
HAL Id: inria-00156628
https://inria.hal.science/inria-00156628v2
Submitted on 25 Jun 2007 (v2), last revised 3 Dec 2008 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MLF made simple
Didier Le Botlan, Didier Rémy

To cite this version:
Didier Le Botlan, Didier Rémy. MLF made simple. [Research Report] RR-6228, 2007, pp.60. �inria-
00156628v2�

https://inria.hal.science/inria-00156628v2
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
??

??
--

F
R

+
E

N
G

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

� ���
made simple.

Didier Le Botlan and Didier Rémy

N° ????

July 2007

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

MLF made simple.

Didier Le Botlan and Didier Rémy

Thème SYM — Systèmes symboliques
Projet Gallium

Rapport de recherche n � ???? — July 2007 — 57 pages

Abstract: We propose Plain MLF—a type system that supersedes both ML and System F and enables complete
type inference for partially annotated programs based on first-order unification and let-polymorphism. This
variant of MLF is less expressive than the original one, yet it retains all its essential properties. In Curry’s style,
this variant uses System-F types extended with flexible bindings that can be interpreted as sets of System-F
types. The type instance relation may be derived from the interpretation. We may also exhibit a translation
from Plain MLF to an extension of System F with local-bindings. In Church’s style, only function parameters
that are used polymorphically need to be annotated as all other type annotations may be inferred.

Key-words: System F, MLF, Unification, Types, Graphs, Binders, Inference

MLF made simple.

Résumé : Nous proposons Plain MLF—un système de types qui généralise à la fois ML et le System F et
qui permet une inférence de types complète pour des programmes partiellement annotés en s’appuyant sur
l’unification de premier order le polymorphisme de liasion. Cette variante de MLF est moins expressive que
la version original, mais en conserve les propriétés essentielles. Dans sa présentation à la Curry, cette version
utilise les types du System-F sont étendus avec des lieurs flexibles qui sont interprétés comme des ensembles de
types du System-F types. La relation d’instance est dérivée de cette interprétation. Nous proposons également
une traduction de Plain MLF vers une extension du System F une construction de liaison. Dans sa présentation à
la Church, seuls les paramètres des fonctions qui sont utilsés de façon polymorphes doivent être annotés, toutes
les autres informations de types pouvant être inférées.

Mots-clés : Système F, MLF, Unification, Types, Graphes, Lieurs, Inférence

MLF made simple. 3

Contents

1 Introduction 3

2 An intuitive introduction to MLF 8
2.1 A Generic Curry’s style second-order type system . 8
2.2 Curry’s style MLF. 11
2.3 Church’s style MLF. 13
2.4 Flet, the closure of System F with let-contraction . 16

3 IMLF, Curry’s style MLF 17
3.1 Types and Prefixes . 17
3.2 Interpretation of types and prefixes . 18
3.3 Syntactic versions of instance and equivalence . 19
3.4 Typing rules . 22
3.5 System F as a subset of (Simple) IMLF . 23

3.6 Type soundness, by viewing IMLF as a subset of Flet . 23
3.7 Expressiveness and modularity . 25

4 XMLF, Church’s style MLF 26
4.1 Types, prefixes and relations under prefix . 27
4.2 Typing rules and type soundness . 31
4.3 Translating System F into XMLF . 32
4.4 Embedding ML into XMLF . 39
4.5 Programs that we intendedly reject . 41

5 Related works 41
5.1 Type inference for System F . 41
5.2 Embedding first-class polymorphism in ML . 43

6 Conclusion and future work 45

A Proofs 46

1 Introduction

The design of programming languages is often an area of difficult compromises. In the end, programming
languages must help programmers write correct, maintainable and reusable programs quickly. This implies, in
particular, that programming languages must be expressive, so as to write algorithms concisely and directly,
avoiding code duplication and acrobatic programming patterns, modular, so as to ease code reuse and be robust
to small code changes, and obviously typed. Types are indeed a key towards program correctness, as they ensure,
with very little overhead and without relying on the programmer’s skill, that a certain class of errors will never
occur at runtime; moreover most common and stupid programming mistakes may so be trapped as type errors.

Simple types, and in particular ground types, are still in use in many languages such as Pascal, C, Java,
etc. to categorize values between basic values such as integers, strings, etc., named structured values, and
functions. Most basic values and primitive function have a unique ground type. However, higher-order functions,
which receive among their arguments another function typically used to transform other arguments, are usually
polymorphic. That is, they work uniformly for a whole collection of ground types. Unfortunately, this property
cannot be described using simple types. As a result, higher-order functions must often be artificially specialized
to one or, worse, several instances, introducing duplication, worsening maintainability, and preventing code
reuse.

A well-known solution is of course parametric polymorphism, which extends simple types with type variables
that may be universally quantified. The simplest form of parametric polymorphism is known as ML-style
polymorphism [Mil78]: quantifiers are limited to the outermost position of types and the use of polymorphism
is limited to definitions, as opposed to parameters of functions. For instance, the application—the function that
takes two arguments and apply the first one to the second one—may be given type ∀ (α, β) (α → β) → (α→ β).
A whole collection of similar types obtained by instantiating universal variables by arbitrary types can thus be

RR n
�

0123456789

4 Rémy & Le Botlan

captured as a single polymorphic type. In this view, types can be thought of as the set of all their instances,
which makes them about as easy to understand as simple types. This also eases type inference, as each well-
typed program may be characterized by a principal type, i.e. one of which all others are instances. ML-style
polymorphism has been extremely successful for several decades and is still at the core of the most widely
used implementations of statically typed functional languages, such as OCaml or Haskell. The advantages of
parametric polymorphism over simple types are now widely recognized, as shown by its introduction in the Java
language—version 5—and C#.

However, polymorphic higher-order functions soon or later need themselves to be passed as values to other
functions. This requires first-class polymorphism, that is, to allow quantifiers to appear at any position within
types and, more generally, to treat polymorphic types as any other types. System F, also called the second-order
polymorphic λ-calculus is the reference for first-class polymorphism [Gir72, Rey74].

In Curry’s view, terms of System F are unannotated and types are left implicit, as in ML. However, as
opposed to ML, type inference for System F is undecidable [Wel99] and does not have principal types. Thus,
in practice, one rather uses Church’s view, where source programs contain explicit type information, so as to
make type checking decidable and straightforward. More precisely, function arguments come with explicit type
annotations and polymorphism is both explicitly introduced by type abstractions and explicitly eliminated by
type applications.

For example, the following function maps its argument—a list of pairs—to the list obtained by applying the
first projection of each pair to its second projection. We assume given listmap whose type is ∀ (αβ) (α→ β) →
list(α) → list(β) as well as the projections fst and snd from pairs with respective types ∀ (αβ) (α×β) → α and
∀ (αβ) (α× β) → β.

Λ(α) Λ(β) λ(pairlist : list((α → β) × α))
listmap [(α → β) × α] [β]

(λ(p : (α → β) × α) (fst [α → β] [α] p) (snd [α → β] [α] p))
pairlist

As illustrated by this example, explicit type information may be quite intrusive sometimes obfuscating and
often a pain to write and read, while most of this information is rather obvious from context. By contrast, the
very same example, written in ML, looks as follows:

λ(pairlist) listmap (λ(p) (fst p) (snd p)) pairlist
Annotations in ML are unnecessary because the language enjoys full type inference. Polymorphism is implicitly
introduced and eliminated. This is made possible in ML because type inference does not have to look for
first-class polymorphic types, hence it never needs to guess polymorphism. On the opposite, type inference in
System F should also consider solutions where the argument of a function, e.g. p in the example above, may have
a polymorphic type, such as (∀ (α) (α × α) → list(α)) × (∀ (β) τ × τ), where τ is a type that may mention β.
Finding all such solutions is undecidable in the general case. Hence, in System F, one must also annotate
programs that are typable in ML if only to say not to look for other types. While System F is attractive for its
expressiveness, its poor treatment of the common simple case has limited its use as the core of a programming
language, which indirectly benefited to the long life of ML dialects.

Searching for the grail. In the last two decades, considerable research has been carried out to reduce the
gap between ML and System F. Unfortunately, all solutions that have been proposed so far are unsatisfactory,
from both a theoretical and—worse—practical point of view. The problem has naturally been tackled from two
opposite directions.

Starting with System F, one may allow some type annotations to be omitted and attempt to rebuild them,
hopefully accepting more ML programs. One theoretically very attractive solution of this kind is to reduce
type inference to second-order unification [Pfe88]. This approach does not need type annotations at all, but still
requires placeholders for type abstractions and type applications, which unfortunately, are not very convenient to
write. Furthermore, type inference remains undecidable, as it then amounts to second-order unification. Other
less ambitious approaches rely on local type information to rebuild omitted type information [PT98, OZZ01], by
contrast with unification which is based on global computational effects. However, places where the user must
provide type annotations are not always so obvious [HP99a]. Worse, these approaches appear to be fragile with
respect to small program transformations; moreover, all of them fail to type a significant subset of useful ML
programs.

Conversely, starting with ML, polymorphic types can be embedded into first-class monomorphic types via
explicit injection and projection functions. This technique, known as boxed polymorphism [Rém94, OL96]
may be improved in several ways and has been implemented in both Haskell and ML. While it is useful as a

INRIA

MLF made simple. 5

default solution, and acceptable when polymorphic types are used occasionally, the solution does not scale up
to intensive use of polymorphism.

In fact, all approaches have somehow assumed that the solution was to be found between ML and System F.
Indeed, in Church’s view, hence in theory, ML is a subset of System F. However, in practice, ML is implicitly
typed while System F is explicitly typed. This makes the previous comparison misleading—if not meaningless.
Maybe, the solution lies outside of System F, as a more expressive type-system that combines implicit let-
polymorphism with explicit second-order types.

Our main contribution is a proposal for a new type system, called MLF, that supersedes both ML and
System F, allows for simple, efficient, predictable, and complete type inference for partially annotated terms.
The language MLF has been introduced in previous work [LBR03, LB04], which we shall below refer to as

Full MLF to avoid ambiguity. In this work, we focus on a simplified version, here called MLF for conciseness—or
Plain MLF when there is ambiguity1. While Plain MLF is less expressive than Full MLF, it is still more expressive
than both ML and System F, it retains interesting theoretical properties and practical applications, and it has
a significantly less technical and more intuitive presentation.

For another simplification, we first consider a Curry’s style version of MLF, called2 IMLF. This implicitly
typed version requires an extension of System F types with only flexible quantification, written ∀ (α ≥ σ) σ ′.

Remarkably, we may interpret types of IMLF as sets of System-F types. Roughly, ∀ (α ≥ σ) σ′ may be seen as
the collection of all System-F types τ ′[τ/α] where τ ′ and τ range in the interpretation of σ′ and σ, respectively.
This interpretation induces an instance relation on types. It can also be used to exhibit a translation of
expressions into a small extension of System F with local bindings. This shows that the additional expressive
power of MLF is theoretically small, although practically important as it modularity in an essential way. For
sake of comparison, one may also consider a weaker version, called3 Simple MLF, that has exactly the same
expressiveness as System F. Although it retains most theoretical properties of MLF, it is no longer an extension
of ML and, as a result, has little practical interest.

Unsurprisingly, full type inference for IMLF is undecidable. We thus also devise a Church’s style version of
MLF, called4 XMLF, with optional type annotations. For the purpose of type inference we enrich types with
rigid quantification ∀ (α⇒ σ) σ′, which, in contrast with flexible bindings, indicates that the polymorphic type
σ cannot be instantiated. Rigid quantification may at first be viewed as a notation for representing inner
polymorphism σ′[σ/α] within a form of type schemes ∀ (α⇒ σ) σ′. More importantly, it keeps track of sharing
by distinguishing between ∀ (α⇒σ, α′⇒σ) σ′ and ∀ (α⇒σ) σ′[α/α′]. This distinction is essential for the purpose
of type inference, as guessed polymorphism must be shared while explicit polymorphism need not be shared. For
instance, the identity function λ(x) x may be typed with ∀ (α⇒σ) α → α but not with ∀ (α⇒σ, α⇒σ′) α → α,
while λ(x : σ) x, with an explicit type annotation σ on the parameter, may be assigned both types—the latter
being more general.

The problem of type inference with partial type annotations is to find, for a program given with some type
annotations, the set of all types of the program that respect its type annotations. In MLF, solvable type inference
problems have principal solutions, which depends on the program type annotations, indeed—as illustrated by
the two versions of the identity function just above.

The richer types and let-polymorphism of MLF make it significantly superior to System F as a programming
language: programs admit more general types and require fewer type annotations. More precisely, removing
all type abstractions and type applications from a term of System F, leaving only type annotations on function
parameters produces a term that is well-typed in MLF and with a more general type than its original type in
System F—modulo a straightforward translation of types. Moreover, annotations on function parameters may
often be omitted. Precisely, only those that are used polymorphically need an annotation. In particular, ML
programs do not need type annotations at all.

Although type inference is not addressed in this paper, it has been shown in some previous work that it
can be reduced to a simple first-order unification algorithm for (a form of) second-order types, combined with
let-polymorphism a la ML [LBR03, LB04]. While worst-case complexity is at least as hard as in ML, i.e.
exponential-time complete, it seems to be quite tractable.

1Plain MLF was called Shallow MLF in [LBR03, LB04].
2The I stands for “implicit”.
3Simple MLF was called Restricted MLF in [LBR03, LB04].
4The X stands for “explicit”.

RR n
�

0123456789

6 Rémy & Le Botlan

The full picture. Of course, something must have been lost while going from Full MLF to MLF. That is,
local bindings cannot (in general) be split apart in two different pieces of code—a well-known limitation of

ML. Technically, MLF polymorphism is second-order, yet not first-class. As a consequence, the typing of local
bindings cannot be derived from the one of immediate applications and must be primitive.

To see this limitation, we shall proceed by comparison with ML. Consider the following program in ML:

let f = λ(x) x in (f 42, f ”foo”)
The polymorphic type ∀ (α) α → α is inferred for the identity function and bound to the identifier f, which
may then be used with at different type instances, namely int → int and string → string. On may consider
replacing the let-binding may also be replaced by an abstraction followed by an immediate application:

(λ (f) (f 42, f ”foo”)) (λ(x) x)
This expression is not typable in ML, as it would require the function parameter f to be assigned a polymorphic
type. In contrast, this program is typable in MLF, which features second order polymorphism. For that purpose,
one need only add an explicit type-annotation ∀ (α) α → α, which we write σid, on the parameter f . However,
this is only a simplistic example. For instance, consider a small variant of the previous program:

let f = choose id in (f succ, auto (f id))
The expression succ stands for the successor function of type int→ int. The expression choose stands for a func-
tion that takes two arguments and return either one, which could be defined as λ (x) λ (y) if true then x else y,
of polymorphic type ∀ (α) α → α→ α. The expression auto stands for a function that requires its argument to
be of type σid, which could be defined as λ(x) let y = 1 + x 1 in x x. In the program above, the call to auto
forces f id to have type σid. Hence, the two uses of f altogether require f to have both type σ1 → σid and type
(int→ int) → σ2 for some σ1 and σ2 while the definition of f can only have a type of the form σ3 → σ4 where
σ4 is an instance of both σ3 and σid. Unfortunately, the combination of all these constraints has no solution.
Hence, the program is not typable in System F.

Interestingly, it is typable in MLF, using the additional expressiveness of flexible quantification. Precisely,
the expression choose id can be typed with ∀ (α≥σid) α→ α, which intuitively stands for all types σ → σ where
σ is any instance of σid. The parameter f can then be used with two peculiar instances, namely (int→ int) →
(int→ int) and σid → σid.

Unfortunately, replacing the local-binding by an abstraction followed by an immediate application leads to
the program

(λ (f) (f succ, auto (f id))) (choose id)

which is not typable in MLF. The problem is that the λ-bound variable f cannot be assigned the required flexible
type ∀ (α≥σid) α→ α, as only let-bound variables may be assigned flexible types in (Plain) MLF. This restriction

is relaxed in Full MLF, which precisely allows flexible quantification at arbitrary positions in expressions and
types. Hence, the previous example is typable in Full MLF.

The main outcomes of staying within MLF are a more comprehensive presentation of the language and the
connections drawn with existing systems, using the semantics of types as a tool not only to vehicle strong
intuitions but also to recover the syntactic instance relation as a pull-back of set inclusion on semantic types.

The meta-theoretical study of MLFpresented hereafter steps on this semantic support and is thus significantly
simpler than and mostly independent from the previous study of the full version [LBR03, LB04].

The remaining gap between (Plain) MLF and Full MLF is a small step for the user but another big step for the
theoretician: the typing rules are exactly the same in both languages except that we unlock the restriction that
is imposed on the occurrences of flexible quantification in the plain version. Hopefully, the intuitions built for
the plain version should carry over to the full version. Unfortunately, our semantics of types cannot be easily
extended to cope with the full version.

The different versions of the language are summarized in Figure 1. On the left-hand side are well-known
languages with increasing polymorphism based on standard ∀-quantification. On the right-hand side are several
versions of MLF. As mentioned earlier, Simple MLF is exactly as expressive as System F and is obtained by
adding flexible quantification to System F, yet without any construction to exploit it. In this respect, it is to
(Plain) MLF what simply typed λ-calculus is to ML. Restated in the other direction, MLF is to Simple MLF what
ML is to simply typed λ-calculus, as both enable the underlying polymorphism on local-bindings in the very same
manner. Pursuing the analogy, Full MLF is to MLF what System F is to ML—it enables flexible polymorphism
on functions parameters and, more generally, to appear at arbitrary position in types: ∀-quantification is first-
class—but of different power—in both Full MLF and System F. By contrast, it can only be used at local bindings
in both (Plain) MLF and ML.

INRIA

MLF made simple. 7

Figure 1: The small hierarchy of MLF versions.

F Full MLF

F∧

ML (Plain) MLF

Flet

Simple Types Simple MLF

Standard ∀ (α) Flexible ∀ (α≥ σ)

+ let-∀

+ λ-∀

+ let-∀≥

+ λ-∀≥+ ∀≥

+let-∧

+λ-∧

The Systems F∧ (right of Figure 1) is System F with intersection types [Pie91], while Flet below is its

restriction to rank-1 intersection types (see
�
2.4). Equivalently, Flet is the closure of Simple MLFby let-expansion.

The arrows between Flet and F∧ and Simple MLF and Flet are materializing these inclusions. The inclusion of
MLF into Flet, which is proved below (Section

�
3.6), implies the correctness of MLF. The inclusion between

Full MLF and F∧ also holds but is not shown in this paper.
For completeness, two small remarks can also be made. First, MLF and Flet are two extensions of Simple MLF

with let-bindings that differ significantly in the way local-bindings are typed: In MLF, they can be typed with
Simple MLF types and generalized afterward, while in Flet, they must either use intersection types or be typed
after performing let-reduction. Second, the difference between let-∀ extension and let-∧ vanishes when replacing
Simple MLF with Simple Types; that is, ML is both the let-∀ extension and let-∧ extension of Simple Types.

We believe that a programming language should be based on the full rather than the plain version of MLF.
However, other extensions such as higher-order types may be easier to explore in the simple version. Hence, the
plain version is not only a pedagogical restriction, but also an interesting and solid point in the design space,
from which further investigations may be started.

Type inference is not addressed here, as it is a technically orthogonal issue and is not significantly easier
for Plain MLF than for Full MLF. The reader is referred to [LBR03, LB04] or independent study in subsequent

work [RY07]. As MLFwas designed with first-order type inference and let-polymorphism in mind, polymorphism
need never be guessed but only picked at local bindings and user-provided type annotations and propagated by
first-order unification. The difficulty, and in fact the whole design of MLF, lies in the specification of its type
system, and in particular, how every use of polymorphism that would imply guessing has been ruled out. So,
although we do not develop type inference here, all the key ingredients can already be found in the Church’s
style version XMLF.

Outline of the paper. While previous studies focused on Full XMLF, this work is limited to the study of
Plain MLF (Simple MLF is only introduced as a tool).

The paper is organized as follows. A gentle introduction to MLF exposing successively its Curry’s and
Church’s views, can be found in

�
2. The Curry’s view is explored in detailed, including discussions of type-

soundness and of expressiveness in
�
3. The Church’s view is studied formally in

�
4: although the Church’s view

has been designed especially for type inference, we focus on its fundamental properties here and leave out type
inference for reasons explained above. We also address expressiveness of the Church’s view by showing that it
subsumes both ML and System F. Related works are discussed in

�
5. Concluding remarks can be found in

�
6.

For clarity of exposition, most proofs have been moved to appendices, leaving inlined only those of key results
or of intrinsic interest.

RR n
�

0123456789

8 Rémy & Le Botlan

Notations. We write A # B to mean that the two sets A and B are disjoint. We write ē for a sequence of
elements e1, . . . en. We use standard notions of variables, terms, binders, and free variables. The simultaneous
capture-avoiding substitution of a sequence of variables ū by a sequence of objects ē′ in an object e is written
e[ē′/ū].

We use numerical labels in bold face such as (1) as a binding annotation in text or formulas and normal
font as (1) to refer to the corresponding binding occurrence. The scope of such labels is the current proof,
paragraph, or inner section, and is left implicit.

2 An intuitive introduction to MLF

This section is primarily an informal introduction to MLF. The only prerequisite is a good knowledge of ML and
some knowledge of System F. We first remind Curry’s style System F. However, we use a generic presentation G
so as to emphasize the strong relations between all type systems described here. In particular, we present both
Curry’s style and Church’s style versions of MLF as instances of G. We provide intuitions on the flexible and
rigid quantification that are at the heart of MLF, by means of examples. We also discuss—still informally—some
of the advantages of MLF compared to System F, besides type inference. This section may also be read back
after some technical knowledge of MLF has been acquired to deepen one’s own understanding.

2.1 A Generic Curry’s style second-order type system

Expressions are the pure λ-terms with optional local definitions. There BNF grammar is:

a ::= x | λ(x) a | a1 a2 |? let x = a in a′ Terms

That is, terms are variables x, functions λ(x) a where the parameter x is bound in a, applications a1 a2, and
optionally, local definitions let x = a in a′ where the variable x is bound (to a) in a′. Terms are always taken up
to α-equivalence, that is, up to (capture avoiding) renaming of bound variables. Local definitions let x = a in a′

can always be seen as a way of marking immediate applications (λ(x) a′) a. The intention is to type them in a
special way, much as in ML, which is often easier and more general than typing the function and the application
independently. In some cases, we may however exclude local definitions in order to either simplify the language,
when local definitions do not actually increase expressiveness, or intentionally restrict the language. In either
case, we may still use local-bindings in examples but only see them as syntactic sugar for immediate applications.

Types

Throughout this paper, we use several related but different notions of second-order types. For simplicity, we
use the same countable set of type variables ϑ for all notions of types and letters α, β, or γ to range over type
variables.

The generic presentation, summarized in the following BNF grammar, abstracts over the exact sets of
first-class types T and type schemes S, which are only partially specified.

τ ∈ T ::= α | τ → τ | . . . Types

|? ∀ (q) τ Polymorphic types (optionally)

σ ∈ S ::= τ | ∀ (q) σ | . . . Type schemes

q ∈ Q ::= α :: k Bindings

Types should at least contain type variables α and arrow types τ → τ . Depending on the particular instance,
types may also contain polymorphic types ∀ (q) τ where q is a binding of the form (α :: κ). For sake of generality,
quantified type variables are constrained by kinds k ∈ K where the set of kinds K is left unspecified for the
moment. We write dom(q) to refer to α. Type schemes σ extend types with outermost quantification, as in
ML. Still as in ML, types are first-class while type schemes will appear only in typing environments and typing
judgments.

In simple cases, such as ML or System F, K is a singleton {?}. We may then abbreviate α :: ? as α. The level
of generality allows both for multi-kinded type expressions, e.g. taking for K a set of atomic kinds and for more
complex forms of quantification, such as subtyping. Note, that K may contain type schemes as subexpressions
(see, for instance, types of F<: described below). We write ftv(k) for the free type variables of types expressions

INRIA

MLF made simple. 9

that appear in k. In ∀ (α :: k) σ, the ∀ quantifier binds α in σ but not in k. Free type variables are defined as
usual:

ftv(α) = {α} ftv(τ → τ ′) = ftv(τ) ∪ ftv(τ ′) ftv(∀ (α :: k) τ) = ftv(k) ∪ (ftv(τ) \ {α})

Indeed, this definition must be adjusted to the exact definition of T . We always consider types up to α-
conversion. The scope of ∀-quantification extends to the right as far as possible and → is right associative.
That is, ∀ (q) τ → τ → τ means ∀ (q) (τ → (τ → τ)). We may write ∀ (qq′) σ for ∀ (q) ∀ (q′) σ.

For example, ML types and type schemes are defined as follows:

τ ∈ TML ::= α | τ → τ ML types

σ ∈ SML ::= τ | ∀ (q) σ ML type schemes

q ∈ QML ::= α :: ? ML bindings

This is indeed the simplest notion of generic types, as all options in the definition have been turned off.
Types of System F, which we call F-types, may also be described by an instance of the generic grammar:

t ∈ TF ::= α | t→ t | ∀ (q) t F types

σ ∈ SF ::= t F type schemes

q ∈ QF ::= α :: ? F bindings

Quantifiers may appear in types directly and thus at arbitrary positions in F-types—as expected. In this case,
types are closed by outermost quantifications and coincide with type schemes. We use letter t rather than τ to
range over F-types, so as to distinguish them from any form of types.

