the present
article. We are currently upgrading the Polychrony toolset, that supports the Signal specification
formalism, with a simple controller-synthesis and code generation scheme supporting the present
methodology.
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Appendix

The appendix recall the semantics of synchronization and scheduling relations in the poly-
chronous model of computation, presented_in [9]. It is complementary material for information
to reviewers. A scheduling structure can be added to the polychronous model of computation
outlined in the present article to define a denotational semantics of scheduling relatighg.
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Scheduling structure To render scheduling relations between events occurring at the same
time tagt, we equip the domain of polychrony with a scheduling relation, noted ¢, , defined

on a domain of date® = 7 x X, to mean that the event along the signal named ¢ may

not happen before att. When no ambiguity is possible on the identityoin a scheduling
constraint, we write it, — ¢,. We constraint scheduling> to contain causality so that< ¢’
impliest, —° t, andt, —° ¢/ implies—(t' < t).

The definitions for the partial order structure of synchrony and asynchrony in the poly-
chronous model of computation extend point-wise to account for scheduling relations. We say
that a behavior is astretchingof b, writtenbd < ¢, iff V(b) = V(c) and there exists a bijectiof
on7 which satisfies

VuﬂeT()p<ﬂ)A@<ﬂ¢>ﬂ)<fw»
v,y € V(b),Vt € T(b(x)),Yt' € T(b(y)),te =" 1, & f(t)e =° f('),
Vo € V(b), T(c(2) = F(T(b(x)) AVE € T(b(x)), ba)(t) = cla)(f(1))
Meaning of clocks The meaninde], of a clocke is defined with respect to a given behavior
b and consists of the set of tags satisfied by the propositiarthe behaviob. The meaning of
the clockz = v (resp.z = y) in b is the set of tags € 7 (b(x)) (resp.t € 7 (b(z)) N7 (b(y)))
such thath(x)(t) = v (resp. b(z)(t = b(y)(t)). In particular,[z], = 7 (b(z)) and [[z]], =
[z = true],. The meaning of a conjunctianA f (resp. disjunctiore Vv f and difference: \ f)
is the intersection (resp. union and difference) of the meanirgof f. Clock0 has no tags.

[1,=7®) [o],= le A F1,=le], N [f],
MZﬂFHETH@HMXQ—% le v 11,=lel, Y If1,
[ = yl,={t € T(b(x)) N T(b(y)) [b(z)(t) = b(y)()} [e\ fI,=blel, \ [/,

Meaning of scheduling relations A scheduling specificationp — x at clocke denotes the
behaviorsh on V(e) U {z, y} which, for all tagst € [e],, requiresz to preceed;: if ¢ is in b(z)
then it is necessarily ih(y) and satisfies, —° ¢,.

[y = 2] = {b| V() = V(c)U{z,y} AVt € [c],, t € T(b(z)) =t € T(b(y)) At, ="t}

In [9], we finally show that, whenever a proce3das graphr, then[P] C [R].
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