Types of F<: are yet another example, that uses kinds in a more interesting way:

τ ∈ TF<:
::= α | τ → τ | ∀ (q) τ | > F<: types

σ ∈ SF<:
::= τ F<: type schemes

q ∈ QF<:
::= α <: τ F<: bindings

Types and type schemes still coincide, but contain an extra element > and kinds are now types. Bindings are
written α <: τ rather than α :: τ .

Prefixes

As type variables come with bounds, most operations on types will be defined under a prefix that assigns bounds
to their free type variables. A prefix Q is a sequence of bindings qi∈1..n

i . Its domain, written dom(Q) is the set
{α1, .., αn}. We write ∅ for the empty prefix. A prefix Q binds all type variables of dom(Q) (defined as the
union of the pointwise domains). However, they may themselves have free type variables, written ftv(Q) and
defined recursively as ftv(∅) = ∅ and ftv(Q, q) = ftv(Q) ∪ (ftv(q) \ dom(Q)). Hence, for a closed prefix qi∈1..n

i ,
dom(qi) may only intersect ftv(qj) for j > i.

We assume that the following well-formedness condition holds for all prefixes qi∈1..n
i : dom(qi)’s are pointwise

disjoint and dom(qi) may only intersect ftv(qj) for j > i.

Type instance

The type-instance relation is meant to capture the idea that some types are better than others, in the sense
that some types can be automatically deduced from those of which they are instances. This may be specified
directly using a specific typing rule. For example, an expression of System F that has a polymorphic type
∀ (α) σ may be applied to any type τ resulting in an expression of type σ[τ/α]. That instantiation may also be
left implicit, i.e. without markers such as type abstraction and type application in expressions, as in Curry’s
style type systems.

The instance relation for Curry’s style System F, written ≤F, is the binary relation composed of exactly all
pairs of the form ∀ (ᾱ) σ ≤F ∀ (β̄) σ[τ̄ /ᾱ]) such that none of the variables β̄ is free in ∀ (ᾱ) σ. The quantification
∀ (β̄) is used to generalize some of the type variables that might have been introduced in τ̄ .

The type instance relation ≤ML for ML may be defined similarly except that it applies to weaker sets of
types and type schemes. In fact, it is exactly the restriction of ≤F to ML type schemes.

RR n
�

0123456789

10 Rémy & Le Botlan

Figure 2: Typing rules for G(T ,S,Q,6).

Var

x : σ ∈ Γ

(Q) Γ ` x : σ

Fun

(Q) Γ, x : τ ` a : τ ′

(Q) Γ ` λ(x) a : τ → τ ′

App

(Q) Γ ` a1 : τ2 → τ1 (Q) Γ ` a2 : τ2

(Q) Γ ` a1 a2 : τ1

Inst

(Q) Γ ` a : σ (Q) σ 6 σ′

(Q) Γ ` a : σ′

Gen

(Q, q) Γ ` a : σ dom(q) /∈ ftv(Γ)

(Q) Γ ` a : ∀ (q) σ

Let

(Q) Γ ` a : σ (Q) Γ, x : σ ` a′ : σ′

(Q) Γ ` let x = a in a′ : σ′

We may abstract over the precise definition of the instance relation 6. For the sake of generality, we assume
that the instance relation is taken under some prefix Q. That is, 6 is a ternary relation (Q) σ 6 σ ′ between a
prefix Q and two type schemes σ and σ′. We say that 6 is a relation under prefix or also that 6 is a prefixed
relation. We use letter R to range over such relations. We may view (ternary) prefixed relations as binary
relations by treating the relation as a family of relations RQ indexed by a prefix Q. That is R is reflexive
(respectively symmetric, transitive, etc.) if relations RQ are reflexive (respectively symmetric, transitive, etc.)
for all prefixes Q. The symmetric of a prefixed relation R is the prefixed relation R−1 defined by taking (RQ)−1

for (R−1)Q. (We often write � for (≺)−1 when R is a symbol ≺.)
The System-F type-instance relation ≤F happens to be a particular case where the relation is actually

independent of the prefix (hence, treated as a binary relation on types).
Another type instance relation that generalizes ≤F in an interesting way is type-containment ≤η, introduced

by Mitchell in the late 80’s [Mit88]. As for ≤F, type containment is independent of prefixes and can thus also be
treated as a binary relation. It is congruent but propagates contra-variantly on the left-hand side of arrow types
(and covariantly everywhere else) and distributes ∀-quantifiers over arrows (see [Mit88]). Type containment
allows to capture deep instantiations, e.g. σid → σid ≤η σid → (σid → σid), as well as extrusion of quantifiers,
e.g. ∀ (α′) α′ → (∀ (α) α→ α) ≤η ∀ (α′, α) α′ → α→ α.

A truly ternary type-instance relation is the subtyping relation <: used in F<:. The prefix is used to
assign upper bounds to free type variables of the types being compared. As for type containment, this relation
propagates contra-variantly on the left-hand side of arrows.

Type equivalence

An instance relation 6 induces an equivalence under prefix, defined as the kernel of 6, i.e. 6 ∩ >.
In the case of F-types where the equivalence does not depend on prefixes, we actually treat types up to

equivalence, i.e. up to commutation of adjacent binders and removal of redundant binders (in addition to
α-conversion). That is, ∀ (αα′) α → α′, ∀ (αα′) α′ → α, and ∀ (αα′α′′) α′ → α are thus considered as equal in
System F.

The generic Curry’s style second-order type system

The generic Curry’s style second-order type system, written G(T ,S,Q,6), is parameterized by a set of types
T , type schemes S, bindings Q, and an instance relation 6 over type schemes.

Typing contexts are partial mappings from program variables to type schemes with finite domains. The
free type-variables of a typing context are the union of the free type variables of its codomain. We write ∅ the
mapping define nowhere and Γ, x : t the mapping that sends x to t and behaves as Γ everywhere else.

Typing judgments are of the form (Q) Γ ` a : σ where Γ is a typing context and Q a closed prefix that
binds all type variables that appear free in σ or Γ. Hence, we must have (ftv(σ)∪ ftv(Γ)) ⊆ dom(Q) (and ftv(Q)
empty).

Typing rules are given in Figure 2. Rules for variables, abstractions, and applications are standard, modulo
the explicit mention of the prefix. As terms are unannotated, instantiation and generalization are left implicit,
as in ML. Hence, rules Inst and Gen are not syntax-directed: in each case, the expression a appears identically

INRIA

MLF made simple. 11

in the premise and the conclusion. Rule Gen is standard and introduces polymorphism by discharging type
abstraction from the judgment hypothesis into the type of the expression. Rule Inst is a type-containment
rule that generalizes the more traditional polymorphism single-elimination step. This approach is preferable
in a Curry’s style type system as it moves instantiation from the typing derivation into a type-instance sub-
derivation.

Rule Let is used for typechecking local definitions in a special way. This rule is indeed inspired from ML
and reproduces the very same mechanism for typing local-derivations within System G. This improves over the
default rule that would consist in typechecking let x = a1 in a2 as the immediate application (λ(x) a2) a1.
In cases where types and type schemes coincide, e.g. as in System F, we could simply view local definition
as syntactic sugar for immediate applications. In other cases, Let is actually a key rule that truly empowers
System G.

If G1 is an instance of System G, we write G1 :: J to mean without ambiguity that judgment J refers to the
system G1. However, we usually leave the underlying type system implicit from context.

Hypotheses

In order for the type system to have sane properties, the instance relation 6 is assumed to satisfy some conditions.
Let extension over well-formed prefixes be the smallest order ⊇ that contains all pairs QqQ′ ⊇ QQ′ for any

prefixes Q and Q′. We say that a prefix Q2 extends a prefix Q1 whenever Q2 ⊇ Q1 holds. Intuitively, Q2 just
contains more bindings than Q1.

In the rest of the paper, we only consider instance relations that satisfy the following two axioms:

Renaming

(Q) σ1 6 σ2 φ renaming

(φ(Q)) φ(σ1) 6 φ(σ2)

Extra-bindings

Q ⊇ Q′ (Q′) σ1 6 σ2

(Q) σ1 6 σ2

Then, we can prove that typing judgments can be renamed and prefixes can be extended:

Lemma 2.1.1
i) Renaming of Typing Derivations: If (Q) Γ ` a : σ holds and φ is a renaming, then (φ(Q)) φ(Γ) `

a : φ(σ) holds.
ii) Prefix extension: If (Q) Γ ` a : σ holds and Q′ ⊇ Q, then (Q′) Γ ` a : σ holds.

Both proofs are by induction on the derivation and indeed relies on both axioms.

Particular instances of System G.

Curry’s style System F and ML are two by-design immediate instances of System G, namely G(TF, TF,QF,≤F)
and G(TML,SML,QML,≤ML). Notice that we slightly depart from the tradition to view ML as a subcase of
System F and instead view both as special cases of System G.

An interesting extension of System F, introduced by Mitchell and called Fη is the closure of System F by
η-contraction [Mit88]. It may be concisely described as G(TF, TF,QF,≤η). As noticed by Mitchell, Fη allows
more terms to have principal types. For instance, ∀ (α) α → α, say σid, is a principal type for the identity
function. Other correct types σid → σid or σid → σid → σid are ≤η-instance of σid. In fact, this is also the case
for any possible type of the identity. Hence, σid captures all types of the identity up to ≤η-instantiation. For
that reason Mitchell has suggested that Fη could be a better candidate than System F for type inference. Still,
many expressions do not have principal types in Fη . Somehow, Fη is simultaneously too expressive (we do not
really need contra-variance of type instance) and too weak for our needs (it lacks simultaneous instantiation
constraints).

The language F<: [Car93] can also be defined as the generic type system G(TF<:
,SF<:

,QF<:
, <:). Note

however, that this is a Curry’s style presentation while F<: is usually presented in Church’s style.

2.2 Curry’s style MLF.

Returning to our goal, we seek for a language that has at least the expressiveness of System F while enabling
global first-order type inference for partially annotated terms. Based and improving on previous experiences, we
wish to manipulate second-order types transparently, so as to avoid inelegant and verbose boxing and unboxing
operations and avoid annotations for all ML programs. Indeed, we seek for the fusion of ML-style implicit
polymorphism with explicit F-style polymorphism, rather than their juxtaposition, so that the best of each
approach is really transmitted to the other one.

RR n
�

0123456789

12 Rémy & Le Botlan

The inadequacy of F-types

Our goal implies that type instantiation must be left implicit, as in ML. Implicit instantiation is easy and rather
natural in ML. The main reason is that polymorphism is not first-class. That is, only type schemes can be
polymorphic. Types which may appear on the left of arrows cannot be polymorphic. Therefore, polymorphic
values must always be instantiated before being passed as arguments to functions. This is no more true
in System F—or any other language with first-class polymorphism, where a polymorphic value may also be
passed as argument. Moreover, implicit polymorphism, as in Curry’s style, brings an additional difficulty: the
application of a polymorphic function to a polymorphic value may become ambiguous, as a result of permitting
any polymorphic expression e of type τ to be treated as an expression of any type τ ′ that is an instance of τ .

For example, consider a value v of type τ and a function choose of type ∀ (α) α → α → α—which for
example could either be a polymorphic comparison returning the greatest of two arguments or just a function
randomly returning one of two arguments. What should be the type of choose v in System F? Should v be
kept as polymorphic as τ or instantiated to some type τ ′—but which one? Indeed, any type τ ′ → τ ′ is a
correct one for choose v as long as τ ′ is an instance of τ . In other words, the correct types for either e form a
set {τ ′ → τ ′, τ ≤ τ ′}5. Unfortunately, this set does not have a greatest lower bound that could be used as a
principal type to represent all others.

This very simple example raises a crucial issue whose solution is really the key to understanding MLF from
both an intuitive and formal perspective.

Using infinite intersection types
∧

{τ ′ → τ ′, τ ≤ τ ′}, as suggested by Leivant in another context [Lei90] is a
temptation. However, this is pernicious from a logical point of view. Moreover, this would ignore the underlying
structure of such sets, which are always instantiation upward closed.

Flexible quantification—the Key

Since intersection types are too powerful for our purposes, we introduce a new form of type scheme ∀ (α ≥ σ)
α → α to describe the set of all types τ → τ such that τ is an instance of σ. We may indeed interpret such type
schemes as sets of System-F types (

�
3.1). The instance relation ≤ between type schemes is then defined as set

inclusion on their interpretations. This makes ∀ (α ≥ σ′) α→ α an instance of ∀ (α ≥ σ) α → α whenever σ′ is
an instance of σ and thus really makes ∀ (α ≥ σ) α → α a principal type for the expression choose v where v
has principal type scheme σ. Type schemes contain types, but all type schemes are not types. Types may still
be polymorphic. For instance, σid shall remain a type in IMLF.

The binding (α≥σ) is called a flexible binding, as the bound σ may be soundly replaced by a type scheme σ ′

or a type τ that are instances of σ, producing an instance of the whole type. The occurrence of a σ in (α≥ σ)
is also called a flexible occurrence.

By contrast, we call rigid occurrences of a type below an arrow, as those of σid in σid → σid. Rigid occurrences
may not be instantiated, as this could be unsound. For example, the function λ(x) x x has type σid → σid,
where σid is ∀ (α) α → α, but does not have type τ ′ → τ nor even type τ ′ → τ ′ for arbitrary instances τ ′

of σid. In particular, it does not have type ∀ (α) (α → α) → (α → α). Although it would always be safe to
instantiate types on the right occurrence of arrow types, we do not do so. We may always use a type scheme
∀ (α≥ τ) τ ′ → α instead of of τ ′ → τ to explicitly allow instances of τ to be taken for α.

For the sake of uniformity, we introduce a special trivial bound ⊥ (read bottom) to mean any type. We may
then see ∀ (α) α→ α as syntactic sugar for ∀ (α≥⊥) α → α. Intuitively, ⊥ could itself be seen as representing
the set of all types and, indeed, ⊥ is equivalent to ∀ (α≥⊥) α in our setting. In this view, ∀ (α≥ σid) α→ α is
an instance of ∀ (α) α → α: since the bound σid of the former is an instance of the bound ⊥ of the latter, the
interpretation of the former contains the interpretation of the latter.

One may wonder what is the meaning of a type such as (∀ (α≥ τ) α → α) → τ ′ when a flexible type appears

under an arrow type. We just forbid such types—in Plain MLF. This is achieved by restricting the use of flexible
quantification to type schemes and only allow quantification with trivial bounds in types. More precisely, types
and type schemes for Curry’s style MLF (that is, IMLF) are defined as follows:

τ ∈ TI ::= α | τ → τ | ∀ (α≥⊥) τ IMLF types

σ ∈ SI ::= τ | ∀ (α≥ σ) σ | ⊥ IMLF types schemes

q ∈ QI ::= α≥ σ IMLF bindings

5We use “≤” rather than ≤F here, as we are about to extend the set of types and enlarge the type-instance relation accordingly.

INRIA

MLF made simple. 13

Type schemes that are not types are called proper type schemes; they may not appear under arrows. A
consequence of this stratification is that proper type schemes cannot be assigned to parameters of function.
Therefore, local definitions let x = a1 in a2 play a key role, exactly as in ML. Indeed, one may first assign a type
scheme σ to a1 and use σ as the type for the parameter x while typechecking a2. By contrast, this assignment
of type σ to variable x would be forbidden in the immediate application (λ(x) a2) a1 whenever σ is a proper
type scheme, as x would be λ-bound and its type would have to appear under the arrow type of the function
(see Rule Fun).

Our stepping stone is the instance G(TI,SI,QI,≤) of Generic Curry’s style System F with flexible quantifi-
cation and local definitions. This intermediate language is in Curry’s style and all type information is still left
implicit. For this reason, we also call it IMLF (read implicit MLF). Remarkably, the power of IMLF only lies
in its type, type scheme, and type-instance definitions and not in its typing rules, as it is just an instance of
System G.

2.3 Church’s style MLF.

In IMLF more expressions have principal types and also many expressions have more general types than in
System F. However, IMLF does not allow for type inference yet, even though it was designed with type inference
in mind, as all type information is still left implicit. We now devise XMLF—a Church’s style version of MLF

that enables type inference.

First-order inference of second-order types. . .

Our goal is to perform some first-order only type inference but in a language with second-order types, with the
two additional constraints to leave all ML programs unannotated and to reach all of System F programs via
suitable type annotations.

This has immediate consequences in terms of examples that we should or should not type. For example, we
should infer a type for the identity function id defined as λ(z) z, or the expression let x = id in x x, as both are
already typable in ML. Conversely, we should not type the auto-application λ(x) x x (1), unless we explicitly
annotate the parameter as in the expression λ(x : σid) x x which we further refer to as auto.

We claim to never guess second-order polymorphism. But what does guessing exactly mean? How can we
combine ML style implicit polymorphism with second-order explicit polymorphism? The difficulty may be seen
by comparing the expressions a1 defined as (λ(z) z) auto and a2 defined as (λ(x) x x) id. Should we reject
both, as their function parameters carry values of polymorphic types—σid → σid for z in a1 and σid for x in
a2? Indeed, a1 may be typed as (λ(z : σid → σid) z) auto. Here, it seems that σid → σid must be guessed as
the type of the parameter z. However, one may also type λ(z) z in a1 as α → α, generalize the resulting
type to ∀ (α) α → α, and finally instantiate it to σid → σid, which may be more concisely summarized by its
fully annotated form (Λα. λ(z : α) α) [σid] auto in Church’s style System F. In this expression, σid → σid need
not be guessed as the type of the parameter z, but as the type for specializing the universal variable α to the
polymorphic type σid of λ(z) z. Fortunately, we may—and must, as argued in

�
2.2—devise MLF to fully infer

type abstractions and type applications (and never guess polymorphic types for function parameters). Thus we
accept a1 (2). Conversely, we reject a2 for the very same reason we rejected λ(x) x x (1). Actually, our system
will be compositional, hence any closed subterm of a well-typed term must also be well-typed. (Thus a2, which
contains the ill-typed closed subterm λ(x) x x will also be ill-typed.)

Of course, we distinguish a function parameter whose type is inferred from one whose type is given. We
do so much as in ML, by distinguishing between types τ (also called monotypes), which do not contain any
quantifier and can be inferred, and proper type schemes σ, also called polytypes for emphasis. The parameters
z and x of a1 and a2 may only be assigned monotypes. This justifies the rejection of a2, as λ(x) x x may not be
typed when x is a monotype. Conversely, a1 may be typed by assigning z a monotype, as explained above (2).
By contrast with a2, the parameter x of λ(x : σid) x x may be assigned the polytype σid, since it is explicitly
annotated.

Unfortunately, this distinction is not sufficiently permissive. Consider the expression a3 defined as λ(z)
(z auto), which somehow lies between a1 and a2. The parameter z of a3 must have a polymorphic type while
typechecking the body of the function, exactly as in the expression a2. However, this polymorphism is not
used in the body of a3 but only carried through. Wishfully, it should thus also be accepted. As another hint,
remark that a3 is the β-reduction of (λ(y) λ(z) z y) auto, which we refer to as a4. Arguing as for a1, it is
clear than a4 must be typable. As the β-expanded form is typable, we may expect the β-reduced form to also
be—subject reduction will hold for terms without type-annotations. As a cross-checking final example, should

RR n
�

0123456789

14 Rémy & Le Botlan

the expression a5 defined as λ(z) auto z be accepted? We may reason by analogy with the previous example
and either check that z is not used polymorphically in the body of the function or check that its β-expansion
(λ(x) λ(y) x y) auto is typable.

It is actually a remarkable and essential property of MLF that whenever a1 a2 is typable, then apply a1 a2

also is, with the same type, where indeed apply stands for the expression λ(x) λ(y) x y—with no type annotation
on its parameters. As a remarkable and important corollary, if a function a is typable with some type σ, then
so is its η-expanded form λ(z) a z. In practice, these too properties will ensures that well-typed programs will
be stable by some common small program transformations.

Abstracting second-order polymorphism into first-order types

To solve this last series of examples, our solution is very much inspired by boxed polymorphism, which allows
second-order polymorphism to hang under monotypes [GR99]. We retain the very same idea of boxing polymor-
phism, but make boxes virtual, by abstracting (instead of boxing) second-order polymorphism as a first-order
type variable. For instance, abstracting σid as α let the polymorphic type σid → σid be represented by the
monotype α → α.

Technically, we keep abstractions in the prefix Q that appears in front of typing judgments (Q) Γ ` a : σ,
using a new form of bindings (α⇒ σ), which should be read “α abstracts σ.” Resuming with the typechecking
of a5, we may write (α⇒ σid) z : α ` auto z : α (3). The hypothesis that α abstracts σid allows to abstract
the type σid → σid of auto as α → α. We may then assign type α → α to auto and type α to the application
of auto z when z is assumed of type α. Note that abstraction is an asymmetric relation and it is not the case
that σid abstracts α. In particular, (α⇒ σ) z : α ` z : σid does not hold. This would reveal hidden information
and it is not allowed implicitly, but only explicitly via a type annotation. Discharging the assumption on z in
the judgment (3) (like in Rule Fun), leads to (α⇒ σid) ` a4 : α → α. Finally discharging the prefix (like in
Rule Gen), we may conclude ` a4 : ∀ (α⇒ σid) α → α. This can be read as “a4 has type α → α where α is
σid.” Notice both the analogy and the difference with flexible bounds. Here, the bound of α means exactly σid

and cannot be instantiated. We call (α⇒ σid) a rigid binding and the position of σid a rigid occurrence.
Although σid is the only possible meaning for α, it cannot be substituted inside α → α. That is, σ1 defined

as ∀ (α ⇒ σid) α → α is not equivalent to σid → σid, nor to ∀ (α ⇒ σid, α
′ ⇒ σid) α → α′, which we refer

to as σ2. Maybe surprisingly, σ1 is more abstract than σ2, which we write σ2 @− σ1. To see this, one may
read the latter as ∀ (α⇒ σid) (∀ (α′ ⇒ σid) α → α′) and abstract σid as α in the binding (α′ ⇒ σid), leading to
∀ (α⇒σid) (∀ (α′⇒α) α→ α′), which is equivalent to ∀ (α⇒σid) α → α. The later step holds because monotype
bounds, which have no other instances but themselves, are “transparent” and can always be substituted for the
variable they bound.

Polytype bounds may also intuitively be expanded. For instance, ∀ (α⇒ σid, α
′ ⇒ σid) β → α′ intuitively

stands for σid → σid. However, this is not quite correct as in general the position of quantifiers would be
ambiguous. For example σid → σid → σid could be read either as ∀ (α⇒ σid, α

′ ⇒ σid, α
′′ ⇒ σid) α → α′ → α′′

or ∀ (α⇒ σid, α
′ ⇒ σid → σid) α → α′ where σid → σid need in turn to be expanded. However, both are not

considered equivalent in IMLF. Thus, we simply forbid polytypes to appear under arrow types, and instead force
them to be abstracted as variables in auxiliary bindings. Consistently, and by contrast with IMLF, we restrict
types to monotypes and force all polytypes to be type type schemes.

Type annotations are used to reveal abstractions. For instance, λ(x) (x : σid) x, is typed as follows: the
annotation (x : σid) requires that x has some type α where α is an abstraction of σid and reveals σid as the
type of the annotated expression. We thus have (α ⇒ σid) x : α ` (x : σid) : σid. Once the type σid has
been revealed, it may be instantiated, e.g. into α → α. Therefore, we have (α⇒ σid) x : α ` (x : σid) x : α
and, finally, λ(x) (x : σid) x : ∀ (α⇒ σid) α → α. There is still one subtlety when typechecking the simpler
program λ(x) (x : σid). From the intermediate step (α ⇒ σid) x : α ` (x : σid) : σid we may not conclude
(α ⇒ σid) ` (x : σid) : α → σid as α → σid would be an ill-formed type scheme. Moreover, this would
just be one solution among many others, as σid could also have been instantiated. The solution is to use a
flexible binding (α′ ≥ σid) to represent any type of x through the type variable α′ leading to the judgment
(α ⇒ σid, α

′ ≥ σid) ` (x : σid) : α′. We may then discharge both the context and the prefix and conclude
that λ(x : σid) x has type ∀ (α⇒ σid, α

′ ≥ σid) α → α′. This captures all possible types—given the annotation.
Retrospectively, we may see the annotation (a : σid) as the application (: σid) a, where the notation (: σ)
stands for the expression λ(x) (x : σ) and may be provided as a (collection of) primitive(s) with type scheme
∀ (α⇒ σ, α′ ≥ σ) α→ α′.

INRIA

MLF made simple. 15

Fitting it together into XMLF

The type system XMLF we have devised so far does not fit directly into the Curry’s style System G that does
not permit any annotations on source terms. As type abstractions and type instantiation remain implicit in
XMLF, the only new construction is, for the moment, a new form of abstraction λ(x : σ) a where the parameter
x is annotated with a type scheme σ. We shall see below how this construction can be explained in terms of a
more atomic simple term annotation.

In fact, we restrict the bounds of rigid bindings to a subset of type schemes, range over by letter ρ, that
correspond to System-F types as defined by the following grammar.

τ ∈ TX ::= α | τ → τ XMLF types

σ ∈ SX ::= τ | ∀ (q) σ | ⊥ XMLF type schemes

q ∈ QX ::= α≥ σ | α⇒ ρ XMLF bindings

ρ ∈ RX ::= τ | ∀ (α≥⊥) ρ | ∀ (α⇒ ρ) ρ F-like type schemes

As a consequence, non-trivial flexible bounds may not appear under a rigid bound. This is only to keep XMLF

in exact correspondence with IMLF.
Of course, we must adapt the instance relation ≤ of IMLF to an instance relation v on XMLF type schemes.

In fact, v is recursively defined together with a subrelation @− that captures the notion of type abstraction
mentioned above, which is the essential difference between IMLF and XMLF. There is some degree of liberty in
the definition of these two relations, which is discussed at the end of this section, while the precise definition
can be found in

�
4.

From a typing point of view, we may hide type annotations into a collection of primitives (: ρ) as suggested
above and see λ(x : ρ) a as syntactic sugar for λ(x) let x = (x : ρ) in a. This encoding will be explained in detail
below. In short, it works as follows. On the one hand, the annotation on (: ρ) requests its argument x to have
type α where α abstracts the type scheme ρ. Thus the λ-bound variable x has type α, which is a monotype as
requested. On the other hand, the annotation returns a value of (concrete) type σ as opposed to the abstract
type α—we may say that it reveals the concrete type σ of α. Hence, the let-bound variable x has type σ and
may be used within a with different instances. Of course, we may derive the following typing rule for annotated
abstractions:

Fun’

(Q) Γ, x : ρ ` a : τ

(Q) Γ ` λ(x : ρ) a : ∀ (α⇒ ρ) α→ τ

Following this approach, XMLF remains an instance of System G—at least from a typechecking viewpoint.
However, this solution requires ρ to appear at a rigid occurrence in the type ∀ (α⇒ ρ) ∀ (α′ ≥ ρ) α → α′,

which presents ρ to be an arbitrary type schemes σ. While this restriction is not a problem in practice, it does
not allow to reach all of IMLF programs.

Hence, we rather give a direct account of type annotations, moving slightly out of System G, and introduce
the following typing rule:

Annot

(Q) Γ ` a : σ′ (Q) σ′
A− σ

(Q) Γ ` (a : σ) : σ

This allows all type schemes to be explicitly coerced along the inverse of type abstraction. There is still no
surprise in the typing rules of XMLF: the power of XMLF lies in its types, the enforcement of a clear separation
between types scheme and types, and the decomposition of the instance relation into the reversible, explicit
abstraction relation and another irreversible, implicit subrelation.

The semantics of XMLF is given by translation into IMLF both dropping type annotations and inlining rigid
bindings.

Design space

While ≤ is determined by the encoding of its types into sets of System-F types (given in
�
3.2), the relation v is

only a subrelation of ≤. In fact, the difference cannot be explained without introducing the abstraction relation
@−, which is itself a subrelation of v. Abstraction is implicitly used to abstract (forget) type information, i.e.
to replace a concrete type scheme σ by a type variable α that abstracts σ. Conversely, type annotations are

RR n
�

0123456789

16 Rémy & Le Botlan

explicitly used to reveal (recover) the concrete type scheme that a variable abstracts over. Hence, we may also

walk along the relation A− (the symmetric of @−) in XMLF but via explicitly annotations.

In order for XMLF and IMLF to have the same expressiveness, the relations v and A− must be closely related
to ≤. Precisely, ≤ and (v ∪ A−)∗ must be equal. There remains some apparent degree of liberty in the choice of
v. However, the larger v is, the smaller A− need to be, i.e. the fewer explicitly annotations are requested, but
simultaneously the harder type inference is. Indeed, type inference would be undecidable if v were ≤.

So, there is actually little choice for the definition of v, except changing the relation ≤ itself—or considering
arbitrary special cases. Interestingly, while Full MLF uses a richer set of types, the restriction of its type instance
relation to MLF types is exactly the type instance relation of MLF Hence, the increase confidence that we bring
to the definition of v and @− for the plain system also increases our confidence in their definition for the full
system.

2.4 Flet, the closure of System F with let-contraction

In this section, we introduce a new type system called Flet that extends System F with let-bindings a la ML.
This language lies between System F and MLF and is used below as a mediator to relate them.

ML extends simple types with type schemes, which can be used to factor out all the simple types of an
expression, and a specific rule for typechecking local bindings that takes advantage of type schemes. Namely,
while typechecking let x = a in a′, the locally bound variables x may be assigned a type scheme ∀ (α) τ rather
than a simple type τ , which amounts to assigning x the whole collection of simple types τ [τ ′/α] where τ ′ ranges
over all types. This is the essence of the ML type system. Its simplicity lies in the fact that type schemes may
not be assigned to function parameters, hence, ML retains nearly the simplicity of simple types. Actually, it is
well-known that an expression is typable in ML if (and only if) it is typable with simple types after reduction
of all its local-bindings, i.e. the replacement of let x = a in a′ by a′[a/x] in any context. This reduction always
terminates but the size of the resulting expression may be exponentially larger than its source. Hence, this
operational view of ML is inefficient. It is not very modular either. Thus, it is never used in practice. However,
it provides ML with a very simple specification: ML is the closure of simple types by let-expansion6.

Unfortunately, the empowering effect of the Let-Gen typing rule for local bindings becomes inoperative in
(the generic presentation of) System F. That is, it does not allow more programs to be well-typed than by seeing
local-bindings let x = a1 in a2 an immediate applications (λ(x) a2) a1. This is not a weakness of System F. It
simply follows from the fact that types are first-class (or, in our generic setting, that type schemes and types
are identical).

One may then consider the alternative definition of ML—the closure of simple types by let-expansion—and
apply it to System F. More precisely, we define Flet as the smallest superset of System F that contains all terms
let x = a1 in a2 such that both a1 and a2[a1/x] are in Flet. The requirement that a1 also be in Flet is to reject
terms such as let x = a1 in a2 where x would not appear in a2 and a1 could be any expression.

This definition is equivalent to adding the following typing rule to System F:

Let-Expand

(Q) Γ ` a1 : σ1 (Q) Γ ` a2[a1/x] : σ

(Q) Γ ` let x = a1 in a2 : σ

As let-reduction may duplicate let-redexes but not create new ones, it must terminate, as implied by the
Levy’s finite development theorem for the λ calculus [Bar84]. That is, a term of Flet may always be let-reduced
to a term of System F.

As for ML, this operational specification is not quite satisfactory. Fortunately, there is also a more direct
specification based on a very restricted use of intersection types, where intersections are only allowed in types
schemes. Consider the following instance of generic types:

τ ∈ TFlet ::= α | τ → τ | ∀ (q) τ Flet types

σ ∈ SFlet ::= τ | ∀ (q) τ | σ ∧ σ Flet type schemes

q ∈ QFlet ::= α :: ? Flet bindings

and the instance relation 6Flet defined as the smallest transitive relation that treats ∧ as associative, commu-
tative, contains ≤F and all pairs σ ∧ σ′ 6Flet σ. Then, Flet may be equivalently defined by the generic system

6Formally, this is only true if we restrict local bindings let x = a in a
′ to cases where x appears at most once in a

′, or if we define
the closure more precisely, as done for the language Flet below.

INRIA

MLF made simple. 17

G(TFlet ,SFlet ,QFlet ,6) extended with the following tying rule:

Inter

(Q) Γ ` a : σ1 (Q) Γ ` a : σ2

(Q) Γ ` a : σ1 ∧ σ2

This system is a particular case of the extension of System F with intersection types studied by Pierce [Pie91]7,
which we refer to as F∧. The language Flet is significantly weaker—but simpler—than F∧ . However, to the best
of our knowledge it has not be considered on its own.

Our main interest in Flet is that although it has a very simple and intuitive specification and is only a small
extension to System F, it is already a superset of MLF as we shall see in the next section.

Type soundness of Flet

Type soundness relates the static semantics of programs, i.e. well-typedness, to their dynamic semantics, i.e.
evaluation. In pure lambda-calculus where all values are functions, evaluation may never go wrong except by
looping. Type soundness of System F ensures that well-typed programs are strongly normalizable.

However, most real languages allow loops or arbitrary recursion and contain interesting programs that
may not terminate. In this setting, well-typedness cannot ensure termination any longer. Simultaneously,
real languages also introduce non-functional values, and therefore other sources of errors such as applying a
non-functional value to some argument. Well-typedness must then prevent such errors from happening.

In this paper we do not define the dynamic semantics of expressions. We do not address type soundness
directly, but only indirectly by showing that well-typed expression are also well-typed in Flet.

Type soundness of Flet follows from type soundness of F∧. To the best of our knowledge, the type soundness
of F∧, which is folklore knowledge has never been published. While proving type soundness for Flet directly
should not raise any difficulty, this is, by lack of space, out of the scope of this paper.

3 IMLF, Curry’s style MLF

In this section we study IMLF, that is G(TI,SI,QI,≤) and, in particular, the type-instance relation ≤ introduced

in
�
2.2. For that purpose, we define an interpretation of IMLF types as sets of F types that induces a semantic

definition of the type instance (
�
3.2). An equivalent but syntactic definition of type instance is given next (

�
3.3).

We also provide an encoding of IMLF terms into terms of Flet (
�
3.6 and

�
3.5), which reduces type safety of IMLF

to that of Flet. The expressiveness and modularity of IMLF are discussed in
�
3.7.

3.1 Types and Prefixes

Flexible bindings are the main novelty of IMLF. So as to be self-contained, we remind their definition here:

τ ∈ TI ::= α | τ → τ | ∀ (α≥⊥) τ Types

σ ∈ SI ::= τ | ∀ (α ≥ σ) σ | ⊥ Type Schemes

q ∈ QI ::= α≥ σ Bindings

The arrow is a type constructor. For simplification, it is the only type constructor but there is no difficulty in
generalizing types with other type constructors. The types τ1 and τ2 in τ1 → τ2 are called type arguments.

Type schemes are used as bound for variables, which limits the way those variables may be instantiated.
The special type scheme ⊥ (read bottom) is the most general bound, also called the trivial bound. A variable
with a trivial bound is said to be unconstrained. We define ∀ (α) σ as syntactic sugar for ∀ (α≥⊥) σ.

We recall that free (type) variables are defined in Section 2.1 (page 9).

Monotypes. A type is monomorphic if and only if it is a type variable or an arrow type (that is, of the form
τ1 → τ2 for some types τ1 and τ2). The set of monomorphic types is written M. Intuitively, monomorphic
types have no other instance but themselves (up to equivalence), i.e., if τ is in M and τ is an instance of τ ′

then τ ′ is an instance of τ—and so equivalent to τ .

7The presentation of [Pie91] is in Church’s style, but this is irrelevant here.

RR n
�

0123456789

18 Rémy & Le Botlan

Polytypes. The set TI of IMLF types contains only types with trivial bounds ⊥. Notice that ⊥ is not a type
but a type scheme. However, ∀ (α) α, which as we shall see shortly, is equivalent to ⊥, is a type.

Types of TI can be mapped to TF in a trivial way, just by exchanging the trivial bound with the unique kind
?. If τ is in TI, we write dτe for the counter-part of τ in TF.

F-substitutions. We call F-substitutions and write θ for idempotent substitutions mapping type variables to
F-types.

Renamings. A renaming is a finite bijective mapping from type variables to type variables. As usual, dom(φ)
is {α | φ(α) 6= α}. Note that if φ is a renaming, then dom(φ) and codom(φ) are equal and φ is a permutation
of its domain. We extend renamings to bindings, taking (φ(α) ≥ φ(σ)) for φ(α ≥ σ) and to prefixes, taking
(φ(qi))

i∈I for φ(qi
i∈I).

Notice that if dom(φ) is disjoint from dom(Q), then dom(φ(Q)) is equal to dom(Q) but φ(Q) is not, in
general, equal to Q.

3.2 Interpretation of types and prefixes

Intuitively, the type scheme ∀ (α ≥ σ) σ′ is meant to represent all types σ′ where α is any instance of σ. We
formalize this intuition by giving a formal interpretation of types and type schemes as sets of F-types. If S is a
set of F-types, we write ∀ (α) S for the set {∀ (α) t | t ∈ S}.

Definition 3.2.1 (Semantics of types) The semantics of a type τ , written {{τ}} is the instance closure of its
translation in System F, i.e. {t ∈ TF | dτe ≤F t}. The semantics of type schemes, written {{σ}}, is recursively
defined by t ∈ {{σ}} if and only if σ is ⊥ or of the form ∀ (α ≥ σ′) σ′′ and t is of the form ∀ (β̄) t′′[t′/α] with
β̄ # ftv(σ), t′ ∈ {{σ′}}, and t′′ ∈ {{σ′′}}.

Note that the semantics of ⊥ and ∀ (α) α are both equal to TF, as suggested earlier, although the former is only
a type scheme and not a type. A type of the form ∀ (α) τ can be seen both as a type and as a type scheme. In
the following lemma, we check that both views lead to the same interpretation.

Lemma 3.2.2 (Consistency) For any type τ , the semantics of τ seen as a type and the semantics of τ seen
as a type scheme are equal.

Example 3.1 The interpretation of the polymorphic type σid, defined as ∀ (α) α → α, is the set composed of
all types of the form ∀ (ᾱ) t→ t. In turn, the interpretation of ∀ (α≥σid) α → α is the set composed of all types
of the form ∀ (β̄) (∀ (ᾱ) t → t) → (∀ (ᾱ) t → t). Although both sides of the arrow may vary, they must do so
in sync and always remain equal. Note also that ∀ (ᾱ) t → t is not necessarily closed, hence the quantification
over variables β̄ in front.

The instance relation of System F can be pulled back into an instance relation in IMLF. However, as type
instance is defined under prefixes, we must first give a meaning to prefixes.

In a typing judgment, a prefix is meant to capture the possible types that may be substituted for the
variables in the domain of the prefix. Thus, the interpretation of a prefix is a set of substitutions. As usual,
the composition operator is written ◦.

Definition 3.2.3 (Semantics of prefixes) The semantics of a prefix Q of the form (αi ≥ σi)
ı∈1..n, written

{{Q}} is the set of all F-substitutions of the form ◦i∈1..n(αi 7→ ti) where ti ∈ {{σi}} for i in 1..n. As a particular
case, {{∅}} is the singleton composed of the identity function.

In fact, we may restrict to certain decompositions that are canonical.

Definition 3.2.4 A composition ◦i∈1..nθi of an idempotent substitution is canonical if all θi’s are idempotent
and have disjoint domains.

Notice, that given the idempotence of individual substitutions and disjointness of their domains, the idempotence
of the composition is then equivalent to the property codom(θi) # dom(θj) for all i < j.

Lemma 3.2.5 Any member of a prefix of the form {{Qi∈1..n
i }} has a canonical decomposition ◦i∈1..nθi with

θi ∈ {{Qi}}.

INRIA

MLF made simple. 19

Figure 3: Congruence.

Imlf-All-Left

(Q) σ1 R σ2

(Q) ∀ (α ≥ σ1) σ R ∀ (α ≥ σ2) σ

Imlf-All-Right

(Q,α≥ σ) σ1 R σ2

(Q) ∀ (α≥ σ) σ1 R ∀ (α≥ σ) σ2

Imlf-Arrow

(Q) τ1 R τ2 (Q) τ ′1 R τ ′2
(Q) τ1 → τ ′1 R τ2 → τ ′2

Figure 4: Rules for syntactic type equivalence @−A−.

FE-Comm

α1 /∈ ftv(σ2) α2 /∈ ftv(σ1)

(Q) ∀ (α1 ≥ σ1) ∀ (α2 ≥ σ2) σ @−A− ∀ (α2 ≥ σ2) ∀ (α1 ≥ σ1) σ

FE-Free

α /∈ ftv(σ)

(Q) ∀ (α≥ σ′) σ @−A− σ

FE-Mono

(α≥ τ) ∈ Q τ ∈ M

(Q) σ @−A− σ[τ/α]

FE-Var

(Q) ∀ (α≥ σ) α @−A− σ

Canonical decompositions are interesting because any grouping (by associativity) is also canonical. Moreover,
they enjoy the following property:

Lemma 3.2.6 If θ1 ◦ θ2 is a canonical decomposition of an idempotent substitution θ, then θ2 ◦ θ = θ ◦ θ1 = θ.

Definition 3.2.7 (Type Instance) The instance relation ≤ in IMLF is defined by (Q) σ1 ≤ σ2 if for all
θ ∈ {{Q}}, we have θ{{σ1}} ⊇ θ{{σ2}}. The equivalence relation @−A− is the kernel of ≤.

Notice that type instance is transitive, and as a result, @−A− is simply (≤) ∩ (≥). Expanding the definition, we
have (Q) σ1 @−A− σ2 if and only if for all θ ∈ {{Q}}, we have θ{{σ1}} = θ{{σ2}}. We simply write σ1 @−A− σ2, when
(∅) σ1 @−A− σ2.

If dτ1e and dτ2e are equal, their semantics {{τ1}} and {{τ1}} are also equal, hence τ1 @−A− τ2. (The only reason
why τ1 and τ2 may not coincide exactly is that F-types are taken modulo equivalence.) We may thus invert
the definition d·e into a function from TF to TI. For any type t in TF, we write btc the type τ of TI defined up
to equivalence such that t is dτe. We extend the b·c-mapping point-wise to F-substitutions, writing bθc for the
substitution α 7→ bθ(α)c.

Type instance may also be defined on prefixes as follows.

Definition 3.2.8 (Prefix instance) We say that Q1 is an instance of Q2 and we write Q1 ≤ Q2 if {{Q1}} ⊇
{{Q2}}.

3.3 Syntactic versions of instance and equivalence

The semantic definition of type instance is not constructive, as it involves quantification over infinite sets. A
first step towards an algorithm for checking type instance is to provide an equivalent but syntactic definition of
type instance.

While semantic type equivalence is defined after type instance, as its kernel, it is simple (and more intuitive)
to define syntactic type equivalence first, and syntactic type instance as a larger relation containing type
equivalence.

A judgment for a prefixed relation R is a triple written (Q) σ1 R σ2. It is closed if free type variables of σ1

and σ2 are included in dom(Q) and Q is closed. We also say that the prefix Q is suitable for the judgment.

Definition 3.3.1 (Congruence) A relation R is ≥-congruent when it satisfies both Imlf-All-Left and
Imlf-All-Right (Figure 3). It is congruent if it is ≥-congruent and moreover satisfies Imlf-Arrow (Figure 3).

Lemma 3.3.2 Type instance is ≥-congruent. Type equivalence is congruent.

RR n
�

0123456789

20 Rémy & Le Botlan

Definition 3.3.3 (Syntactic type equivalence) Syntactic type equivalence is the smallest reflexive, transi-
tive, symmetric, and congruent relation on closed judgments satisfying the rules of Figure 4.

Rule FE-Comm let independent binders commute; Rule FE-Free allows for removal of useless bindings;
Rule FE-Mono allows for inlining of monomorphic bindings (monomorphic types are defined on page 17).
Rule FE-Var identifies ∀ (α ≥ σ) α and σ, i.e. it states that a (possibly polymorphic) type σ stands for all of
its instances.

Interestingly, Rule FE-Mono allows for reification of a substitution [τ/α] as a prefix (α≥ τ). Actually, any
substitution can be represented as a prefix. This is a key technical point that is used in the presentation of type
inference and unification, where the solution of a unification problem is not a substitution but rather a prefix,
which is more general (see [LBR03] or [LB04, Chapter 3] for more details).

Rules FE-Mono, FE-Free and FE-Var may be oriented from left to right and used as rewriting rules
to transform every type scheme σ into a normal form, up to commutation of binders (see [LBR03] or [LB04,
Chapter 1] for details).

Syntactic and semantic definitions of type equivalence coincide, as shown by Theorem 1 and Conjecture 3.3.12
below. Although these results will follow from similar results for type instance, they are easier to prove in the
case of type equivalence, hence we prove them independently. We first establish a few lemmas.

Lemma 3.3.4 If α /∈ ftv(σ), then ∀ (α) {{σ}} ⊆ {{σ}} holds.

Lemma 3.3.5 For any F-substitution θ and type scheme σ, we have θ({{σ}}) ⊆ {{bθc(σ)}}.

The converse inclusion only holds under some hypotheses on the occurrences of free type variables of σ that are
in dom(θ), which must not be exposed.

Definition 3.3.6 (Exposed type variables) Exposed type variables in a type scheme σ are free type vari-
ables etv(σ) that are reachable from the root of σ without crossing an arrow, recursively defined as follows:

etv(α) = α etv(τ → τ) = ∅ etv(⊥) = ∅ etv(∀ (α ≥ σ) σ′) = (etv(σ′) \ {α}) ∪ etv(σ)

For example α is exposed in ∀ (β ≥ α) σ, but not in α→ ∀ (β) α.

Lemma 3.3.7 If α is not exposed in σ, then etv(σ) = etv(σ[τ/α]) holds for any τ .

Our interest is more in type variables that are not exposed, as substituting them is sound.

Lemma 3.3.8 Let σ be a type scheme and θ a substitution [t/α] such that either t is monomorphic or α is not
exposed in σ. If t′ ∈ {{bθc(σ)}} and α /∈ ftv(t′), then t′ ∈ θ({{σ}}).

This lemma is stated in the particular case of a singleton substitution. This is only to simplify its presentation.
Similarly, the condition α /∈ ftv(t′) may always be satisfied by appropriate renaming of σ and θ. On the opposite,
the two conditions on θ are more important and prevent cases where the lemma would not hold.

(Proof p. 46)

Theorem 1 (Soundness of syntactic equivalence) The type equivalence relation satisfies all rules of Fig-
ure 4.

Proof: Each rule is considered separately.
◦ Case FE-Comm: Let σa be ∀ (α1 ≥σ1) ∀ (α2 ≥σ2) σ and σb be ∀ (α2 ≥σ2) ∀ (α1 ≥σ1) σ, with α1 /∈ ftv(σ2) (1)

and α2 /∈ ftv(σ1) (2). Our goal is to show {{σa}} = {{σb}}, which implies the expected result θ({{σa}}) = θ({{σb}}) for
all θ ∈ {{Q}}. By symmetry, it suffices to show {{σa}} ⊆ {{σb}}. Let ta be an F-type in {{σa}}. We show that ta is also
in {{σb}} (3). By Definition 3.2.1, ta is of the form ∀ (β̄) t′[t1/α1] (4) with β̄ # ftv(σa), t′ ∈ {{∀ (α2 ≥ σ2) σ}}, and
t1 ∈ {{σ1}}. By Definition 3.2.1, t′ is in turn of the form ∀ (β̄′) t[t2/α2] (5) with β̄′ # ftv(∀ (α2≥σ2) σ), t ∈ {{σ}}, and
t2 ∈ {{σ2}} (6). By α-conversion, we may assume, w.l.o.g., α2 /∈ ftv(t1)∪{α1} (7) and β̄′ # ftv(t1)∪{α1}∪ ftv(σ1).
By inlining (5) in (4), it appears that ta is equal to ∀ (β̄β̄′) t[t2/α2][t1/α1]. By (7), we may commute the two
substitutions in ta and obtain ∀ (β̄β̄′) t[t1/α1][t2[t1/α1]/α2]. Let t′2 be t2[t1/α1]. It follows from (6) that t′2 belongs
to {{σ2}}[t1/α1], which is included in {{σ2[t1/α1]}} by Lemma 3.3.5. The latter equals {{σ2}}, given (1). In summary,
ta is equal to ∀ (β̄β̄′) t[t1/α1][t

′

2/α2] with t′2 ∈ {{σ2}} and β̄β̄′ # ftv(σb), which implies (3) by Definition 3.2.1.
◦ Case FE-Free: Let σ with α /∈ ftv(σ). We show {{σ}} = {{∀ (α ≥ σ′) σ}} by considering both inclusions

separately. Assume t ∈ {{σ}}. We may as well assume α /∈ ftv(t), w.l.o.g. Then, t is trivially of the form t[t′/α],

INRIA

MLF made simple. 21

Figure 5: Rules for type instance ≤.

FI-Equiv

(Q) σ1 @−A− σ2

(Q) σ1 ≤ σ2

FI-Bot

(Q) ⊥ ≤ σ

FI-Hyp

(α ≥ σ) ∈ Q

(Q) σ ≤ α

FI-Subst

α /∈ etv(σ)

(Q) ∀ (α≥ τ) σ ≤ σ[τ/α]

by choosing some arbitrary t′ in {{σ′}}, which implies t ∈ {{∀ (α≥ σ′) σ}}. Conversely, assume t ∈ {{∀ (α≥ σ′) σ}}.
By Definition 3.2.1, it is of the form ∀ (β̄) t′′[t′/α] with t′′ ∈ {{σ}} and t′ ∈ {{σ′}}. Thus, t ∈ ∀ (β̄) {{σ}}[t′/α]. By
Lemma 3.3.5, this implies t ∈ ∀ (β̄) {{σ[bt′c/α]}}, that is, t ∈ {{σ}} by Lemma 3.3.4.
◦ Case FE-Var is by definition and Lemma 3.3.4.
◦ Case FE-Mono: by hypothesis, (α≥ τ) ∈ Q. Thus, Q is of the form (Q1, α≥ τ,Q2) for some Q1 and Q2. Let
θ be in {{Q}}. By definition, a canonical decomposition of θ is of the form θ1 ◦ [ta/α] ◦ θ2 (8) for some θ1 ∈ {{Q1}},
θ2 ∈ {{Q2}}, and ta ∈ {{τ}}. Since by hypothesis τ is a monotype, this implies ta = dτe (9). By Lemma 3.2.6, θ is
equal to θ ◦ [ta/α]. Therefore, θ({{σ}}) = θ({{σ}}[dτe/α]), which implies θ({{σ}}) ⊆ θ({{σ[τ/α]}}) by Lemma 3.3.5.
As for the converse inclusion, let t be in θ({{σ[τ/α]}}). There exists t′ such that t = θ(t′) and t′ ∈ {{σ[τ/α]}}. Let
t′′ be t′[dτe/α]. We notice that θ(t′′) = θ ◦ [dτe/α](t′) = θ(t′) (10) = t, where (10) is obtained by Lemma 3.2.6,
(8), and (9). Besides, by Lemma 3.3.5, t′′ belongs to {{σ[τ/α]}}. Since, by construction, α /∈ ftv(t′′), we get
t′′ ∈ {{σ}}[dτe/α] as a consequence of Lemma 3.3.8, Therefore, t belongs to θ({{σ}}[dτe/α]), that is, θ({{σ}}).

Definition 3.3.9 (Syntactic Type instance) The syntactic instance relation is the smallest transitive and
≥-congruent relation on closed judgments satisfying rules of Figure 5:

Rule FI-Equiv ensures that type instance contains type equivalence. Rule FI-Bot states that ⊥ is the most
general type. Rule FI-Hyp is obvious as a logical rule, as it just uses an hypothesis. Its effect is to replace a type
scheme by a variable that stands for an instance of that type scheme. As it can be used repeatedly, its effect is
often to join two flexible bindings that have the same bound (when used in combination with flexible-congruence
rules). FI-Subst inlines a flexible binding (α≥ τ), whose bound τ is a type, thus settling the choice made for
τ . Type scheme bounds must be instantiated to types using flexible congruence before they can be inlined. The
side condition requires that variable α be not exposed in σ. This is to prevent cases where α would appear in σ
as a flexible bound. For example, without the side condition, one could derive (Q) ∀ (α≥ τ) ∀ (β ≥α) ∀ (γ ≥α)
β → γ ≤ ∀ (β ≥ τ) ∀ (γ ≥ τ) β → γ, which implies (Q) ∀ (α ≥ τ) α → α ≤ ∀ (β ≥ τ) ∀ (γ ≥ τ) β → γ and is
certainly false: the semantics ensures that β and γ are substituted by the same instance of τ on the left-hand
side, but not on the right-hand side. Remark that this condition seems to also prevent the case where σ is itself
α and prevent the type instance (Q) ∀ (α≥ τ) α ≤ τ . However, this case is also a particular case of equivalence,
and thus provable using rule Fi-Equiv.

Instance derivations can be renamed, prefixes can be extended, and substitutions by equivalent types preserve
equivalence, as stated by the following lemma.

Lemma 3.3.10 Assume R is @−A− or ≤.
i) The relation R satisfies both axioms Renaming and Extra-Bindings of page 11.
ii) If (Q) τ1 @−A− τ2 holds, (Q) σ[τ1/α] @−A− σ[τ2/α] holds.

(Proof p. 47)

Lemma 3.3.11 (Soundness of syntactic instance) The type instance relation satisfies all rules of Figure 5:

Proof: Each rule is considered separately. Rule FI-Equiv is by Theorem 1. Rule FI-Bot is by definition. For
Rule FI-Subst, it suffices to show {{σ[τ/α]}} ⊆ {{∀ (α ≥ τ) σ}}. Let t be in {{σ[τ/α]}}. We may assume that
α /∈ ftv(t), w.l.o.g. Besides, by hypothesis, α is not exposed in σ. Thus, by Lemma 3.3.8, we have t ∈ {{σ}}[dτe/α].
This implies t ∈ {{∀ (α≥ τ) σ}} by Definition 3.2.1, which is as expected. For FI-Hyp, we assume (α≥σ) ∈ Q, i.e.

Q of the form (Q1, α≥σ,Q2). Assume θ ∈ {{Q}}. By Definition 3.2.3, θ is of the form θ1 ◦ [t/α] ◦ θ2. with t ∈ {{σ}}
and the decomposition is canonical. By Lemma 3.2.6, [t/α] ◦ θ2 is equal to [t/α] ◦ θ2 ◦ [t/α]. Composing by θ1 on
the left, we get that θ is equal to θ ◦ [t/α]. Therefore θ(α) is θ(t), which implies θ(α) ∈ θ({{σ}}). Thus (Q) σ ≤ α
holds, as expected.

RR n
�

0123456789

22 Rémy & Le Botlan

An obvious question is whether the syntactic definitions of type equivalence and type instance are complete
for the corresponding semantic definitions.

Conjecture 3.3.12 (Completeness of syntactic relations) Any type equivalence relation can be derived
with rules of Figure 4. Any type instance relation can be derived with rules of Figure 5.

A proof of this conjecture has only been sketched, using an intermediate semantics of types based on a graphic
representation to factor all of their instances as a single and simple object—see discussion in

�
5. While showing

the equivalence of the two semantics should not be difficult, a description of the graph representation of types
is beyond the scope of this paper (See [RY07]) and a direct proof using the semantics of this paper without
referring to graphs would be too long and tedious.

This conjecture combined with Theorem 1 justifies our semantics of types. In the rest of the paper we do not
distinguish between syntactic and semantic relations and only say type equivalence or type instance. However,
we do not actually rely on this conjecture: we only use the soundness of the syntactic definitions with respect
to their semantics definitions, not their completeness. Therefore, reading type equivalence and type instance as
the syntactic versions hereafter is always technically correct and never relies on the conjecture.

3.4 Typing rules

As IMLF is an instance of System G, its typing rules are as described in Figure 2. Some examples of typings
have been introduced informally in

�
1. Other examples will be presented with more details in Section 3.7.

There is an interesting admissible rule in IMLF that helps typing abstractions:

Imlf-Fun?

(Q) Γ, x : τ ` a : σ

(Q) Γ ` λ(x) a : ∀ (α≥ σ) τ → α

To see this, assume (Q) Γ, x : τ ` a : σ. Let α be a variable that does not appear free in (Q). We have
(Q,α ≥ σ) Γ, x : τ ` a : σ (1) by lemma 2.1.1.ii. We have (Q,α ≥ σ) σ ≤ α (2) by FI-Hyp. By Rule Inst

with (1) and (2), we get (Q,α≥ σ) Γ, x : τ ` a : α. We conclude by Rule Fun followed by Rule Gen.

Generalized application

Rule Gen generalizes a binding by moving a binding from the prefix to the right-hand side. The converse rule
is in fact admissible.

UnGen?

(Q) Γ ` a : ∀ (α≥ σ) σ′ α # Q

(Q,α≥ σ) Γ ` a : σ′

Indeed, assume (Q) Γ ` a : ∀ (α ≥ σ) σ′ holds. Then, by Lemma 2.1.1.ii, we get (Q,α≥ σ) Γ ` a : ∀ (α≥ σ) σ′.
We conclude by Rule Inst and (Q,α≥ σ) ∀ (α≥ σ) σ′ ≤ σ′, as shown below:

(Q,α≥ σ) ∀ (α ≥ σ) σ′ = ∀ (β ≥ σ) σ′[β/α] by α-conversion
≤ ∀ (β ≥ α) σ′[β/α] by FI-Hyp

and Imlf-All-Left

@−A− σ′ by FE-Mono

More interestingly, the following generalized application rule is also admissible—it is actually derivable with
repeated applications of admissible Rule UnGen? on both premises, and an application of rule App followed
by an application of rule Gen:

App?

(Q) Γ ` a1 : ∀ (Q′) τ2 → τ1 (Q) Γ ` a2 : ∀ (Q′) τ2

(Q) Γ ` a1a2 : ∀ (Q′) τ1

We refer to typing rules extended with App? as generalized typing rules. We presented the system with Rule
App, rather than Rule App? for economy of the formalization as well as for emphasizing the generic presentation
of the type system. However, the generalized typing rules, while defining the same judgments allow for more
derivations and so have actually more interesting modularity properties. In particular, we use the generalized
presentation in

�
3.7.

INRIA

MLF made simple. 23

3.5 System F as a subset of (Simple) IMLF

We recall that Simple MLF is IMLF without terms with local-bindings. Before showing the inclusion of System F
in Simple MLF, we show the inclusion of their instance relations.

Lemma 3.5.1 Assume t ≤F t
′ holds. Then, (Q) btc ≤ bt′c holds under any suitable prefix Q.

(Proof p. 47)

The next lemma states the inclusion of System F into Simple MLF.
The translation bAc of a typing context A into one of Simple MLF, is the pointwise translation of types, i.e.

bx : tc is x : btc.

Lemma 3.5.2 Assume F :: Γ ` a : t holds. Then, the judgment IMLF :: (Q) bΓc ` a : btc holds under any prefix
Q binding the free variables of Γ and t.

Proof: By induction on the derivation of F :: Γ ` a : t. Let Q be a prefix binding the free variables of Γ and t.
◦ Case Var: By hypothesis, we have x : t ∈ Γ. By definition of bΓc, we have x : btc ∈ bΓc, and bΓc is closed

under Q. Hence, (Q) bΓc ` x : btc holds by Var.
◦ Case App: Then, a is of the form a1 a2 and the premises are F :: Γ ` a1 : t2 → t1 and F :: Γ ` a2 : t2. Let Q′ be

an unconstrained prefix binding ftv(t2) \ dom(Q). This implies dom(Q′) # ftv(bAc) (1) and dom(Q′) # ftv(t1) (2).
By induction hypothesis, we have both (QQ′) bΓc ` a1 : bt2 → t1c (3) and (QQ′) bΓc ` a2 : bt2c (4). By
definition, bt2 → t1c is bt2c → bt1c. Hence, (3) becomes (QQ′) bΓc ` a1 : bt2c → bt1c. By App, we get
(QQ′) bΓc ` a1 a2 : bt1c. By Gen and (1), we get (Q) bΓc ` a1 a2 : ∀ (Q′) bt1c. By equivalence (Imlf-Inst and
FE-Free with (2)), we obtain the expect result (Q) bΓc ` a1 a2 : bt1c.
◦ Case Inst: The premises are F :: Γ ` a : t′ and t′ ≤F t (5). By induction hypothesis, we have (Q) bΓc ` a :

bt′c (6). By Lemma 3.5.1 and (5), we have (Q) bt′c ≤ btc. We conclude by Inst.
◦ Case Fun: The premise is F :: Γ, x : t1 ` a : t2. By induction, we have (Q) bΓc, x : bt1c ` a : bt2c. By Rule

Fun, we get the expected result (Q) bΓc ` λ(x) a : bt1c → bt2c.
◦ Case Gen: The premise is F :: Γ ` a : t′ and α /∈ ftv(Γ) (7). By induction, we have (Q,α) bΓc ` a : bt′c.

Besides, (7) implies α /∈ ftv(bΓc). By Rule Gen, we get (Q) bΓc ` a : ∀ (α) bt′c, that is, (Q) bΓc ` a : b∀ (α) t′c.

3.6 Type soundness, by viewing IMLF as a subset of Flet

In this section, we show that IMLF is a subset of and thus as sound as Flet by translating typing derivations of
IMLF into typing derivations of Flet. For that purpose, we instrument typing judgments of IMLF (Q) Γ ` a : σ
into judgments of the form (Q 3 θ) Γ ` a : σ 3 t ⇒ ∆ to mean “given an F-substitution θ in {{Q}}, and a type t
in {{σ}}, the judgment (Q) Γ ` a : σ requires a context ∆”. These judgments may also be read as an algorithm

that takes θ, t, and a typing derivation of a (regular) typing judgment IMLF :: (Q) a ` σ and returns a context
∆. These judgments are defined by typing rules of Figure 6.

In the translation, we distinguish let-bound variables, written x, from λ-bound variables, written y. Hence,
the two rules Imlf-Var-Let and Imlf-Var-Fun corresponding to the original rule Imlf-Var. Notice that
only the Imlf-Var-Let inserts a binding in ∆. The context ∆ maps let-bound variables to intersection types,
written ∧ti∈I

i . We write ∆1 ∧∆2 for the environment that maps x to ∆1(x)∧∆2(x) when x is in both dom(∆1)
and dom(∆2) or as ∆1 or ∆2 when x is in either dom(∆1) or dom(∆2). There are two rules for local-bindings.
Rule Imlf-Let assumes that variable x appears free in a′. The bound expression is typechecked as many
times as there are occurrences of x in a′, which enables each occurrence to pick a different instance t of σ
via rule Imlf-Var-Let. Rule Imlf-Let-0 is for the degenerate case where x does not appear free in a′. We
must still typecheck the premise once, so as to be ensure that a is well-typed—since in a call-by-value a is
evaluated even if its result is to be discarded. Other rules are straightforward. By convention, all judgments
(Q 3 θ) Γ ` a : σ 3 t⇒ ∆ carry the implicit side-conditions θ ∈ {{Q}} and θ(t) ∈ θ({{σ}}).

The following lemma justifies our suggestion to read these judgments as an algorithm.

Lemma 3.6.1 If the judgment (Q) Γ ` a : σ holds, then for any θ in {{Q}} and t in {{σ}}, there exists a context
∆ such that (Q 3 θ) Γ ` a : σ 3 t⇒ ∆ holds.

Notice that, by construction, neither {{Q}} nor {{σ}} may be empty.

RR n
�

0123456789

24 Rémy & Le Botlan

Figure 6: Translating IMLF to Flet.

Imlf-Var-Let

x : σ ∈ Γ

(Q 3 θ) Γ ` x : σ 3 t⇒ (x : t)

Imlf-Var-Fun

y : τ ∈ Γ

(Q 3 θ) Γ ` y : τ 3 t⇒ ∅

Imlf-Fun

(Q 3 θ) Γ, y : τ ` a : τ ′ 3 dτ ′e ⇒ ∆

(Q 3 θ) Γ ` λ(y) a : τ → τ ′ 3 dτ → τ ′e ⇒ ∆

Imlf-App

(Q 3 θ) Γ ` a1 : τ2 → τ1 3 dτ2 → τ1e ⇒ ∆1 (Q 3 θ) Γ ` a2 : τ2 3 dτ2e ⇒ ∆2

(Q 3 θ) Γ ` a1 a2 : τ1 3 dτ1e ⇒ ∆1 ∧ ∆2

Imlf-Inst

(Q 3 θ) Γ ` a : σ 3 t⇒ ∆
(Q) σ ≤ σ′

(Q 3 θ) Γ ` a : σ′ 3 t⇒ ∆

Imlf-Gen

α /∈ ftv(Γ) β̄ # dom(Q)
(Q,α≥ σ 3 θ ◦ [t/α]) Γ ` a : σ′ 3 t′ ⇒ ∆

(Q 3 θ) Γ ` a : ∀ (α ≥ σ) σ′ 3 ∀ (β̄) t′[t/α] ⇒ ∆

Imlf-Let-0

x /∈ ftv(a′)
(Q 3 θ) Γ ` a : σ 3 t⇒ ∆

(Q 3 θ) Γ, x : σ ` a′ : σ′ 3 t′ ⇒ ∆′

(Q 3 θ) Γ ` let x = a in a′ : σ′ 3 t′ ⇒ ∆ ∧ ∆′

Imlf-Let

((Q 3 θ) Γ ` a : σ 3 ti ⇒ ∆i)
i∈I i 6= ∅

(Q 3 θ) Γ, x : σ ` a′ : σ′ 3 t′ ⇒ ∆, x : ∧(ti)
i∈I

(Q 3 θ) Γ ` let x = a in a′ : σ′ 3 t′ ⇒ ∆ ∧ (∧∆i
i∈I)

Proof: By induction on the derivation of (Q) Γ ` a : σ. We simultaneously show that for any x : ∧(ti)
i∈I in ∆,

we have x : σ in Γ such that (θ(ti) ∈ θ({{σ}}))i∈I . All cases are straightforward, except Imlf-Inst, which relies on
Lemma 3.3.11.

The next two lemmas show the soundness of IMLF by translation into Flet, which is itself sound. We define {{Γ}}
as {y : dτe | y : τ ∈ Γ}.

Lemma 3.6.2 If the judgment (Q 3 θ) Γ ` a : σ 3 t⇒ ∆ holds, then F
let :: θ({{Γ}}),∆ ` a : θ(t) holds.

Proof: By induction on the derivation of (Q 3 θ) Γ ` a : σ 3 t ⇒ ∆. We show a stronger result, that is,
F

let :: θ({{Γ}}),∆ ∧ ∆′ ` a : θ(t) holds for any context ∆′ such that dom(∆′) # dom({{Γ}}) (1). All cases are
straightforward, except Imlf-Gen, which can be shown as follows. We reuse the notations of rule Imlf-Gen.
By definition, we must have θ(∀ (β̄) t′[t/α]) in θ({{∀ (α ≥ σ) σ′}}). As the last rule of the derivation is Imlf-

Gen, we must have (Q,α ≥ σ 3 θ ◦ [t/α]) Γ ` a : σ′ 3 t′ ⇒ ∆ (2), α /∈ ftv(Γ) (3), and β̄ # dom(Q) (4)
hold. By induction hypothesis applied to (2), we get F

let :: θ ◦ [t/α]({{Γ}}),∆ ∧ ∆′ ` a : θ(t′[t/α]) (5) for
any ∆′ satisfying the hypothesis (1). From (3), we have θ ◦ [t/α]({{Γ}}) = θ({{Γ}}). Thus, from (5), we have
F

let :: θ({{Γ}}),∆∧∆′ ` a : θ(t′[t/α]) (6). From (4), we have β̄ # ftv({{Γ}}) ∪ ftv(∆). By α-conversion, we may also
assume β̄ # ftv(∆′), w.l.o.g. We may thus conclude with rule Gen applied to (6).

Theorem 2 IMLF is a subset of F
let. More precisely, if the judgment (Q) Γ ` a : σ holds, then for any θ in

{{Q}} and τ in {{σ}}, the judgment F
let :: θ({{Γ}}) ` a : θ(t) holds.

Proof: This is an immediate consequence of Lemmas 3.6.1 and 3.6.2.

Type Soundness Type soundness is a corollary of Theorem 2, as it ensures that IMLF is as safe as Flet, which
is itself as safe as F∧, which is safe.

Discussion As a particular case of the previous lemma, Simple MLF is a subset of System F, since terms
of Flet without local bindings are also in F. The converse is also true, as shown in the previous section. In

INRIA

MLF made simple. 25

particular, Simple MLF and F coincide—regarding the sets of typable terms. We may summarize this section
and the previous one with the inclusions

Simple IMLF⊆ F ⊆ Simple IMLF⊂ IMLF⊂ Flet.

We already know that at least one of the two last inclusions is strict, as the term aauto
IK defined as let y = λ(x)

x x in K (y I) (y K) is in Flet (as it let-reduces to a term in F) but not in F [GR88]. (Notice that aauto
IK is in any

higher-order extension Fn of F for n > 2, hence also in Fω.)

In fact, the two inclusions are strict. We shall exhibit an example that is typable in MLF but not in System F
in the following subsection. We now argue (informally) that a is not in MLF.

Intuitively, Rule Inter is much more powerful than Imlf-Let since a conjunctive type may be an arbitrary
(finite) set of types in Inter, whereas Imlf-Let only allows to form conjunctions between types that belong

to a common type scheme. To see that a is not in MLF, we may reproduce the argument used for F [GR88] by

analyzing all possible derivations of a in MLF. In fact, the parameter y will be assigned a type σ that must be
a type for λ(x) x x. In turn, as x is used polymorphically, it must be assigned an exact type, hence σ is of the
form ∀ (α1 ⇒ σ1) ∀ (α2 � σ2) α1 → α2 where σ1 must be a System-F type btc. Reproducing the same reasoning
as in [GR88] (see also [Pie02,

�
23] or [Wel99]), t must be of form ∀ (α) .(. . . (α → tn) → . . . t1) → t0. However,

no type of this form can be simultaneously a type for I and K, as required by the two uses of y. In fact, the
term a is not typable in Full MLF either.

Notice that the translation only introduces intersection types ∧tIi such that there exists an MLF type scheme
σ of which all ti’s are instances. For example, an intersection types of the form (∀ (α) α → α) ∧ (∀ (α) ∀ (β)
α → β → α) will never be used.

Subject reduction The subject reduction property holds in Simple IMLF as a consequence of the two-
directional encoding between System F and Simple IMLF.

We expect subject reduction to hold in IMLF, since it holds in Full MLF [LB04]. However, we did not check

this result, as type soundness could easily be established by encoding IMLF into Flet.

3.7 Expressiveness and modularity

As typing derivations of System F can be mapped directly to typing derivations of IMLF, the language IMLF

performs at least as well as System F with regard to typechecking. We claim that IMLF is strictly more
expressive than System F in a rather unusual and weak but practically meaningful sense, as it is more modular
than System F. For that purpose, we exhibit an unannotated expression a (for sake of conciseness, we use

constants in expressions) that is typable in System F, hence also in IMLF. However, we argue that a single,
small and local change in a induces many changes in its typing derivation in System F (in fact, changes are

proportional to the size of a), while changes needed in its typing derivation in IMLF remain small and local.

We actually consider the generalized presentation of IMLF, using Rule App? rather that App. We could
also argue in the original system as well, but with a more careful definition of modularity. For fairness of
comparison, we consider the implicit version of System F, indeed. The result can only be (significantly) worsen
in explicit System F, as not only typing derivations will have to be changed, but the type abstractions and type
applications in the source programs as well.

Although our statement is based on a particular example—we do not actually prove that changes in the
derivation must be non local but argue informally—it is also seconded by formal results in Le Botlan’s the-
sis [LB04] where it is shown how a single type of IMLF captures all type abstractions and type applications of

a given expression in System F. However, this formal result uses the principal type property of IMLF, which we
do not show here, as we do not address type inference—hence, our informal, but simpler explanation.

The following example emphasizes once again that only type annotations on functions parameters need to
be kept in IMLF programs and all other type information can be reconstructed in a principal manner.

In fact, we exhibit a sequence of expressions (an)n∈IN of increasing size, defined inductively. So as to ease
the presentation, we assume that the core language is extended with a ground type i (such as int) and that the

initial environment Γ0 contains the functions id, eq, auto and comp that satisfy the following signature in IMLF

RR n
�

0123456789

26 Rémy & Le Botlan

(their signature in System F follows by translation).

id : ∀ (α) α→ α
M

= σid

eq : ∀ (α) α→ α → α

auto : ∀ (α⇒ σid) α→ α
M

= σauto

comp : ∀ (α⇒ i → i) α → α
M

= σcomp

For instance, auto and comp could be the expressions λ(x : σid) x x and λ(g) (λ(x) g (succ x)) where succ is the
successor function for integers.

We now define a sequence of expressions an and a sequence of types σn parameterized by an initial expression
a for a0 and an initial closed type σ for σ0.

a0 M

= a an+1 M

= eq an σ0 M

= σ σn+1 M

= ∀ (α ≥ σn) α→ α

We have the following derivation in IMLF :

Inst

(α≥ σn) Γ0 ` eq : α → α→ α

Context

Γ0 ` an : σn

(α≥ σn) Γ0 ` an : α (α ≥ σn) σn
6 α

(α≥ σn) Γ0 ` an : α
Inst

(α≥ σn) Γ0 ` eq an : α → α

Γ0 ` an+1 : σn+1
Gen

App

Hence, by induction, we have Γ0 ` an : σn for all n whenever Γ0 ` a : σ. Observe that, by construction, we
have Γ0 ` id : σid (1), Γ0 ` comp : σcomp (2), and Γ0 ` auto: σauto (3).

Assume moreover that σid ≤ σ. Using Rule Imlf-All-Left repeatedly, we may show that σn
id ≤ σn. In

particular, σn+1
id ≤ ∀ (α ≥ σn) α → α (4). Let b be idn+1. We have Γ ` b : σn+1

id , which gives Γ ` b : ∀ (α ≥ σn)
α → α by Rule Inst and (4). Using generalized Rule App? we have Γ0 ` b an : σn (5). As both σauto and σcomp

are instances of σid, we may thus conclude that both applications b auton and b compn are typable in IMLF.
More importantly, the typing derivations of b are the same for both terms—only the typing of the arguments
and final application differs. The key point here is that the instantiation of the type of b may be delayed as
much as possible. This is possible only because of the expressiveness of types and of the instance relation of
IMLF.

In System F, both applications are typable as well, but unlike in IMLF, the typing derivations of b are
significantly different. In particular, each node of the typing derivation tree differs up to the leaves, i.e. up
to the typing of the expression id. Indeed, the type applications required at each application node are always
different in both derivations. We see that a single difference in the unannotated term occurring at an arbitrary
depth in the argument of the application idn+1 auton (compared to idn+1 compn) induces changes in the typing
of the body of the function an+1 up to depth n.

It follows expressions an
let defined as let x = idn+1 in x auton;x compn and let x = eq id in x auto;x comp as

a particular case are not typable in System F. There are all typable in IMLF, indeed.
Notice that although Flet is larger than IMLF, it is not necessarily better: while an

let is also typable in Flet its
typing derivation is in Flet is still problematic as the typing derivation for id contains two similar sub-derivations
specialized for auto and comp, respectively, and joined with ∧ rather than a principal typing derivation indepen-
dent of further applications, as could be done IMLF. The analysis of the open world modular problem described
by an when n increases is more informative about modularity than that of the closed expression an

let.

Remark also that an
λ defined as app (λ(x) x auton;x compn) idn+1 does not typecheck in IMLF, as the

argument idn+1 must be assigned a type scheme and not a type. However, this example typechecks in Full MLF.
In summary, the implicitly typed system IMLF that typechecks more programs than System F and may

typecheck them more modularly. The main benefit of IMLF over System F is that its types are more principal,
so that typing derivations of IMLF are more modular than typing derivations in System F. This is a key for the
design of XMLF that permits simple type inference.

4 XMLF, Church’s style MLF

In this section, we step on modular typechecking properties of IMLF to design a version with optional type
annotations, called XMLF, that has a clear and intuitive specification of where and when to put type annotations.

INRIA

MLF made simple. 27

After a presentation of XMLF types (
�
4.1) and relations between them, we introduce typing rules and show type

safety (
�
4.2) by translation of well-typed programs into IMLF. We also exhibit a translation of System F into

XMLF, which shows its expressiveness, as well as its economy of explicit type information (
�
4.3). We argue

on an example that XMLF does not infer polymorphism, as claimed (
�
4.5). Finally, we show that XMLF is a

conservative extension to ML (
�
4.4).

Specifying where and when to put type annotations

In IMLF, no type annotation is ever given. As a consequence, type inference is undecidable, just like in implicit
System F. In order to make type inference decidable, we need some annotations to be mandatory. Our guideline
is:

Only function parameters that are used polymorphically need an annotation.

This implies that types of annotated arguments be distinguishable from those of unannotated arguments. The
solution is to have two different ways of representing a given type: one for explicit type information and another
one for inferred type information. Unlike previous works, no explicit coercion is however needed to cast the
former into the latter. Types that are explicitly introduced with type annotations are represented directly with
a type scheme σ, as usual. On the contrary, types that have been inferred are represented indirectly via a
variable α that is rigidly bound to a type scheme σ in the prefix. This means that α stands for the type σ, but
α may not be freely replaced by σ or an instance of σ. Still, values of type α can be merged with other values
of type σ, by “weakening them to the abstract type α”—and not conversely. This operation, called abstraction
and written @−, plays a crucial role with respect to type inference. The converse relation, implicitly recasting an
abstract variable α to its bound σ is not allowed, as it would allow—and hence force—type inference to guess
polymorphic types and, as a result, make it undecidable. However, as this operation is always sound, it may be
performed explicitly via a type annotation.

4.1 Types, prefixes and relations under prefix

We remind the definition of types and prefixes below, so as to make this section self-contained:

τ ∈ TX ::= α | τ → τ XMLF types

σ ∈ SX ::= τ | ∀ (q) σ | ⊥ XMLF type schemes

q ∈ QX ::= α≥ σ | α⇒ ρ XMLF bindings

ρ ∈ RX ::= τ | ∀ (α≥⊥) ρ | ∀ (α⇒ ρ) ρ F-like type schemes

As in ML, monotypes are simple types, for the purpose of type inference. This contrasts with System F or IMLF,
for which type inference is not considered.

We use the symbol � as a meta-variable that denotes either ≥ or =. For example, (α � σ) stands for either
(α⇒σ) or (α≥σ), which are called rigid (resp. flexible) bindings. We also say that α is rigidly (resp. flexibly)
bound. A prefix that contains only rigid bindings is called rigid. The rigid domain of a prefix Q, written
dom=(Q), is the set of α such that α is rigidly bound in Q.

Notice that XMLF types do not form a superset of IMLF types, since for type inference purposes, they cannot
have quantifiers. For instance, the IMLF type (∀ (α1) τ1) → (∀ (α2) τ2) is not an XMLF type. However, it can be

represented as the XMLF type ∀ (β1 ⇒ σ1, β2 ⇒ σ2) β1 → β2 via extra rigid bindings.

The equivalence and instance relations in IMLF are adapted to XMLF to deal with rigid bindings. In fact, type
equivalence in IMLF is too large to permit type inference. We split type equivalence into two inverse relations
@−, called abstraction, and A−, called revelation. More precisely, type equivalence @−A− in IMLF corresponds to
the transitive closure of @− ∪ A−, while type equivalence in XMLF is @− ∩ A−. Moreover, @− is a subrelation of
type instance, and may be left implicit in programs. Conversely, uses of A− must be made explicit, via type
annotations.

We now present the equivalence, abstraction, and instance relations formally and in this order, from the
smaller to the larger relations, as their definitions depend on these inclusions.

Definition 4.1.1 (Congruence) A relationR is ≥-congruent if it satisfies both Xmlf-Flex-Left and Xmlf-

All-Right (Figure 7). It is congruent if it satisfies both Xmlf-All-Left and Xmlf-All-Right.

RR n
�

0123456789

28 Rémy & Le Botlan

Figure 7: Congruence in XMLF.

Xmlf-Flex-Left

(Q) σ1 R σ2

(Q) ∀ (α≥ σ1) σ R ∀ (α≥ σ2) σ

Xmlf-All-Left

(Q) σ1 R σ2

(Q) ∀ (α � σ1) σ R ∀ (α � σ2) σ

Xmlf-All-Right

(Q,α � σ) σ1 R σ2

(Q) ∀ (α � σ) σ1 R ∀ (α � σ) σ2

Figure 8: Equivalence in XMLF.

Eq-Comm

α1 /∈ ftv(σ2) α2 /∈ ftv(σ1)

(Q) ∀ (α1 �1 σ1) ∀ (α2 �2 σ2) σ ≡ ∀ (α2 �2 σ2) ∀ (α1 �1 σ1) σ

Eq-Free

α /∈ ftv(σ)

(Q) ∀ (α � σ′) σ ≡ σ

Eq-Mono

(α � τ) ∈ Q

(Q) σ ≡ σ[τ/α]

Eq-Var

(Q) ∀ (α � σ) α ≡ σ

Definition 4.1.2 (Equivalence) The equivalence relation, written ≡, is the smallest congruent equivalence
relation satisfying the rules of Figure 8.

Rules of Figure 8 are straightforward adaptations from those of Figure 4. The only difference is the replacement
of single ≥ bound in IMLF by the two possible bounds ≥ or ⇒ in XMLF. We write V for the set of type schemes
that are equivalent to a variable under the empty prefix. In fact, it is convenient to have a notation for the
top-most structure of a type scheme.

Definition 4.1.3 (Head) The head of a type scheme σ is the symbol or variable, written head(σ), defined
inductively as follows:

head(α)
M

= α head(τ1 → τ2)
M

= → head(⊥)
M

= ⊥ head(∀ (α�σ1) σ2)
M

=

{

head(σ1), if head(σ2) = α

head(σ2), otherwise

The head of a type scheme is preserved by equivalence under an empty prefix. Hence, the head of all elements
of V are variables. We can show the converse—a type scheme σ whose head is a variable is in V—by an easy
structural induction on σ. Hence, V is also the set of type schemes whose head are type variables.

Rigid bindings are used to abstract explicit type schemes as implicit ones, by storing and sharing their
definition via the prefix. The abstraction relation @− describes whenever a type scheme is more abstract than
another one. The relation is essentially structural, except for the key axiom that retrieves an assumption from
the prefix (Rule A-Hyp of Figure 9). However, a peculiarity of the relation is that it is congruent in all contexts
ending with a true rigid binding, that is, contexts of the form ∀ (α⇒ []) σ′ where σ′ is not equivalent to α. This
condition is ensured by the stronger requirement σ′ /∈ V of Rule A-Sharp-Left. Omitting the condition would
allow pathological contexts such as ∀ (β ≥ ∀ (α⇒ []) α) τ , which are equivalent to ∀ (β ≥ []) τ . Abstraction
in this context would not be reversible, hence it would be unsound. Intuitively, a rigid binding behaves as a
protection that prevents the underlying type from ever being instantiated and, as a consequence, allows the
underlying type to be abstracted. Technically, we need to keep track of protected abstractions, as only those
can be used in unprotected flexible contexts. For that purpose, we use an auxiliary relation @−], called protected
abstraction, that is recursively defined with the (unprotected) abstraction relation @−.

Definition 4.1.4 (Abstraction) The abstraction relation @− and the protected abstraction relation @−] are the
smallest transitive relations satisfying the rules of Figure 9 as well as Rule Xmlf-All-Right.

Rules may be read by first ignoring the difference between @− and @−], then realizing that the distinction only
prevents uses of A-Hyp in pathological contexts for the reason explained above.

The instance relation differs from the one of IMLF in only two minor ways. Firstly, it extends not only
the equivalence but also the abstraction relation. Secondly, Rule FI-Subst, which would no longer be well-
formed, has been replaced by I-Rigid, introducing a rigid binding instead of performing the substitution in the
conclusion. Other rules in Figure 10 are directly taken from those of IMLF (Figure 5).

INRIA

MLF made simple. 29

Figure 9: Abstraction in XMLF.

A-Equiv

(Q) σ1 ≡ σ2

(Q) σ1 @−] σ2

A-Hyp

(α⇒ σ) ∈ Q

(Q) σ @− α

A-Left

(Q) σ1 @−] σ2

(Q) ∀ (α≥ σ1) σ
′
@−] ∀ (α≥ σ2) σ

′

A-Sharp-Left

(Q) σ1 @− σ2 σ′ /∈ V

(Q) ∀ (α⇒ σ1) σ
′
@−] ∀ (α⇒ σ2) σ

′

A-Sharp-Drop

(Q) σ1 @−] σ2

(Q) σ1 @− σ2

Figure 10: Instance in XMLF.

I-Abstract

(Q) σ1 @− σ2

(Q) σ1 v σ2

I-Bot

(Q) ⊥ v σ
I-Rigid

(Q) ∀ (α≥ ρ) σ′ v ∀ (α⇒ ρ) σ′

I-Hyp

(α≥ σ) ∈ Q

(Q) σ v α

Definition 4.1.5 (Instance) The instance relation, written v, is the smallest transitive and ≥-congruent rela-
tion satisfying the rules of Figure 10.

Notice the inclusions (≡) ⊂ (@−]) ⊂ (@−) ⊂ (v).

Soundness of instance and abstraction relations

The type soundness of XMLF is shown below by a translation of well-typed XMLF programs into well-typed IMLF

programs, which in turn requires a translation of types and relations on types.
Trivial bindings such as (β ≥ α) often lead to pathological cases, as they are just redirections. As a con-

sequence, we often need to consider types schemes of V especially. While we write σ ∈ V (or σ ≡ β when
the identifier β is meaningful) for conciseness and clarity, this can always be understood—and computed—as
head(σ) ∈ ϑ (or head(σ) = β).

The projection function, defined below, translates XMLF types into IMLF types.

Definition 4.1.6 (Type projection) The projection of an XMLF type into a IMLF type is defined as follows:

TτU
M

= τ

T⊥U
M

= ⊥

T∀ (α⇒ σ1) σ2U
M

= Tσ2U[Tσ1U/α]

T∀ (α≥ σ1) σ2U
M

=

{

Tσ2U[β/α] if σ1 ≡ β

∀ (α ≥ Tσ1U) Tσ2U if σ1 /∈ V

The projection of a monotype τ is τ itself and the projection of ⊥ is ⊥. A binding (α⇒ σ1) is translated to a
substitution [Tσ1U/α], which is well-formed as Tσ1U is an F-like type. A binding (α ≥ σ1) is mapped as such,
unless it is a trivial one, in which case the corresponding substitution is performed.

An important property of the translation is that it does not contain exposed type variables (Definition 3.3.6),
unless the type scheme being translated is itself a type variable.

Lemma 4.1.7 The set of exposed type variables of TσU is included in the singleton {head(σ)}.

Whereas the projection of an XMLF type is an IMLF type, the projection of an XMLF prefix Q is a pair
composed of an IMLF prefix that corresponds to flexible bindings of Q and a substitution that captures the rigid
bindings of Q. Special care is again needed for trivial bindings.

RR n
�

0123456789

30 Rémy & Le Botlan

Definition 4.1.8 (Prefix projection) The projection of a prefix Q is a pair (Q, θ), defined inductively as
follows:

T∅U
M

= (∅, id)
TQU = (Q′, θ)

T(Q,α⇒ σ)U
M

= (Q′, θ ◦ [TσU/α])

TQU = (Q′, θ) TσU /∈ V

TQ, (α≥ σ)U
M

= ((Q′, α≥ θTσU), θ)

TQU = (Q′, θ) TσU ≡ β

TQ, (α≥ σ)U
M

= (Q′, θ ◦ [β/α])

The following lemma states that type equivalence, type abstraction, and type instance relation are preserved
by projections into IMLF.

Lemma 4.1.9 Let (Q′, θ) be TQU. We have the following implications
i) If (Q) σ1 ≡ σ2, then (Q′) θTσ1U @−A− θTσ2U.
ii) If (Q) σ1 @− σ2, then (Q′) θTσ1U @−A− θTσ2U.
iii) If (Q) σ1 v σ2, then (Q′) θTσ1U ≤ θTσ2U.

(Proof p. 47)

Completeness of instance and abstraction relations

We may conversely show that type instance and type abstraction in XMLF capture no more than type instance
and type equivalence in IMLF.

Let us first introduce a translation from IMLF types to XMLF types, written VσW and defined inductively as
follows:

VαW
M

= α V⊥W
M

= ⊥ Vτ1 → τ2W
M

= ∀ (α1 ⇒Vτ1W, α2 ⇒Vτ2W) α1 → α2 V∀ (α≥σ) σ′W
M

= ∀ (α≥VσW) Vσ′W

The translation of variables, ⊥, and flexible bindings are by a direct mapping. The translation of an arrow type
τ1 → τ2 uses auxiliary bindings (α1 ⇒ Vτ1W, α2 ⇒ Vτ2W) as Vτ1W and Vτ2W are not guaranteed to be monotypes.
They are guaranteed to be ρ-types, though. In case there are monotypes, the extra indirection is not problematic
as it can always be eliminated by type-equivalence in XMLF.

The translation of an IMLF binding (α ≥ σ) is a sequence of bindings Q′(α≥ σ′), such that ∀ (Q′) σ′ = VσW
and Q′ is rigid and as large as possible. As a consequence, the translation of a monotype binding (α≥ τ1 → τ2)
is the sequence (α1 ⇒ Vτ1W, α2 ⇒ Vτ2W, α ≥ α1 → α2). Notice that, by α-conversion of ∀ (Q′) σ′, the choice of
the domain of Q′ is free.

The translation of a prefixQ = q1 . . . qn is the concatenation of its pointwise translation: VQW = Vq1W . . .VqnW,
avoiding any capture by use of α-conversion.

As a preliminary result, we show that monomorphic substitution in IMLF is captured by the symmetric
closure of abstraction in XMLF:

Lemma 4.1.10 Let σ be an IMLF type scheme and Q be an IMLF prefix such that (α ≥ τ) ∈ Q with τ ∈ M.

Then, we have (VQW) VσW (@−] ∪ A−])∗ Vσ[τ/α]W in XMLF.
(Proof p. 48)

Lemma 4.1.11 Let τ be an IMLF type, σ be an IMLF type scheme, and Q an XMLF prefix. Then, we have
(Q) ∀ (α⇒ VτW) VσW (@−] ∪ A−])∗ Vσ[τ/α]W in XMLF.

We may now show that type instance and type equivalence in IMLF map to type instance and the symmetric
closure of type abstraction in XMLF, respectively.

Lemma 4.1.12 Both properties hold :
i) If (Q) σ1 @−A− σ2 holds, then (VQW) Vσ1W (@−] ∪ A−])∗ Vσ2W holds.
ii) If (Q) σ1 ≤ σ2 holds, then (VQW) Vσ1W (v ∪ A−)∗ Vσ2W holds.

(Proof p. 48)

Properties 4.1.9.ii and property 4.1.12.i show that the relations @−A− and (@− ∪ A−)∗ are in correspondence. There
were also used indirectly to show Property 4.1.9.iii. Only Property 4.1.9.iii is further used, namely to show a
close correspondence between type systems IMLF and XMLF.

INRIA

MLF made simple. 31

Figure 11: XMLF typing rules

Var Fun App Gen Let

Inst

(Q) Γ ` a : σ (Q) σ v σ′

(Q) Γ ` a : σ′

Annot

(Q) Γ ` a : σ′ ᾱ ⊆ dom(Q) (Q) σ @− σ′

(Q) Γ ` (a : ∃ (ᾱ) σ) : σ

4.2 Typing rules and type soundness

Terms of XMLF are those of IMLF extended with a new primitive construction for type annotations (a : ∃ (ᾱ) σ).

The typing rules of XMLF, given in Figure 11, include all rules from the generic system G(TX,SX,QX,v) and a
new rule for type annotations. Notice, that the generic rule Inst is specialized, accordingly, using the relation v
for type instance. Rule Annot is thus the only interesting rule in XMLF. The existentially quantified variables
ᾱ in annotations is to allow annotations to partially specify the type of the expression they annotate: their
bounds are left unspecified (equivalently ᾱ could be given a flexible bottom bound in the annotation) and thus
must be inferred. Free type variables of σ must all be listed in ᾱ, so that the annotation ∃ (ᾱ) σ is itself closed.
Variables ᾱ are required to appear in the prefix Q, as specified by the premise ᾱ ⊆ dom(Q). The judgment
(Q) σ @− σ′ allows to reveal σ, but no more. In particular, the bounds assigned to ᾱ are shared between σ ′ and
σ, which prevents to reveal more than explicitly specified in σ through implicit instantiation of its free type
variables ᾱ. As a particular case, annotating an expression with ∃ (α) α is useless. Conversely, all inner bound
variables of σ must be matched exactly—up to abstraction.

Syntactic sugar When σ is closed, we may simply write σ. We then recover the simplified rule given in the
introduction (

�
2.3, page 15). In fact, by abuse of notation, we could also write (a : σ) when σ is not closed to

mean (a : ∃ (ftv(σ)) σ), but we prefer to remain more explicit about bound variables.
We also see abstractions λ(x : σ) a as syntactic sugar for λ(x) let x = (x : σ) in a. Let-rebinding x to

the annotated expression thus to avoid repeating the annotation on all occurrences of x in a. The effect is
that λ(x : σ) a is typed as if it were λ(x) a[(x : σ)/x], but our syntactic sugar is more local. The annotated
abstraction may also be typed directly, with the following derivable typing rule:

Fun’

(Q) Γ, x : ρ ` a : τ ᾱ ⊆ dom(Q)

(Q) Γ ` λ(x : ∃ (ᾱ) ρ) a : ∀ (β⇒ ρ) β → τ

In practice, most uses of annotations are actually in abstractions. The reason not to make annotated abstraction
the primitive form and the other one the derived form is that (a : σ) are much simpler to deal with technically.

Furthermore, for F-like type annotations, (a : ρ) can just be seen as the application of a retyping primitive

function (ρ) to the expression a. In Full MLF, all annotations can be treated as such. We could restrict XMLF

to F-like annotations. However, because types are stratified in Plain MLF, we would then not reach all type
annotations and XMLF would not be in close correspondence with IMLF any longer.

Example We first show that the (unannotated) identity function λ(x) x is typable with type ∀ (α⇒ρ) α → α

for any F-like type scheme ρ (which type corresponds to ρ → ρ in IMLF). Notice that ρ may be polymorphic.
In the following, we write σid for ∀ (α) α → α.

Inst

Gen

Fun

Var
(α≥⊥) x : α ` x : α

(α ≥⊥) ∅ ` λ(x) x : α → α

(∅) ∅ ` λ(x) x : σid (∅) σid v ∀ (α⇒ ρ) α→ α

(∅) ∅ ` λ(x) x : ∀ (α⇒ ρ) α→ α

Notice that a more direct derivation is possible:

Gen

Fun

Var
(α⇒ ρ) x : α ` x : α

(α⇒ ρ) ∅ ` λ(x) x : α → α

(∅) ∅ ` λ(x) x : ∀ (α⇒ ρ) α→ α

RR n
�

0123456789

32 Rémy & Le Botlan

For comparison, here is a derivation when the argument is annotated.

Gen

Fun’

Inst

Var
(α⇒ ρ) x : ρ ` x : ρ

(α⇒ ρ) ρ @− α

(α⇒ ρ) ρ v α

(α⇒ ρ) x : ρ ` x : α

(α⇒ ρ) ∅ ` λ(x : ρ) x : ∀ (β⇒ ρ) β → α

(∅) ∅ ` λ(x : ρ) x : ∀ (α⇒ ρ) ∀ (β⇒ ρ) β → α

The variable x has a polymorphic F-like type ρ, which is available with Rule Var. In the previous derivation, x
had only a type α, which was bound to ρ in the prefix. This is a crucial difference between the two derivations.
Indeed, in the latter derivation, the polymorphism can be instantiated, so that for example λ(x : σid) x x is
typable. On the contrary, we will show below (

�
4.5) that λ(x) x x is not typable when the type annotation is

missing. Another important remark is the use of abstraction (and Rule Inst) to hide the polymorphic type ρ
of x as the abstract type α (define to be ρ in the prefix). This is to prepare for rule Fun’, which requires the
codomain of the type of λ(x : ρ) x to be a monotype and not a polytype ρ.

To see the role of existential quantification in type annotations, compare the two expressions λ(x : ∃ (β) ρ) x
and λ(x : ∀ (β) ρ) x where ρ is ∀ (α) α→ β → α—with a free single type variable β. Their respective types are
∀ (β) ∀ (γ ⇒ ρ) ∀ (γ′ ⇒ ρ) γ → γ′ and ∀ (γ⇒∀ (β) ρ) ∀ (γ′ ⇒∀ (β) ρ) γ → γ′. In the later case, the annotation
requires the argument to be polymorphic in β—hence the result is also polymorphic in β. Conversely, in the
former case, β is shared between the argument type and the result type and cannot be polymorphic within
the expression, but only generalized afterward. Less polymorphism is required on the argument and so less
polymorphism is asserted on the result—namely just as much as was promised to be received.

Derivable rules Rules App? and UnGen? (defined page 22) remains admissible in XMLF—of course, when

read with types and type schemes taken in XMLF.

Expressiveness

We show that XMLF and IMLF are in close correspondence, and thus exactly as expressive. Dropping type
annotations maps XMLF programs to IMLF programs directly.

Theorem 3 Assume XMLF :: (Q) Γ ` a : σ holds. Let a′ be the erasure of a, let (Q′, θ) be TQU. Then,

IMLF :: (Q′) θ(Γ) ` a′ : θ(TσU).

Proof (sketch): By a simple induction on the typing derivation of (Q) Γ ` a : σ. The interesting cases are Annot

and Inst, which immediately follow from properties 4.1.9.ii and 4.1.9.iii.

Conversely, all IMLF programs can always be mapped to XMLF programs by inserting explicit type annotations.

Theorem 4 If IMLF :: (Q) Γ ` a : σ holds, then there exists a term a′, such that a is a type-erasure of a′ and

XMLF :: (VQW) VΓW ` a′ : VσW holds.
(Proof p. 48)

Noticeably, the translation of an IMLF program is based on its typing derivation. It introduces a type annotation
on every λ-abstraction, and possibly several ones on type instances and generalizations.

Type soundness

Type soundness is a corollary of Theorem 3, which ensures that XMLF is as safe as IMLF, and Theorem 2, which
states type soundness of IMLF.

4.3 Translating System F into XMLF

The composition of theorems 2 and 4 states that there is a mapping of System-F terms to XMLF terms that
proceeds only by insertion of well-chosen type annotations. Those theorems do not tell us where and what
annotations to insert. However, their proof are constructive—given a type derivation of the input term, or

INRIA

MLF made simple. 33

equivalently, an explicitly typed input term. That is, we could have used the typed derivation given as input
to explicitly produce a type derivation in XMLF as output.

However, the resulting term would contain many duplicated or scattered type annotations, unless we change
the proof and show stronger (and difficult) lemmas that typed derivations could be rearranged in certain ways,
so that for instance, type annotations can always be moved to function parameters.

Instead, we propose a direct translation of explicitly typed System-F programs to XMLF that keep (actually
translate) the type annotations on λ-abstractions, and throws away all type abstractions and type applications.

Therefore, it returns an XMLF program that contains at most as much, and in general fewer, type information
than the original System-F term.

The first step of the translation is the translation of types. Let us introduce an important design choice
of this translation, informally. Rigid bindings are interpreted as substitutions (Definition 4.1.6). For example,
∀ (α ⇒ σid) α → α (1) is interpreted as the F-type σid → σid. However, ∀ (α1 ⇒ σid, α2 ⇒ σid) α1 → α2 (2)
is also interpreted likewise. Therefore, there are two candidates for the converse translation of σid → σid into
XMLF, namely (1) and (2). Observe that (2) is more general than (1) in XMLF (the latter is an instance of

the former). Taking (2) is the approach chosen in Section 4.1 to translate IMLF types. Maybe surprisingly, we
choose (1) to be the translation of σid → σid. That is, we always share similar bindings as much as possible,
as formalized in Definition 4.3.3 below. The opposite choice, which would associate (2) to the translation of
σid → σid, is also possible. Although this alternative is perhaps more elegant, its correctness proof is longer and
much more involved [LB04]. We present the first approach here for sake of simplicity. Despite this choice, this
section remains the most technical part of the paper8. It happens that proving the soundness of the translation
from System F to XMLF is subtle and needs meticulous instrumentation. Let us explain why.

A single System F type, such as σid → σid, corresponds to possibly many types in XMLF, as a result of
inlining of rigid bindings in System F. Consequently, XMLF types are more discriminatory, i.e. contain more
information, than System-F types, which is crucial for permitting type inference. The downside is that, given
a typing derivation in System F, we have to reconstruct the missing information and show that it is consistent
with MLF (typing rules). The purpose of the instrumentation is exactly to reconstruct and trace this information
in a safe way.

Auxiliary definitions

We first define a few operators that are used to translate F-types into XMLF-types. The translation of introduces
rigid bindings and unconstrained flexible bindings, but never uses constrained flexible bindings.

As a first step, we translate an F-type into a pair of a prefix and a variable used as an entry point into that
prefix. Following our design choice (exposed above), prefixes are maintained in shared form.

Definition 4.3.1 A prefix Q is shared when for all σ, (α1 ⇒ σ) ∈ Q and (α2 ⇒ σ) ∈ Q imply α1 = α2.

Sharing is purely syntactic, based on type equality. While it would have been more natural to define sharing up
to equivalence, this would require more technical machinery—and at least to present an algorithm for testing
equivalence (which can be found [LB04]). The syntactic definition suffices and is simpler.

As a result of sharing, the insertion of a new binding into a prefix depends on bindings that are already
present. Insertion, which is defined next, maintains another invariant: prefixes are ordered in the sense that
rigid bindings are inserted as far to the left as possible. For example, the prefix (α, β ⇒ γ → γ) is not ordered
because the rigid bound of β does not depend on α. The ordered, equivalent prefix is (β⇒γ → γ, α). Intuitively,
ordering may move rigid bindings, but not flexible ones. This is a form of extrusion, which we enforce to ensure
maximal sharing of rigid bounds. Indeed, this maximal sharing requires rigid bindings to have the wider possible
scope. Formally, the bounds of a prefix Q, written bnds(Q), is the set of all σ such that there exists a binding
(α⇒ σ) in Q.

Definition 4.3.2 The insertion of a type scheme σ into a prefix Q at variable α, written Q �α σ, is a prefix
defined in the two following cases: If (α⇒ σ)∈ Q, then Q �α σ is Q. If α /∈ dom(Q) and σ /∈ bnds(Q) then
Q�α σ is defined recursively as follows:

� ∅ �α σ is (α⇒ σ),

� (Q′′Q′) �ασ is (Q′′ �α σ)Q′ if ftv(σ) # dom(Q′),

� (Q′, β′ � σ′) �ασ is (Q′, β′ � σ′, α⇒ σ) if β′ ∈ ftv(σ).

8We have marked as auxiliary those results that are not used in further sections of the paper and therefore can easily be skipped.

RR n
�

0123456789

34 Rémy & Le Botlan

We write Q�α σ for the pair (Q�α σ), α.

Notice that insertion is partial. For example, (β ⇒ σ) �α σ is undefined. When defined, it returns the original
prefix either exactly or with the binding α = σ inserted “at the right place” while preserving the ordering of
other bindings.

We define an algorithm that computes the translation of an F-type t in two steps. We first define a relation
that takes a prefix Q and the type t as input an and returns a pair of a new prefix Q′ that extends Q and a
type variable α as output. This is written (Q) 〈〈t〉〉 : (Q′, α) (read “under prefix Q, a translation of t is the pair

(Q′, α)”). We then define the translation of t, written 〈〈t〉〉 as a set of XMLF types.
The use of an auxiliary relation is to capture non-determinism that results from the choice of fresh variables

during the translation. Lemma 4.3.6 below shows that a given input yields outputs that are similar, up to
renaming.

Below, we use the notation (Q) 〈〈t〉〉 : Q′ � σ (without any variable on �) to mean that there exists α such
that Q′ �α σ is defined and (Q) 〈〈t〉〉 : Q′ �α σ holds. This exposes the witness α in the relation (Q) 〈〈t〉〉 : (Q′, α)
and so introduces a source of non-determinism in the definition—the only one.

Definition 4.3.3 The translation relation is the smallest relation on quadruples of the form (Q) 〈〈t〉〉 : (Q′, α)
where Q and Q′ are well-formed shared prefixes and t a type such that ftv(t) ∩ dom(Q′) ⊆ dom(Q) satisfying
the following rules:

(Q) 〈〈α〉〉 : (Q,α)
(Q) 〈〈t1〉〉 : (Q1, α1) (Q1) 〈〈t2〉〉 : (Q2, α2)

(Q) 〈〈t1 → t2〉〉 : Q2 � α1 → α2

(Qα) 〈〈t〉〉 : (Q1αQ2, β)

(Q) 〈〈∀ (α) t〉〉 : Q1 � ∀ (αQ2) β

The restriction on the free type variables of t and the domains of the prefixes can always be satisfied by an
appropriate choice of fresh variables. The only possible translation of a type variable α under prefix Q is the
pair (Q,α), whether α belongs to dom(Q) or not. A translation of an arrow type t1 → t2 under Q is built using
the translation (Q1, α1) of t1 under Q and (Q2, α2) of t2 under Q1. It is defined as the insertion of α1 → α2

into Q2. Finally, the translation of a quantified type ∀ (α) t is built using the translation of t under Qα. Then,
the resulting prefix is split into Q1 and Q2 and the result is the insertion of ∀ (αQ2) β into Q1. Since Q1αQ2

is ordered, all the bindings of Q2 actually depends on α, possibly indirectly. This means that the prefix Q2 to
appear in the quantification (αQ2) is as small as possible.

The inclusion of prefixes, written Q ⊆ Q′, means that Q′ is obtained from Q by none or several insertions.
When (Q) 〈〈t〉〉 : (Q′, α) holds, we have Q ⊆ Q′ and ftv(Q′) ⊆ ftv(Q) ∪ ftv(t). (This easily follows from the
observation that Qα ⊆ Q1αQ2 implies Q ⊆ Q1.) Another invariant of the definition is that all bindings that
are in Q′ but not in Q are rigid.

Definition 4.3.4 (Translation of types and prefixes) The translation of an F-type t, written 〈〈t〉〉 is the

set of all XMLF type schemes ∀ (Q) α such that there exists a rigid, shared prefix Q′ with domain disjoint from
ftv(t) verifying (Q′) 〈〈t〉〉 : (Q,α). The translation of an F-typing environment A, written 〈〈A〉〉, is the set of
typing environments Γ that maps each x in dom(A) to some type scheme in 〈〈A(x)〉〉.

The prefix Q must actually be rigid and shared. This follows from definition of the translation relation and
that fact that Q′ is itself rigid.

Note that σid is both a type of System F and of XMLF. We have (∅) 〈〈σid〉〉 : (β ⇒ σid), β. We also have
(Q) 〈〈σid〉〉 : (Q) (β ⇒ σid), β, for any rigid, shared prefix Q that does already has a binding for σid. We then
have (β⇒ σid) 〈〈σid → σid〉〉 : (β⇒ σid) (γ⇒ β → β), γ.

We shall see below that all type schemes in the translation of an F-type are in fact equivalent (Corol-
lary 4.3.10), and similarly for the translation of typing environments.

Auxiliary results We now establish several properties about the translation algorithm that will be used to
prove the main result of this section, Lemma 4.3.15, from which theorems 5 and 6—two variants of the same
result—immediately follows. All of these properties address the following informal question: How can the output
vary for some small changes to the input? For instance, the following lemmas answer this question in particular
cases:

◦ Lemma 4.3.5 states that inputs and outputs can be consistently renamed.

◦ Lemma 4.3.6 characterizes non determinism: the outputs can be renamed while leaving the input un-
changed provided some capture-avoiding side conditions.

INRIA

MLF made simple. 35

◦ Lemma 4.3.7 states a form of idempotence: i) the input may be be replaced by the output (leaving the
output unchanged); ii) once the input and output are equal, they may be extended simultaneously.

◦ Lemma 4.3.9 states that the relation is closed by equivalence.

◦ Lemma 4.3.12 characterizes the effect of applying a substitution to the input type: the output prefix must
be substituted and shared again—along a sharing relation defined below.

◦ Lemma 4.3.13 states that when removing an unconstrained binding from the input, the bindings of the
output may have to be reordered.

As mentioned above, given a prefix Q and a type t, the algorithm may return different results due to different
choices of fresh variables. This is captured by saying that renamings preserve the translation.

Lemma 4.3.5 (Stability by renaming) If (Q) 〈〈t〉〉 : (Q′, α) holds, then (φ(Q)) 〈〈φ(t)〉〉 : (φ(Q′), φ(α)) holds
for any renaming φ.

Conversely, the choice of fresh variables is the only source of non-determinism, so that outputs for a single input
are always equal up to renaming. Additionally, the renaming can be chosen to be invariant on any “fresh” set
of variables I .

Lemma 4.3.6 (Determinism up to α-conversion) If (Q) 〈〈t〉〉 : (Q1, α1) and (Q) 〈〈t〉〉 : (Q′
1, α

′
1), then for

all finite set I disjoint from dom(Q1) ∪ dom(Q′
1), there exists a renaming φ such that

dom(φ) # dom(Q) ∪ ftv(t) ∪ I φ(Q1) = Q′
1 φ(α1) = α′

1

As a consequence, ∀ (Q1) α1 is equal to ∀ (Q′
1) α

′
1 by α-conversion. The translation is also stable by iteration:

translating a type under a prefix already containing the bindings of the translation returns the same prefix.

Lemma 4.3.7 (Idempotence) If (∅) 〈〈t〉〉 : (Q,α), then (QQ′) 〈〈t〉〉 : (QQ′, α) for any Q′ such that QQ′ is
well-formed.

(Proof p. 49)

The insertion of a type σ in a prefix Q (that is, Q� σ) is defined so as to maximize sharing. The result depends
on the initial prefix Q. Therefore, the translation of a type t under Q (that is, (Q) 〈〈t〉〉) also depends on Q. We
wish to show that the translation of a single type under different initial prefixes yields comparable prefixes, up
to some equivalence relation that we define now.

The equivalence relation on shared prefixes ≡I is the smallest equivalence (reflexive, symmetric, and tran-
sitive) relation also satisfying the two following rules:

Free

α /∈ I ∪ dom(Q) ∪ ftv(Q) σ /∈ bnds(Q)

Q ≡I (Q,α⇒ σ)

Comm

α1 /∈ ftv(σ2) α2 /∈ ftv(σ1)

(Q,α1 ⇒ σ1, α2 ⇒ σ2, Q
′) ≡I (Q,α2 ⇒ σ2, α1 ⇒ σ1, Q

′)

The superscript I is a finite set of type variables called the interface. Bindings of variables in I are “exposed”
to equivalence. Rule Free allows the insertion (or removal) of bindings not in the interface I . Side conditions
ensure that the prefix is kept well-formed and shared. Rule Comm allows the commutation of independent
binders.

Unsurprisingly, two types built with equivalent prefixes are equivalent.

Lemma 4.3.8 If Q1 ≡I Q2 and ftv(σ) ⊆ I, then (Q) ∀ (Q1) σ ≡ ∀ (Q2) σ holds under any suitable Q.

Equivalent prefixes also yield equivalent translations. Informally, this may be illustrated by the commutative
diagram below. The translation of t under two equivalent prefixes Q1 and Q2, yield equivalent prefixes Q′

1 and
Q′

2.

Q1 Q2

Q′
1 Q′

2

(Q2)〈〈t〉〉

≡

(Q1)〈〈t〉〉

≡

RR n
�

0123456789

36 Rémy & Le Botlan

Notations To lighten the notation below, we let Q mean dom(Q) and α mean {α} when a set of variables is
non-ambiguously expected from context. For example, given a set of variables J , a variable α, and a prefix Q,
we may write J∪α for J∪{α}, J \α for J \{α}, J∪Q for J∪dom(Q), J∪(Q1∩Q2) for J∪(dom(Q1)∩dom(Q2)),
and α ∩Q for {α} ∩ dom(Q).

Lemma 4.3.9 (Equiv) Let I be ftv(t). We assume Q1 rigid and Q1 ≡I Q2 holds. If (Q1) 〈〈t〉〉 : (Q′
1, α1) and

(Q2) 〈〈t〉〉 : (Q′
2, α2) hold, then there exist a set J and a renaming φ such that:

dom(φ) # I I ∪ {α1} ⊆ J Q′
1 ≡J φ(Q′

2) φ(α2) = α1

(Proof p. 49)

Corollary 4.3.10 If σ1, σ2 ∈ 〈〈t〉〉, then (Q) σ1 ≡ σ2 under any suitable Q.
(Proof p. 52)

We now consider the effect of type instance on the translation. More precisely, substituting α by t′ in a
type t has an effect on sharing, in the sense that the translation of t[t′/α] is not only a substitution of the
translation of t. For example, consider the type t equal to (σid → α) → (σid → σid). A valid translation of t
under an empty prefix is (after harmless simplification) ∀ (α1 ⇒ σid, α2 ⇒ α1 → α, α3 ⇒ α1 → α1) α2 → α3 (1).
Substituting α by σid in t, we get t[σid/α], that is, (σid → σid) → (σid → σid). A valid translation of the latter is
∀ (α1 ⇒ σid, α2 ⇒ α1 → α1) α2 → α2 (2). We see that α2 and α3 have been merged. In order to transform (1)
into (2), the substitution [α1/α] must be applied first, then similar bindings must be shared again (namely, α2

and α3).
To this end, we define an algorithm −−−−>φ that shares prefixes as much as possible. The subscript φ is a

substitution that keeps track of sharing that has already been performed. In the example above, φ would be
[α2/α3]. The algorithm −−−−> is recursively defined by as a set of (deterministic) inference rules. It is written
(Q) Q1 −−−−>φ Q2, where Q and Q1 are inputs and φ and Q2 are outputs. For types, the algorithm is written −−−−>,
without subscript (Rule Sh-Types). As usual, the prefix Q may be omitted in (Q) Q1 −−−−>φ Q2 or (Q) σ1 −−−−> σ2

when it is empty.

Sh-Empty

(Q) ∅ −−−−>id ∅

Sh-Flex

(Qα) Q1 −−−−>φ Q2

(Q) αQ1 −−−−>φ αQ2

Sh-Subst

(Q) σ −−−−> σ′ (α′ ⇒ σ′) ∈ Q (Q) Q1[α
′/α] −−−−>φ Q2

(Q) (α⇒ σ,Q1) −−−−>φ◦[α′/α] Q2

Sh-Context

(Q) σ −−−−> σ′ σ′ /∈ bnds(Q) (Q,α⇒ σ′) Q1 −−−−>φ Q2

(Q) (α⇒ σ,Q1) −−−−>φ (α⇒ σ′, Q2)

Sh-Types

(Q) Q1 −−−−>φ Q2

(Q) ∀ (Q1) τ −−−−> ∀ (Q2) φ(τ)

Rules Sh-Empty, Sh-Flex, and Sh-Context are context rules that do not perform any sharing. On the
contrary, Rule Sh-Subst detects and shares two similar bindings.

The next lemma describes properties of this algorithm.

Lemma 4.3.11
i) If (Q) Q1 −−−−>φ Q2, then dom(φ) = dom=(Q1) − dom(Q2) and dom(Q1) = dom(Q2) ∪ dom(φ).
ii) If (Q) Q1 −−−−>φ Q2 holds, then for any type σ closed under QQ1, we have (Q) ∀ (Q1) σ @− ∀ (Q2) φ(σ).

Item i) is a technical invariant: the domain of Q1 is the disjoint sum of the domain of Q2 and the domain of φ.
More precisely, the domain of φ is included in the rigid domain of Q1 (which means that only rigid bindings are
shared). Item ii) asserts that the sharing performed by the algorithm corresponds to abstraction at the type
level.

Proof: Both properties are shown by induction on Q1 −−−−>φ Q2.

The following lemma, composed of three properties, specifies the effect of a substitution ψ of the form [α/β]
over a translation 〈〈t〉〉. Property P-i is used in the proof of the following commutative diagram (Property P-ii):

Q1 Q2

Q′
1 Q′

2

〈〈ψ(t)〉〉

ψ(Q′
1) −−−−>

〈〈t〉〉

ψ(Q1) −−−−>

INRIA

MLF made simple. 37

Moreover, the effect of ψ on the translation is equivalent to the substitution [t′/β], provided (Q′, α) is a
translation of t′ (Property P-iii).

Lemma 4.3.12 Let ψ be the substitution [α/β]. We assume that the binding of α in Q. We write say that Q
is α-rigid if Q is rigid or of the form Q′, α � σ,Q′′ with Q′ rigid. The following implications hold:

P-i

ψ(Q) −−−−>φ Q
′ β 6= α′ Q is α-rigid β /∈ dom(Q) Q�α′ σ is defined φ ◦ ψ(σ) −−−−> σ′

∃φ′ such that ψ(Q�α′ σ) −−−−>φ′◦φ Q
′ �φ′◦φ(α′) σ

′ dom(φ′) ⊆ {α′}

P-ii

Q1 shared
Q1 is α1-rigid β /∈ dom(Q′

1) ftv(t) # dom=(Q′
1) (Q1) 〈〈t〉〉 : (Q′

1, α1) ψ(Q1) −−−−>φ Q2

∃Q′
2, α2, φ

′ s.t. (Q2) 〈〈ψ(t)〉〉 : (Q′
2, α2) ψ(Q′

1) −−−−>φ′◦φ Q
′
2

φ′ ◦ φ ◦ ψ(α1) = α2

P-iii

(∅) 〈〈t′〉〉 : (Q′, α) (Q′) 〈〈ψ(t)〉〉 : (Q′
2, α2)

(Q′) 〈〈t[t′/β]〉〉 : (Q′
2, α2)

(Proof p. 52)

In the following lemma, we show that an unconstrained binding (here β) may be removed from the input prefix
of the translation only requires some reordering of binders in the output. To this end, we define the relation ≈
as the smallest equivalence relation on prefixes satisfying Comm. Noticeably, Q ≈ Q′ implies Q ≡I Q′ for any
I .

Lemma 4.3.13 Let Q1 and Q2 be rigid prefixes. Let P and P ′ be two prefixes, each of which is either empty
or starts with an unconstrained binding. Then, the following implication holds:

(Q1βQ2P) 〈〈t〉〉 : (Q′
1βQ

′
2P

′, α) Q1Q2 ≈ Q3

∃Q′
3 (Q3P) 〈〈t〉〉 : (Q′

3P
′, α) ∧ Q′

1Q
′
2 ≈ Q′

3
(Proof p. 53)

We are finally equipped to show the correctness of the translation from System F into MLF. We shall use
the two following derivable rules as short-cuts in the proof.

Lemma 4.3.14 The following rules are derivable:

Shift?

Q′ rigid

(QQ′) ∀ (Q′) σ @− σ

Share?

(QQ′) ∀ (Q′) τ v τ

Lemma 4.3.15 If F :: Γ′ ` a : t holds, then there exists an expression a′ whose type erasure is a and such that
XMLF :: (Q) Γ ` a′ : σ holds for any Γ ∈ 〈〈Γ′〉〉, σ ∈ 〈〈t〉〉 and suitable prefix Q.

Proof: By induction on F :: Γ′ ` a : t (1). Let Γ be in 〈〈Γ′〉〉. Thanks to Corollary 4.3.10 and Inst, it suffices to

show XMLF :: (Q) Γ ` a′ : σ for one σ in 〈〈t〉〉 instead of all of them. By default, we let typing judgment be in

XMLF.
◦ Case F-Var: a is x and (1) implies x : t ∈ Γ′. Hence, x : σ ∈ Γ with σ ∈ 〈〈t〉〉. By Var, we have (Q) Γ ` x : σ,

which is the expected result.
◦ Case F-App: a is a1 a2 and (1) implies F :: Γ′ ` a1 : t2 → t (2) and F :: Γ′ ` a2 : t2 (3). Let ∀ (Q′) α be in

〈〈t2 → t〉〉. By definition, there exists a prefix Q0 such that (Q0) 〈〈t2 → t〉〉 : (Q′, α) holds. The premises of this
judgment are (Q0) 〈〈t2〉〉 : (Q1, α1) and (Q1) 〈〈t〉〉 : (Q2, α2) (4) with Q′ being Q2 �α α1 → α2 (5)
By induction hypothesis and (2), there exists a′1 such that (Q) Γ ` a′1 : ∀ (Q′) α. We note from (5) that (Q) ∀ (Q′)
α ≡ ∀ (Q2) α1 → α2 holds by Eq-Var. Thus, by Inst and Eq-Var, we have (Q) Γ ` a′1 : ∀ (Q2) α1 → α2 (6).
By induction hypothesis and (3), there exists a′2 such that (Q) Γ ` a′2 : ∀ (Q1) α1. Since Q1 ⊆ Q2 holds, we have
(Q) ∀ (Q1) α1 ≡ ∀ (Q2) α1 by Eq-Free. Consequently, (Q) Γ ` a′2 : ∀ (Q2) α1 (7) holds by Inst.
From App? (page 22), (6) and (7), we get (Q) Γ ` a′1 a

′

2 : ∀ (Q2) α2. We conclude by taking a′ = a′1 a
′

2 and noting
that ∀ (Q2) α2 ∈ 〈〈t〉〉 holds from (4).
◦ Case F-Fun: a is λ(x) a1, and (1) implies that t is t1 → t2 and F :: Γ′, x : t1 ` a1 : t2 (8) holds. Let ∀ (Q′) α

be in 〈〈t1 → t2〉〉. By definition, there exists Q0 such that (Q0) 〈〈t1 → t2〉〉 : (Q′, α) holds. The premises are
(Q0) 〈〈t1〉〉 : (Q1, α1) and (Q1) 〈〈t2〉〉 : (Q2, α2) with Q′ being Q2 � α1 → α2 (9).

RR n
�

0123456789

38 Rémy & Le Botlan

By induction hypothesis and (8), there exists a′1 such that (QQ2) Γ, x : ∀ (Q1) α1 ` a′1 : ∀ (Q2) α2 holds. We
may freely assume that dom(Q2) # ftv(Γ). Noting that (QQ2) ∀ (Q2) α2 v α2 holds by Share?, we derive
(QQ2) Γ, x : ∀ (Q1) α1 ` a′1 : α2 by Inst. Let a′ be λ(x : ∀ (Q1) α1) a

′

1. By Fun’, we get (QQ2) Γ ` a′ :
∀ (β1 ⇒ ∀ (Q1) α1) β1 → α2. Using Gen, we get (Q) Γ ` a′ : ∀ (Q2) ∀ (β1 ⇒ ∀ (Q1) α1) β1 → α2. We note that
Q1 ⊆ Q2, hence (Q) ∀ (Q1) α1 ≡ ∀ (Q2) α1 (10) holds by Eq-Free. Then, the following holds:

∀ (Q2) ∀ (β1 ⇒∀ (Q1) α1) β1 → α2

≡ ∀ (Q2) ∀ (β1 ⇒∀ (Q2) α1) β1 → α2 from (10)
@− ∀ (Q2) ∀ (β1 ⇒ α1) β1 → α2 by Shift?

≡ ∀ (Q2) α1 → α2 by Eq-Mono

≡ ∀ (Q′) α from (9)

Thus, by Inst, we get (Q) Γ ` a′ : ∀ (Q′) α. This is the expected result.
◦ Case F-Gen: (1) implies that τ is of the form ∀ (α) t′ with α /∈ ftv(Γ′) and F :: Γ′ ` a : t′ (11). Let Q′ and α′

be such that (∅) 〈〈∀ (α) t′〉〉 : (Q′, α′). The premise is (α) 〈〈t′〉〉 : (Q1αQ2, β) (12) and Q′ is Q1 �α′ ∀ (αQ2) β (13).
By Lemma 4.3.13 and (12), there exists Q′

3 such that (∅) 〈〈t′〉〉 : (Q3, β) holds with Q3 ≈ Q1Q2 (14). Thus,
by induction hypothesis and (11), there exists a′ such that (Qα) Γ ` a′ : ∀ (Q3) β holds. From (14), we get
(Qα) ∀ (Q3) β ≡ ∀ (Q1Q2) β. Thus, (Qα) Γ ` a′ : ∀ (Q1Q2) β holds by Inst. By Gen, we get (Q) Γ ` a′ :
∀ (αQ1Q2) β. By Eq-Comm and Inst, we get (Q) Γ ` a′ : ∀ (Q1αQ2) β. We get the expected result by noting
that (Q) ∀ (Q′) α′ ≡ ∀ (Q1αQ2) β holds from (13).
◦ Case F-Inst: (1) implies that t is of the form t0[t

′/β] and F :: Γ′ ` a : ∀ (β) t0 (15). Let (Q′, α) be such that
(∅) 〈〈t′〉〉 : (Q′, α) (16) and ftv(t) # dom(Q′) (17) hold. We may freely assume that β /∈ dom(Q′) ∪ ftv(Q′).
Let (Q0, α0) be such that (Q′) 〈〈∀ (β) t0〉〉 : (Q0, α0). The premise of this judgment is (Q′β) 〈〈t0〉〉 : (Q1βQ2, γ) (18)
and Q0 is Q1 �α0

∀ (βQ2) γ. By Eq-Var, this implies (Q) ∀ (Q0) α0 ≡ ∀ (Q1βQ2) γ (19). By induction
hypothesis and (15), there exists a′ such that (Q) Γ ` a′ : ∀ (Q0) α0 holds. From (19) and Inst, we get
(Q) Γ ` a′ : ∀ (Q1βQ2) γ (20).
Let ψ be [α/β]. From (18), we have β /∈ dom(Q1)∪ ftv(Q1). Therefore, ψ(Q1) = Q1. Then, we derive the following:

(Q) ∀ (Q1βQ2) γ
= ∀ (Q1) ∀ (β ≥⊥) ∀ (Q2) γ by notation
v ∀ (Q1) ∀ (β ≥ α) ∀ (Q2) γ by I-Nil and flexible-congruence
≡ ∀ (Q1) ψ(∀ (Q2) γ) by Eq-Mono and Eq-Free

= ∀ (ψ(Q1Q2)) ψ(γ)

Therefore, (Q) Γ ` a′ : ∀ (ψ(Q1Q2)) ψ(γ) (21) holds from (20) by Inst.
We know from (16) that Q′ is already shared, that is, Q′ −−−−>id Q′ holds. Additionally, ψ(Q′) = Q′. Thus,
ψ(Q′) −−−−>id Q

′ holds.
From (18) and Lemma 4.3.13, there exists Q3 such that (Q′) 〈〈t0〉〉 : (Q′

3, γ) with Q′

3 ≈ Q1Q2 (22). Then, by
Property P-ii and (17), there exist Q′

2, α2 and φ′ such that

(Q′) 〈〈ψ(t0)〉〉 : (Q′

2, α2) (23) ψ(Q3) −−−−>φ′ Q′

2 (24) φ′ ◦ ψ(γ) = α2 (25)

From (21), (22), and Inst, we get (Q) Γ ` a′ : ∀ (ψ(Q3)) ψ(γ) (26). From (24) and Lemma 4.3.11.ii, we have
(Q) ∀ (ψ(Q3)) ψ(γ) v ∀ (Q′

2) φ′ ◦ ψ(γ). By (25), that is (Q) ∀ (ψ(Q3)) ψ(γ) v ∀ (Q′

2) α2. Hence, we get
(Q) Γ ` a′ : ∀ (Q′

2) α2 (27) by Inst and pi1.
From (23) and P-iii, we get (Q′) 〈〈t〉〉 : (Q′

2, α2), which implies ∀ (Q′

2) α2 ∈ 〈〈t〉〉 and so (27) is the expected result.

The main result follows as a corollary.

Theorem 5 Any term typable in implicit System F is typable in MLF by adding some type annotations on
function arguments.

Noticing that type annotations on function arguments depend only on the type of the argument, and not on
the rest of the typing derivation, a more precise statement is the following:

Theorem 6 Any term typable in explicit System F is typable in MLF by dropping type abstractions and type
applications and by translating type annotations.

Remarkably, all the System F terms that differ only in their type abstractions and type applications are trans-
lated towards the same XMLF program. Since every XMLF program admits a principal type (this result is not

shown in this paper, but shown for Full MLF as well as a small variant of XMLF in [LB04]), this type captures
all the possible type abstractions and type applications of the term.

INRIA

MLF made simple. 39

4.4 Embedding ML into XMLF

We show that ML is a conservative extension to ML. That is, we consider ML raw terms. i.e. XMLF terms that
do not use type annotations, and show that well-typedness in ML implies well-typedness in XMLF. Conversely,
closed ML raw terms that are well-typed in XMLF are also well-typed in ML.

ML types are a subset of F-types where quantification is allowed only at outermost level.
The instance relation for ≤ML has been defined in the introduction (

�
2.1, Page 9). We recall that it is

composed of exactly all pairs of the form ∀ (ᾱ) σ ≤ML ∀ (β̄) σ[τ̄ /ᾱ]) with β̄ # ftv(∀ (ᾱ) σ). Notice that variables

ᾱ may only be substituted by monotypes τ̄ . The following chain of relations in XMLF shows that the ≤ML is a
subrelation of v.

∀ (ᾱ) σ = ∀ (α1, .., αn) σ by notation
= ∀ (α1 ≥⊥, .., αn ≥⊥) σ by notation
≡ ∀ (β̄) ∀ (α1 ≥⊥, .., αn ≥⊥) σ by Eq-Free

v ∀ (β̄) ∀ (α1 ≥ τ1, .., αn ≥ τn) σ by I-Nil and context rule
v ∀ (β̄) ∀ (α1 ⇒ τ1, .., αn ⇒ τn) σ by I-Rigid

≡ ∀ (β̄) σ[τ1/α1]..[τn/αn] by Eq-Mono

= ∀ (β̄) σ[τ̄ /ᾱ] by notation

ML terms are in XMLF The typing rules of ML are exactly those of XMLF, namely Var, Fun, App, Inst,
Gen, Let without Annot, and of course, modulo the restriction to ML types and prefixes and the use of ≤ML

instead of v in rule Inst. Consequently, any typing derivation in ML is also a typing derivation in XMLF (which
is not, however, a most principal derivation in general).

Theorem 7 Any term typable in ML is typable in XMLF as such.

Conversely, terms that are typable in XMLF are not necessarily typable in ML. Indeed, XMLF contains the full
power of System F, but ML does not. However, given an unannotated term of XMLF, it does also typecheck in
ML.

Unannotated XMLF terms are in ML We proof this by translating XMLF typing derivations of unannotated
terms into ML typing derivations in two steps. First, rigid bindings are removed from the initial derivation by
“flexifying” the derivation (Definition 4.4.1). The result which contains only flexible types, is still a valid
derivation (Lemma 4.4.3). Last, all quantifiers are extruded to the outermost level. The final derivation is still
correct and it is a derivation in ML (Lemma 4.4.7).

Definition 4.4.1 XMLF types that do not contain rigid bindings are said to be flexible. We say that a derivation
is flexible if it does not contain any rigid bindings in types nor in any prefix appearing in the derivation. A
judgment is flexible if it has a flexible derivation.

Let flex be the function defined on XMLF types and prefixes that transforms every rigid binding into a flexible
binding. For instance, flex (∀ (α⇒ σ1, β ≥ σ2) σ) is ∀ (α≥ flex (σ1), β ≥ flex (σ2)) flex (σ). The following lemma
shows that flexifying an instance relation is indeed correct.

Lemma 4.4.2
i) If (Q) σ1 ≡ σ2, then (flex (Q)) flex (σ1) ≡ flex (σ2) is flexible.
ii) If (Q) σ1 @− σ2, then (flex (Q)) flex (σ1) v flex (σ2) is flexible.
iii) If (Q) σ1 v σ2, then (flex (Q)) flex (σ1) v flex (σ2) is flexible.

Proof: Each property is proved by induction on the derivation. Properties i and iii are easy. As for ii, the case
A-Hyp is replaced by I-Hyp and congruence is replaced by flexible congruence. Finally, I-Rigid is replaced by
reflexivity (that is, by the equivalence relation).

We lift the function flex to typing environments and to typing judgments in the natural way. This operation
preserves typing judgments.

RR n
�

0123456789

40 Rémy & Le Botlan

Lemma 4.4.3 If (Q) Γ ` a : σ holds in XMLF, then so does flex ((Q) Γ ` a : σ).

Proof: By induction on the derivation of (Q) Γ ` a : σ. Case Var is immediate. Cases App, Fun and Let are
by induction hypothesis. Case Inst is by Property 4.4.2.iii. Case Gen: We have (Q) Γ ` a : ∀ (α � σ1) σ2, and
the premise is (Q,α � σ1) Γ ` a : σ2, with α /∈ ftv(Γ). Note that α /∈ ftv(flex (Γ)) either. By induction hypothesis,
(flex (Q), α ≥ flex (σ1)) flex (Γ) ` a : flex (σ2) holds. Hence, (flex (Q)) flex (Γ) ` a : ∀ (α ≥ flex (σ1)) flex (σ2) holds
by Gen. By definition, this means (flex (Q)) flex (Γ) ` a : flex (∀ (α � σ1) σ2), which is the expected result.

We recall a standard result of ML.

Lemma 4.4.4 If we have ∀ (ᾱ) τ1 ≤ML ∀ (β̄) τ2, then for any σ such that ftv(σ) # ᾱ ∪ β̄, we have ∀ (ᾱ)
σ[τ1/γ] ≤ML ∀ (β̄) σ[τ2/γ]

We now show how a flexible XMLF type is transformed into an ML type by extrusion of quantifiers. We first
transform prefixes. A flexible prefix is transformed into a pair whose first element is a set of quantifiers and the
second element is a monotype substitution.

Definition 4.4.5 The ML approximation of a flexible prefix Q, written 〈〈Q〉〉, and the ML approximation of
a flexible type σ, written 〈〈σ〉〉, are defined recursively as follows (overloading the notation used for System F
should not raise any ambiguity):

〈〈∅〉〉 = (∅, id)
〈〈Q〉〉 = (ᾱ, θ) 〈〈σ〉〉 = ∀ (β̄) τ ᾱ # β̄

〈〈Q,α≥ σ〉〉 = (ᾱβ̄, θ ◦ [τ/α])
〈〈⊥〉〉 = ∀ (α) α

〈〈Q〉〉 = (ᾱ, θ)

〈〈∀ (Q) τ〉〉 = ∀ (ᾱ) θ(τ)

Notice that the ML approximation of a prefix Q is a pair (ᾱ, θ) that may be renamed. For example, the
approximation of (α ≥ σid) is (β, [β → β/α]) which is considered equivalent to the pair (γ, [γ → γ/α]). As a
consequence, we may always assume freshness conditions on the new variables introduced by the approximation.
We omit the details.

Lemma 4.4.6
i) For any σ and any monotype substitution θ, we have 〈〈θ(σ)〉〉 = θ(〈〈σ〉〉).
ii) If (Q) σ1 v σ2 is flexible, and 〈〈Q〉〉 = (ᾱ, θ), then θ(〈〈σ1〉〉) ≤ML θ(〈〈σ2〉〉) holds.

(Proof p. 54)

We lift 〈〈·〉〉 to typing environments in the obvious way.

Lemma 4.4.7 If there exists a flexible derivation of (Q) Γ ` a : σ in XMLF then there exists a derivation of
(ᾱ) θ(〈〈Γ〉〉) ` a : θ(〈〈σ〉〉) in ML where (ᾱ, θ) is 〈〈Q〉〉.

Proof: By induction on the derivation. Case Var is immediate. Cases Fun, App, and Let are by induction
hypothesis. Case Inst is a direct consequence of Property 4.4.6.ii. Case Gen: The premise is (Q,α≥σ1) Γ ` a : σ2.
Let ∀ (β̄) τ1 be 〈〈σ1〉〉 (1), and θ1 be [τ1/α] (2). We choose β̄ such that β̄ # ftv(Γ) (3). By definition, we have
〈〈(Q,α ≥ σ1)〉〉 = (ᾱβ̄, θ ◦ θ1). By induction hypothesis, we have θ ◦ θ1(〈〈Γ〉〉) ` a : θ ◦ θ1(〈〈σ2〉〉) in ML. Since
α /∈ ftv(Γ), we have θ1(〈〈Γ〉〉) = 〈〈Γ〉〉. Hence, θ(〈〈Γ〉〉) ` a : θ◦θ1(〈〈σ2〉〉) holds. From (3), we get by Rule Gen of ML,
θ(〈〈Γ〉〉) ` a : ∀ (β̄) θ ◦ θ1(〈〈σ2〉〉). Notice that ∀ (β̄) θ ◦ θ1(〈〈σ2〉〉) is equal to θ(∀ (β̄) θ1(〈〈σ2〉〉)), which, by definition
of 〈〈·〉〉, (1), and (2) is also θ(〈〈∀ (α≥ σ1) σ2〉〉). We thus have θ(〈〈Γ〉〉) ` a : θ(〈〈∀ (α≥ σ1) σ2〉〉), as expected.

Theorem 8 Any unannotated term typable in XMLF under a flexible typing environment Γ (including an empty
one) is typable in ML under 〈〈Γ〉〉.

Proof: Direct consequence of Lemmas 4.4.7 and 4.4.3.

INRIA

MLF made simple. 41

4.5 Programs that we intendedly reject

We have shown that XMLF is a type system that is as powerful as System F (
�
4.3). While the encoding

introduced an annotation on every λ-abstraction, these annotations may be omitted when the argument is not
used polymorphically, as shown by the embedding of ML into XMLF.

Conversely, terms that are insufficiently annotated are rejected. Thus, although the full power of System F
is available in XMLF, it must be gently introduced by means of explicit type annotations. Few type annotations
are needed (the encoding of System F is already concise and still sometimes redundant), but some are manda-
tory: annotations on function arguments that are used polymorphically. This provides a clear intuition to the
programmer with respect to when to put type annotations

Rather than a weakness, it is the strength of XMLF to enforce such annotations. Since such a clear difference
can be made between implicit and explicit polymorphism and programs rejected accordingly, type inference
never has to guess polymorphism and, as a result, is decidable (and tractable).

As an example of a function that requires an annotation, λ(x) x x is not typable in XMLF—otherwise it

would also be typable in ML. However, λ(x : σid) x x is typable in XMLF, as discussed on page 31.

5 Related works

Our work continues a long line of research efforts concerned with type inference with first-class polymorphism.
Unsurprisingly, this problem has been tackled from two opposite directions, either performing (partial) type
inference for (variants of) System F and attempting to reach most of ML programs (

�
5.1), or encapsulating

first-class polymorphic values within first-order ML types (
�
5.2) in more and more transparent ways.

5.1 Type inference for System F

Several interesting works on type inference for System-F-like type systems had already been carried out before
it was proved to be undecidable for System F [Wel99] and for some of its variants.

Type containment. In the late 80’s, Mitchell noticed that System F might not be the “right” system for
studying type inference [Mit88]. He introduced the closure of System F by η-conversion, known as Fη , and
showed that well-typedness in Fη could be obtained by replacing the instance relation ≤F by a larger relation
≤η, called type containment (see

�
2.1). He also showed that uses of type-containment were equivalent to the

applications of retyping functions—functions whose type-erasure η-reduces to the identity—in System F. Type
inference for System F modulo η-expansion is now known to be also undecidable [Wel96].

Our treatment of type annotations as type-revealing primitives resembles the use of retyping functions.
Moreover, ≤η and our type instance relation ≤ have a few interesting cases in common. However, they also
differ significantly. Type containment is implicit, automatically driven by the type structure, and propagated
according to polarities of occurrences (e.g. contravariantly on the left-hand side of arrows and covariantly
anywhere else). By contrast, our type instantiation is always explicitly specified via flexibly bound variables,
and may be used at occurrences of arbitrary polarities and in particular, it can be applied simultaneously at
occurrences of opposite polarities, so that the weaker the argument, the weaker the result. Of course, typing
rules will only allow type instantiation at some occurrences and will enforce non variance via rigid bindings
anywhere else. As a result, the two relations are incomparable. The resemblance between type containment
and MLF is only superficial.

Polymorphic Subtyping. System F<: is another extension of System F with a richer instance relation <:
(see its definition in

�
2.1). In F<: as in MLF, each type variable is also given a bound. However, it is an upper

bound in F<: while it is a lower bound in MLF. As for type-containment, the subtyping relation <: is structural,
which makes a huge difference with our instance relation. Type inference for F<: is undecidable. Even, type
checking is undecidable for some variants of the subtyping relation <: [Pie94].

Type inference based on second-order unification. Second-order unification, although known to be un-
decidable, has been used to explore the practical effectiveness of type inference for System F by Pfenning [Pfe88].
Despite our opposite choice, that is not to support second-order unification, there are at least two comparisons
to be made. Firstly, Pfenning’s work does not cover the language ML per se, but only the λ-calculus, since
let-bindings are expanded prior to type inference. Indeed, ML is not the simply-typed λ-calculus and type

RR n
�

0123456789

42 Rémy & Le Botlan

inference in ML cannot, in practice, be reduced to type inference in the simply-typed λ-calculus after expansion
of let-bindings. Secondly, one proposal seems to require annotations exactly where the other can skip them:
Pfenning’s system requires place holders (without type information) for type abstractions and type applications

but never need type information on arguments of functions. Conversely, MLF requires type information on some
arguments of functions, but no information for type abstractions or applications.

While Pfenning’s system relies on second-order unification to really infer polymorphic types, we strictly
keep a first-order unification mechanism and never infer polymorphic types—we just propagate them. It might
be interesting to see whether our form of unification could be understood as a particular case of second-order
unification. For instance, using a constraint-based presentation of second-order unification [DHKP96], could
flexible bounds help capture certain multi-sets of unification constraints in a more principal manner, and so
reduce the amount of backtracking?

Another restriction of second-order unification is unification under a mixed prefix [Mil92]. However, our
notion of prefix and its role in abstracting polytypes is quite different. In particular, mixed prefixes mention
universal and existential quantification, whereas MLF prefixes are universally quantified. Besides, MLF prefixes
associate a bound to each variable, whereas mixed prefixes are always unconstrained.

Partial type inference in System F. Several people have considered partial type inference for System F [JWOG89,
Boe85, Pfe93, Sch98] and stated undecidability results for some particular variants. For instance, Boehm [Boe85]
and Pfenning [Pfe93] considered programs of System F where λ-abstractions can be unannotated, and only the
locations of type applications were given, not the actual type argument. They both showed that type reconstruc-
tion then becomes undecidable as it can encode second-order unification problems. The encoding introduces an
unannotated λ-abstraction whose argument is used polymorphically. This is precisely what we avoid in MLF:
all polymorphic λ-abstraction must be annotated, whereas type abstractions and type applications are inferred.

As another example, Schubert [Sch98] considers sequent decision problems for System F in both Curry’s style
and Church’s style. They, in fact, correspond to type inference problems in System F, as already studied by
Wells [Wel99], and are known to be undecidable. An inverse typing problem in Church’s style System F consists
in finding the typing environment Γ that makes a fully annotated programM typable. Schubert proves that this
problem is undecidable in general by encoding a restricted form of second-order unification, which is then proved
equivalent to the problem of termination for two-counters automatons. We see, that although the program is
fully annotated, the knowledge of the typing environment is necessary to typecheck it in a decidable way. It is
then unsurprising that systems with intersection types, and more generally systems aiming at principal typings,
which have to infer both the type and the typing environment, are undecidable.

On the contrary, the typing context is always known in the approach followed in MLF—-as in ML.

Decidable fragments of System F. Several approaches have considered fragments of System F, for which
complete type reconstruction may be performed: Rank-2 polymorphic types [KW94], called Λ2, and rank-2
intersection types [Jim95], called I2 actually type the same programs. They have been generalized to even-rank
polymorphic types and odd-rank intersection types [Jim00]. However, none of these system is compositional,
because of the rank limitation: one may not abstract over arbitrary values of the language. Since first-class
polymorphism is precisely needed to introduce a higher level of abstraction, we think this is a fundamental
limitation that is not acceptable in practice. Besides, their type inference algorithm in Λ2 requires rewriting
programs according to some non-intuitive set of reduction rules. Hence, no simple intuitive specification of
well-typedness is provided to the user. Worse, type inference can only be performed on full programs: it is
thus not possible to split a program into several modules and typecheck them independently. Noticeably, I2 has
better properties than Λ2, such as principal typings. However, the equivalence between I2 and Λ2 is shown by
means of rewriting techniques; thus, although a typing in I2 can be inferred in a modular way, it does not give
a modular typing in Λ2.

Intersection types and System E. Wells and Carlier have proposed a type system, called System E, that
generalizes intersection types with expansion variables [CPWK04]. Although their work is quite different in
nature, as type inference is undecidable and only a semi-algorithm is given, there are interesting connections to
be made. In particular, both works attempt to share several derivations of a same term, using implicit sharing
via expansion variables in the case of System E or more explicit sharing via auxiliary quantifiers in the case of
MLF.

INRIA

MLF made simple. 43

Local type inference. Local type inference [Car93, PT98] uses typing constraints between adjacent nodes
to propagate type information locally, as opposed to the global propagation that is performed by unification
as used in MLF (or ML). This technique is quite successful at leaving implicit many (but not all) eliminations
of both subtyping and universal polymorphism. However, it usually performs poorly for their introduction
forms, which remain mandatory in most cases. The technique has been tested in practice and ambiguous results
were reported: While many dummy type annotations can be removed, a few of them remained necessary and
sometimes in rather unpredictable ways. One difficulty arises from anonymous functions as well as so-called
hard-to-synthesize arguments [HP99b].

The technique is actually fragile and does not resist to simple program transformations. As an example,
the application app f x may be untypable with local type inference when f is polymorphic9. Principal types
are ensured by finding a “best argument” each time a polymorphic type is instantiated. If no best argument
can be found, the typechecker signals an error. Such errors do not exist in ML nor MLF, where every typable
expression has a principal type.

It should be noticed that finding a “best argument”, and thus inferring principal types in local type systems
is sometimes made more difficult because of the presence of subtyping, which MLF does not consider. In
particular, local type inference and its refinement described in the next paragraph are the only partial type
inference techniques that deal with both second-order polymorphism and subtyping. The extension of MLF with
subtyping has not been explored at all.

Colored local type inference [OZZ01] is considered as an improvement over local type inference, although
some terms typable in the latter are not typable in the former. It enriches local type inference by allowing only
partial type information to be propagated.

Stratified type inference. Beyond its treatment of subtyping, local type inference also brings the idea that
explicit type annotations can be propagated up and down the source tree according to fixed well-defined rules.
This can sometimes be viewed as a preprocessing pass on the source term, which we then called stratified type
inference. When the preprocessing step is simple and intuitive it need not be defined through logical typing
rules, but may instead be defined algorithmically. Such a mechanism was already used in the first prototype of
MLF to move annotations of toplevel definitions to annotations of their respective parameters. Here, stratified
type inference is used as a secondary tool that helps writing annotations at different places rather than removing
them. The use of stratified type inference as the main tool for performing type inference for System F has not
be shown satisfactory, even for its rather limited predicative fragment [Rém05].

5.2 Embedding first-class polymorphism in ML

ML programmers did not wait for solutions to the problem of type inference with first-class polymorphic types
to introduce them in existing languages. Boxing polymorphism is a backup solution that consists in embedding
polymorphic values into first-class ML values. Initially introduced for existential types it was quickly applied to
universal types and later turned into more and more sophisticated proposals, some of which are now in use in
OCaml or Haskell.

Boxed polymorphism refers to the encapsulation of first-class polymorphic values into monomorphic ones
via injection and projection functions. In their most basic version, injections and projections are explicit, even
though, in practice, they can be attached to datatype constructors [LO94, Rém94]. Typically, preliminary type
definitions are made for all polymorphic types that appear in the program. For instance, the following program
defines two flavors of auto and applies them to id:

type sid = Sid of ∀ (α) α→ α
let id = Sid (λ(x) x) : sid
let auto1= λ(x) let Sid z = x in z z : ∀ (β) sid → (β → β)
let auto2= λ(x) let Sid z = x in z x : sid → sid
(auto1 id, auto2 id) : ∀ (β) (β → β) × sid

The symbol Sid is both used as a constructor in the creation of the polymorphic value id (second line) and
as a destructor when it appears on the left-hand side of let-bindings (third and fourth lines)—or in place of

9The problem disappears in the uncurrified form, but uncurrifying is not always possible, or it may amount to introducing
anonymous functions with an explicit type annotation.

RR n
�

0123456789

44 Rémy & Le Botlan

parameters as in λ(Sid x) x x, which could be an alternative definition of auto1. Notice the difference between
auto1 and auto2: the former returns the unboxed identity while the latter returns the boxed identity. Here, the
coercion between the two forms must be explicit. This may be quite annoying in practice, as already suggested
by the involved encoding of System F into boxed polymorphism [OL96].

Poly-ML [GR99] is an improvement over this mechanism that replaces the projection from monotypes to
polytypes by a simple place holder 〈·〉, indicating the need for a projection but eluding the projection itself. It
also introduces a notation [· : σ] for embedding polymorphic values into monomorphic ones, which alleviates
the need for prior type definitions. The previous example may be rewritten as follows (where σid is a meta-level
abbreviation for ∀ (α) α→ α):

let id = [λ(x) x : σid] : [σid]
let auto1= λ(x : [σid]) 〈x〉 〈x〉 : ∀ (β) [σid] → (β → β)
let auto2= λ(x : [σid]) 〈x〉 x : [σid] → [σid]
(auto1 id, auto2 id) : ∀ (β) (β → β) × [σid]
〈id〉 : ∀ (β) (β → β)

Explicit type information is still required when creating a polymorphic value (first line). Abstracting over an
(unknown) polymorphic value also requires explicit type information (second and third lines). However, type
information may be omitted when using a known polymorphic value (last line). In fact, polymorphism must
always be known in order to be used. For instance, λ(x) 〈x〉 would be rejected. Notice that, we could also have
written auto1 as λ(x : [σid]) let z = 〈x〉 in z z, so as to avoid repeating the projection, much as for the treatment

of type annotations in XMLF. (But this is unsurprising, since XMLF was much inspired by Poly-ML.)
The progress made between boxed polymorphism and Poly-ML is significant, which can already be seen

on the encoding of System F into Poly-ML— much simpler than the encoding into boxed polymorphism. Yet,
Poly-ML is not quite satisfactory. In particular, each polymorphic value must still be embedded and so requires
an explicit type annotation at its creation (first line). The explicit type information necessary to build a
polymorphic value is utterly redundant: can a programmer accept to write down a type that is already inferred
by the typechecker? Moreover, this information may be much larger than what one would need to write in
System F. For example, Λα. λ(x : α→ α) x must be encoded as [λ(x) x : ∀ (α) (α → α) → (α → α)].

Boxy types [VWJ06] go one step-further than Poly-ML by removing the “coercion box” of Poly-ML from the
level of expressions—retaining it only at the level of types. In Poly-ML one could define the ordinary polymorphic
identity function λ(x) x with (toplevel) type scheme ∀ (α) α → α or the boxed first-class polymorphic value
[λ(x) x : ∀ (α) α→ α] with polytype [∀ (α) α → α]. With boxy types, there is no syntax to express this difference
and instead, it is left to the typechecker to infer which form is meant. While there is an obvious competition
between these two forms, the typing rules are presented in an algorithmic fashion, i.e. as an algorithm, that
(silently) resolves competing cases in favor of one or the other view. The type system has principal types, but
with respect to its algorithmic specification. Unfortunately, it is unknown whether there is a logic specification
of the type system equivalent to the algorithmic presentation. Actually, this is unlikely, as the logic rules would
somehow have to encode the left-to-right evaluation order followed by the algorithmic rules.

Because boxy types have an algorithmic specification it is difficult to compare them with MLF, precisely. As
they (arbitrarily) privilege propagation of type information from the function type to the argument type, they

can type examples where MLF would require an annotation and thus fail. Conversely, there are many examples
that MLF can type and that boxy types cannot—for some much deeper reason. In particular, if a1 a2 is typable,
then app a1 a2 is not necessarily typable with boxy types—a severe problem.

We believe that besides a few biases of the algorithmic propagation, boxy-types are significantly inferior to
MLF types. The authors of boxy types claim that one advantage is that expressions remains a subset of System F
and that they can be elaborated as terms of explicit System F. In our opinion, this is rather a weakness than
a strength as typing derivations in System F are not always as modular as desired, as argued above (

�
3.7).

Moreover, Flet or F∧ should be as valuable as System F when used as intermediate languages.
As boxy types, MLF also removes the “coercion boxes” of Poly-ML, but do so in a more symmetric way,

without arbitrary choices, by enriching the types of System F just as little as needed to represent all possible
choices in derivations within (unique, principal) types.

INRIA

MLF made simple. 45

(Partial) Type inference for the predicative fragment Odersky and Läufer have also extended boxed
polymorphism to implicit predicative instantiation of rank-2 polymorphism [OL96], which was later improved to
arbitrary-rank types by Peyton Jones and Shields [JS04, JVWS07]. Technically, this approach mixes local type
inference with ML-style, unification-based type inference. However, this approach has two serious problems.
Inherited from local type inference, and as boxy types it makes algorithmically specified, arbitrary choices.
Moreover, the restriction to predicative polymorphism is far too drastic (see [Rém05] for detailed arguments).
As a result, this approach is not sufficiently powerful and can only be used in combination with the more basic
form of boxed polymorphism to recover the full power of System F. This results in a rather complicated language
with several not well-integrated idioms to accomplish similar goals. In fact, this proposal seems to have been
dropped in favor of boxy types by the common authors of both works.

Summary. The different proposals for embedding first-class polymorphism within first-class values can be
schematically summarized below: arrows mean is weaker than; the (

�
) note means that this arrow is up to the

arbitrary left-right disambiguation biases of the source; double lines are used for type systems enjoying principal
types.

Boxed
Polymorphism

Poly-ML Boxy types

Pred. Frag.

MLF

(†)

(†)

6 Conclusion and future work

In our quest for better integration of first-class polymorphism within ML, we have come up with MLF—a new
type system for second-order polymorphism that is actually two-fold.

The Curry’s style version IMLF just extends second-order types with flexible bindings so as to capture
instances of a given type as a single type scheme. This is written ∀ (α≥σ) σ′, meaning that α may be replaced
by any instance of σ in σ′. Types schemes are interpreted by sets of System-F types. The instance relation
on types is defined as set inclusion of their semantics. The language IMLF is a subset of Flet, an extension of
System F with a very restricted form of intersection types that contains exactly all let-expansions of System-F
expressions.

We have also proposed a Church’s style version XMLF that permits type inference. Expressions of XMLF,
given with some explicit type annotations, always have principal types10. Technically, XMLF introduces rigid
bindings written ∀ (α⇒σ) σ′ to mediate between explicit type information σ and and its implicit view α within

σ′. Interestingly, XMLF is a conservative extension of ML as fully unannotated programs are typable in XMLF

if and only if they are typable in ML. Moreover, all System F programs can be turned into XMLF programs
by simply dropping type abstractions and type applications and by a simple translation of type annotations.
Interestingly, only function arguments that are used polymorphically need a type annotation in XMLF. This
provides a clear specification of when and how to annotated type parameters.

We believe that MLF is a user-friendly extension of ML with first-class polymorphism. Additionally, without
significantly departing from System F, programs in IMLF have “more principal” types than in System F and
therefore are more modular.

Ongoing works

In this work, we have also explored the design space and related several variants of MLF to a hierarchy of known
existing languages. We have focused on Plain MLF as it is a good compromise between its expressiveness and its
simple and intuitive semantics: while Simple MLF would loose useful modular properties, Full MLF would loose
a simple semantics in terms of System-F types.

However, from a syntactic point of view Full MLF is not any harder than MLF: unification and type inference
algorithms remain the same in both cases but are only called on a subset of possible inputs in the case of
MLF. Therefore, the study of type inference has been left out of this paper, referring to its original presentation
in the context of Full MLF [LBR03, LB04]. More recently, a graph-based representation of types has been

10This is shown in other works, not this article.

RR n
�

0123456789

46 Rémy & Le Botlan

introduced and studied in some other parallel work [RY07]. Originally targeted at finding efficient unification
and type inference algorithms, graphs also bring syntactic and semantic types closer. Interestingly, the graph
representation applies indifferently to the plain or full versions, and might be a means to also give a semantics
to Full MLF. Besides, the graph representation has enable a new, efficient unification algorithm for MLF types.
In ongoing work, graphs are also used to revisit, improve and modularize type inference for MLF.

Future works

The recent study of the interaction between MLF and qualified types (upon which Haskell type classes are

based) [LL05] opens the road to the integration of MLF and Haskell. However, MLF-Haskell’s current compilation
schema into System-F terms is unsatisfactory as is passes useless coercion functions at runtime. Perhaps, Flet

could be advantageously used instead of System F as the targeted language.
MLF types are strictly—but only slightly—more expressive than System-F types. One may wonder whether

they could be subsumed by higher-order types. We think that the two mechanisms are complementary and
equally desired. We already see two solutions to higher-order polymorphism.

A limited form of higher-order polymorphism can be obtained with the use of higher-order kinds, which
treats type operators as first-order type variables. This allows abstraction and instantiation of type operators,
but not any reduction at the level of types. Technically it treats type application F (τ) where F is a type
operator as an application @(F, τ) where @ is an application operator and F treated as a normal type, but of
a higher-order kind. Then, there is not significant differences but keeping track of kinds. This should already
work in MLF without any problem. Interestingly, instantiation of type operators will be inferred as all other
type-instantiations in MLF.

Another solution to really integrate higher-order types is to reintroduce a new F-like universal quantifier in
types with fully explicit type abstractions and type applications constructs in the language. As long as there is
no implicit conversion between the two form of quantification, this should not raise any problem, even if explicit
quantification is allowed at higher-order types. This would provide the full power of Fω , but instantiation of
type operators will always remain explicit.

Although, inferring instantiation of type operators seems possible in many interesting cases, it would not
work in general. In fact, type-level computation resulting from instantiation of higher-order types seems to be
conflicting with maintaining the precise sharing between polymorphic types at the core of MLF. Studying this
interaction remains an interesting research direction.

Extending MLF with recursive types is another track. In the presence of type inference, one would expect
implicit equi-recursive types to be used, as in ML. While we expect no difficulty with “monomorphic” recursion,
the problem seems much harder when recursion crosses polymorphic boundaries. A solution might have to
combine implicit monomorphic equi and explicit polymorphic iso recursive types, altogether.

Extensions of MLF-types with subtyping, type constraints, assertions, etc. are of course also worth exploring.

A Proofs

Proof of Lemma 3.3.8

By structural induction on σ.
◦ Case α: Obviously, α is exposed in σ, therefore t must be monomorphic. To conclude, observe that both

{{bθc(σ)}} and θ({{σ}}) are equal to {t}.
◦ Case β with β 6= α: Then, both {{bθc(σ)}} and θ({{σ}}) are equal to {β}.
◦ Case τ1 → τ2: Then, both {{bθc(σ)}} and θ({{σ}}) are equal to {θ(τ1) → θ(τ2)}.
◦ Case ⊥: Let t′ be in {{θ(⊥)}}, that is {{⊥}}, with α /∈ ftv(t′). Then θ(t′) = t′, which we may also write
t′ ∈ θ({t′}). Thus, t′ ∈ θ({{⊥}}) holds.
◦ Case ∀ (β ≥ σ1) σ2: Let t′ be in {{bθc(σ)}} with α /∈ ftv(t′) (1). We may assume β # dom(θ) ∪ codom(θ)

w.l.o.g. Then, bθc(σ) is equal to ∀ (β≥bθc(σ1)) bθc(σ2). By Definition 3.2.1, t′ is of the form ∀ (γ̄) t2[t1/β] with
γ̄ # ftv(bθc(σ)), t1 ∈ {{bθc(σ1)}} and t2 ∈ {{bθc(σ2)}} (2). We may assume α /∈ γ̄, w.l.o.g. If α is not exposed in
σ, it must also be not exposed in σ1 and in σ2 by Definition 3.3.6. Moreover, (1) implies both α /∈ ftv(t2) and
α /∈ ftv(t1). By induction hypothesis applied to (2), we get t2 ∈ θ({{σ2}}) and t1 ∈ θ({{σ1}}). That is, t1 and
t2 are of the form θ(t′1) and θ(t′2) with t′1 ∈ {{σ1}} and t′2 ∈ {{σ2}}. Therefore, t′ is equal to ∀ (γ̄) θ(t′2)[θ(t

′
1)/β],

which implies that t′ is also equal to θ(∀ (γ̄) t′2[t
′
1/β]). By definition 3.2.1, we have t′ ∈ θ({{σ}}), as expected.

INRIA

MLF made simple. 47

Proof of Property 3.3.10

The proof of (i) is by structural induction on the derivation. The proof of (ii) is by structural induction on σ.

Proof of Lemma 3.5.1

Necessarily, t is ∀ (ᾱ) τ ′ and t′ is ∀ (β̄) τ ′[τ̄ /ᾱ] with β̄ # ftv(t). If τ ′ is some variable α with α ∈ ᾱ, then btc is
equivalent to ⊥ by FE-Var, and we conclude directly by FI-Bot. From now on, we assume t is not a variable
α in ᾱ. As a consequence, all α’s in ᾱ are not exposed in btc (1). We have

btc = ∀ (ᾱ) bτ ′c
= ∀ (ᾱ≥⊥) bτ ′c by notation
@−A− ∀ (β̄) ∀ (ᾱ ≥⊥) bτ ′c by FE-Free

≤ ∀ (β̄) ∀ (ᾱ ≥ τ̄) bτ ′c by FI-Bot and congruence
≤ ∀ (β̄) bτ ′c[¯bτc/ᾱ] by FI-Subst and (1)
= b∀ (β̄) τ ′[τ̄ /ᾱ]c by definition
= bt′c

We conclude by transitivity of ≤.

Proof of Lemma 4.1.9

Each statement is shown separately, by induction on the given derivation.

Let us consider the equivalence relation first (statement i). Reflexivity is immediate. Transitivity and
symmetry are by induction hypothesis. As for congruence (rules Xmlf-All-Left and Xmlf-All-Right), we
consider two cases:
◦ Case ⇒-congruence: By hypothesis, σ1 is ∀ (α⇒σa) σ′

a and σ2 is ∀ (α⇒σb) σ
′
b. The premises are (Q) σa ≡ σb

and (Q,α⇒σb) σ
′
a ≡ σ′

b. We have to show (Q′) θ(Tσ′
aU[TσaU/α]) @−A− θ(Tσ′

bU[TσbU/α]). By induction hypothesis,
we have (Q′) θTσaU @−A− θ(TσbU) (1) and (Q′) θ(Tσ′

aU[TσbU/α]) @−A− θ(Tσ′
bU[TσbU/α]) (2). By Lemma 3.3.10.ii

(page 21) and (1), we have (Q′) θ(Tσ′
aU)[θ(TσaU)/α] @−A− θ(Tσ′

aU)[θ(TσbU)/α], that is, (Q′) θ(Tσ′
aU[TσaU/α]) @−A−

θ(Tσ′
aU[TσbU/α]). We conclude by transitivity and (2).

◦ Case ≥-congruence: By hypothesis, σ1 is ∀ (α≥σa) σ′
a and σ2 is ∀ (α≥σb) σ

′
b. The premises are (Q) σa ≡ σb

and (Q,α ≥ σb) σ
′
a ≡ σ′

b. By induction hypothesis, the former gives (Q′) θTσaU @−A− θTσbU (3). We consider two
subcases:

Subcase stTσbU = †: Then, we get by induction hypothesis (Q′, α ≥ θ(TσbU)) θTσ′
aU @−A− θTσ′

bU. By
Imlf-All and (3), we get (Q′) ∀ (α ≥ θ(TσaU)) θTσ′

aU @−A− ∀ (α ≥ θ(TσbU)) θTσ′
bU (4). If stTσaU = †, this is

the expected result. Otherwise, stTσaU = β, which implies that (Q′) θ(TσaU) @−A− θ(β) holds by FE-Free.
Consequently, (Q′) ∀ (α ≥ θ(TσaU)) θTσ′

aU @−A− ∀ (α ≥ θ(β)) θTσ′
aU (5) holds by Imlf-All. Besides, we have

(Q′) ∀ (α≥ θ(β)) θTσ′
aU @−A− θ(Tσ′

aU[β/α]) (6) by FE-Mono. We conclude by (6), (5), (4) and transitivity.
Subcase stTσbU = β: By induction hypothesis, we have (Q′) θ(Tσ′

aU)[θ(β)/α] @−A− θ(Tσ′
bU)[θ(β)/α].

By FE-Free and (3), we have (Q′) θTσaU @−A− θ(β) (7). If stTσ′
aU = γ, then (Q′) θTσaU @−A− θ(γ) by FE-

Free, and so we get (Q′) θ(γ) ≡ θ(β) from (7). We conclude by Lemma 3.3.10.ii (page 21) then. Otherwise,
stTσ′

aU = †. We conclude by (7), Imlf-All, and FE-Mono.
◦ Case Eq-Comm: This rule commutes two binders. Each one is either flexible or rigid. Because of symmetry,

we only have to consider three subcases: either both bindings are rigid, or both are flexible, or one is flexible
and one is rigid. The first subcase is shown by commutation of the two substitutions. The second subcase is
shown by Rule FE-Comm. The last subcase is by reflexivity.
◦ Case Eq-Var: We distinguish two subcases, depending on the binding being flexible or rigid. If it is flexible,

we use FE-Var. Otherwise, we use reflexivity.
◦ Case Eq-Free: Similarly, we use FE-Free if the binding is flexible. Otherwise, we use reflexivity.
◦ Case Eq-Mono: We use FE-Mono if the binding is flexible. Otherwise, we use reflexivity.

As for the abstraction relation (statement ii), transitivity is by induction hypothesis. Rigid-congruence is
shown as above, like for equivalence. Rule A-Equiv is a consequence of i. Finally, Rule A-Hyp is by reflexivity.

The instance relation (statement iii) is shown similarly. Transitivity is by induction hypothesis. Flexible-
congruence is shown as above (see the equivalence case). I-Abstract is a consequence of ii and FI-Equiv.
I-Bot is shown with FI-Bot. I-Hyp is shown with FI-Hyp. Finally, I-Rigid is shown with FI-Subst, using
Lemma 4.1.7 (page 29).

RR n
�

0123456789

48 Rémy & Le Botlan

Proof of Lemma 4.1.10

By structural induction on σ. Both cases ⊥ and β (with β 6= α) are immediate. We remind that ≡ is a
subrelation of @−].
◦ Case σ = α. Assume (α ≥ τ) ∈ Q. We show (VQW) α (@−] ∪ A−])∗ VτW (1) by cases on τ . If τ is a type

variable γ, then (1) holds by Eq-Mono; otherwise, τ is an arrow type τ1 → τ2 and the translation of (α≥ τ),
which is (α1 ⇒ Vτ1W, α2 ⇒ Vτ2W, α≥ α1 → α2), appears in VQW. Hence, we may derive

(VQW) VτW = ∀ (α′
1 ⇒ Vτ1W, α

′
2 ⇒ Vτ2W) α′

1 → α′
2 by Definition

@−] ∀ (α′
1 ⇒ α1, α

′
2 ⇒ α2) α

′
1 → α′

2 by A-Hyp, A-Sharp-Left

≡ α1 → α2 by Eq-Mono

≡ α by Eq-Mono, Congruence

This is the expected result (1).
◦ Case σ = τ1 → τ2 is by induction hypothesis and A-Sharp-Left.
◦ Case σ = ∀ (α≥ σ1) σ2 is by induction hypothesis and A-Left.

Proof of Lemma 4.1.12

i) is shown by induction on the derivation of (Q) σ1 @−A− σ2. Reflexivity, transitivity, and symmetry are immediate
by definition of (@− ∪ A−)∗.
◦ Case FE-Comm: by Rule Eq-Comm.
◦ Case FE-Free: by Rule Eq-Free.
◦ Case FE-Mono: by Lemma 4.1.10.
◦ Case FE-Var: by Rule Eq-Var.

Congruence of @−A− is defined by rules Imlf-All-Left, Imlf-All-Right, and Imlf-Arrow:
◦ Case Imlf-All-Left: by induction hypothesis and Rule A-Left.
◦ Case Imlf-All-Right: by induction hypothesis and Rule Xmlf-All-Right.
◦ Case Imlf-All-Arrow: σ1 is τ1 → τ ′1 and σ2 is τ2 → τ ′2. By hypothesis, both (Q) τ1 @−A− τ2 and (Q) τ ′1 @−A− τ ′2

hold, and so by induction hypothesis, we get both (VQW) Vτ1W (@−] ∪ A−])∗ Vτ2W (1) and (VQW) Vτ ′1W (@−] ∪ A−])∗

Vτ ′2W (2). by definition, Vτ1 → τ ′1W is ∀ (α1 ⇒ Vτ1W, α
′
1 ⇒ Vτ ′1W) α1 → α′

1. by Rule A-Left, (1) and (2), we get
(VQW) Vτ1 → τ ′1W (@−] ∪ A−])∗ ∀ (α1⇒Vτ2W, α

′
1⇒Vτ ′2W) α1 → α′

1, that is, (VQW) Vτ1 → τ ′1W (@−] ∪ A−])∗ Vτ2 → τ ′2W,
which is the expected result.

ii) is shown by induction on the derivation of (Q) σ1 ≤ σ2. Transitivity is by definition of (v ∪ A−)∗.
◦ Case FI-Equiv: by property i), and rules A-Sharp-Drop and I-Abstract.
◦ Case FI-Bot: by I-Bot

◦ Case FI-Hyp: by I-Hyp, A-Hyp and A-Sharp-Left.
◦ Case FI-Subst: by I-Rigid and Lemma 4.1.11.

The ≥-congruence of ≤ is defined by the rules Imlf-All-Left and Imlf-All-Right.
◦ Case Imlf-All-Left: by induction hypothesis and Rule Xmlf-Flex-Left.
◦ Case Imlf-All-Right: by induction hypothesis and Rule Xmlf-All-Right.

Proof of Theorem 4

By induction on the derivation of IMLF :: (Q) Γ ` a : σ.
◦ Case Var: by Rule Var, unsurprisingly.
◦ Case Fun: by Rules UnGen?, Fun’, and Gen.
◦ Case App: by Rule App?

◦ Case Inst: by Lemma 4.1.12.ii, and Rules Inst and Annot, repeatedly.
◦ Case Gen: by repeated uses of Rule Gen, and one of Annot.
◦ Case Let: by Rule Let.

INRIA

MLF made simple. 49

Proof of Lemma 4.3.7

This is a particular case of the following result, taking P , P ′, and P ′′ empty. In the following, P ′ may be an
empty prefix or a prefix starting with an unconstrained binding. Similarly for P ′′. Also, P and Q must be rigid
(Q is indeed rigid in the Lemma, since it is returned under an empty input prefix).

(PP ′) 〈〈t〉〉 : (PQP ′′, α) PQQ′P ′′ well-formed

(PQQ′P ′) 〈〈t〉〉 : (PQQ′P ′′, α)

This is shown by structural induction on t.

Proof of Lemma 4.3.9

This lemma is a simplification of the invariant stated further, making also use of the following result, which is
shown by structural induction on t (we omit its proof)

Assume (Q) 〈〈t〉〉 : (Q′, α) holds. Let γ be outside ftv(t) ∪ dom(Q′). Then, (Qγ) 〈〈t〉〉 : (Q′γ, α) holds.

Lemma 4.3.9 is not strong enough to be proved directly. Instead, we consider the following huge much
stronger invariant, (we recover the Lemma by taking P , P ′

1, P
′
2 empty, I = ftv(t) and using the previous short

result to introduce the unconstrained binding (α) in prefixes).

Assume Q1 rigid, Q1 ≡I Q2, ftv(P) ⊆ I ∪ α, and dom(Q′
iαP

′
i) ∩ I = dom(QiαP) ∩ I for i = 1, 2.

Assume, moreover, that one of the following set of condition holds:

ftv(σ) ⊆ I ∪ αP Q1αP �α1
σ = (Q′

1αP
′
1, α1) Q2αP �α2

σ = (Q′
2αP

′
2, α2)

or

ftv(t) ⊆ I ∪ αP (Q1αP) 〈〈t〉〉 : (Q′
1αP

′
1, α1) (Q2αP) 〈〈t〉〉 : (Q′

2αP
′
2, α2)

Then, there exists a set J and a renaming φ such that

dom(φ) # I ∪ αP I ∪ (α1 ∩Q
′
1) ⊆ J Q′

1 ≡J φ(Q′
2) φ(α2) = α1 φ(P ′

2) = P ′
1

ftv(P ′
1) ⊆ J ∪ α

We show the result for each of the two sets of conditions separately. The first result is shown by induction on
Q1 ≡I Q2. The second result is shown by structural induction on t.
First result: Instead of showing ftv(P ′

1) ⊆ J ∪ α (last predicate), we show ftv(P ′
1) ⊆ I ∪ α, which is stronger.

Also, the hypothesis dom(Q′
iαP

′
i) ∩ I = dom(QiαPi) ∩ I is equivalent to αi /∈ dom(QiPi) =⇒ αi /∈ I .

◦ Case Reflexivity: We have Q1 = Q2. Let J be I ∪ (α1 ∩ Q′
1). If α1 = α2, we take φ = id. Otherwise, let

φ be the renaming of domain {α1, α2} that swaps α1 and α2. The binding (α1 ⇒ σ) is inserted in Q1 or in
P . In both cases, φ(Q′

2) = Q′
1 and φ(P ′

2) = P ′
1 hold. The former implies Q′

1 ≡J φ(Q′
2) by reflexivity. Also,

ftv(P ′
1) ⊆ ftv(P) ∪ ftv(σ) − dom(P) which implies ftv(P ′

1) ⊆ I ∪ α.
◦ Case Transitivity: To ease readability (with respect to indices), we assume Q1 ≡I Q2 (1) and Q2 ≡I Q3 (2)

hold and we show the conclusion where the index 2 is replaced by 3. We take α2 such that Q2αP�α2
σ is defined

(it always exists). By renaming, we may also freely assume α2 /∈ dom(Q2P2) =⇒ α2 /∈ I . The hypotheses are

ftv(P) ⊆ I ∪ α (3) ftv(σ) ⊆ I ∪ αP (4) Q1αP �α1
σ = (Q′

1αP
′
1, α1) Q2αP �α2

σ = (Q′
2αP

′
2, α2) (5)

Q3αP �α3
σ = (Q′

3αP
′
3, α3) (6)

RR n
�

0123456789

50 Rémy & Le Botlan

By induction hypothesis and (1), there exist J1 and φ1 such that

dom(φ1) # I ∪ αP (7) I ∪ (α1 ∩Q
′
1) ⊆ J1 (8) Q′

1 ≡J1 φ1(Q
′
2) (9) φ1(α2) = α1 (10)

φ1(P
′
2) = P ′

1 (11) ftv(P ′
1) ⊆ I ∪ α (12)

Note that (7), (3), and (4) imply φ1(P) = P and φ1(σ) = σ. From (2), we get φ1(Q2) ≡I φ1(Q3). From (5)
and (6), we get the following:

φ1(Q2)αP �φ1(α2) σ = (φ1(Q
′
2)αφ1(P

′
2), φ1(α2)) φ1(Q3)αP �φ1(α3) σ = (φ1(Q

′
3)αφ1(P

′
3), φ1(α3))

By (10) and (11), the former gives

φ1(Q2)αP �α1
σ = (φ1(Q

′
2)αP

′
1, α1)

By induction hypothesis, there exist J2 and φ2 such that

dom(φ2) # I ∪ αP (13) I ∪ (α1 ∩ φ1(Q
′
2)) ⊆ J2 (14) φ1(Q

′
2) ≡

J2 φ2 ◦ φ1(Q
′
3) (15)

φ2 ◦ φ1(α3) = α1 (16) φ2 ◦ φ1(P
′
3) = P ′

1 (17)

Let φ be φ2 ◦ φ1 and J be J1 ∩ J2. We have to show the following:

dom(φ) # I ∪ αP ∪ ftv(Q′
3) (18) I ∪ (α1 ∩Q

′
1) ⊆ J (19) Q′

1 ≡J φ(Q′
3) (20) φ(α3) = α1 (21)

φ(P ′
3) = P ′

1 (22) ftv(P ′
1) ⊆ I ∪ α (23)

We have (18) as a consequence of of (7) and (13). From (8) and (14), we have I ⊆ J1∩J2. Also, if α1 ∈ dom(Q′
1),

then α1 ∈ J1 from (8) and α1 ∈ dom(φ1(Q
′
2)) from (9). The latter implies α1 ∈ J2 from (14). Consequently, if

α1 ∈ Q′
1, then α1 ∈ J1 ∩ J2. This implies (19).

We get (20) from (9) and (15). Also, (21) is (16), (22) is (17), and (23) is (12). This concludes the case.
◦ Case Symmetry: by induction hypothesis and by taking φ−1(J) for J and φ−1 for φ.
◦ Case Comm: Similar to reflexivity.
◦ Case Free: By hypothesis, Q2 is (Q1, β ⇒ σ′) with β /∈ I ∪ dom(Q1) ∪ ftv(Q1). Also, σ′ /∈ bnds(Q1). We

consider two subcases:
Subcase σ 6= σ′: This case is similar to reflexivity. Noticeably, if α1 ∈ dom(Q′

1), we get φ(Q′
2) ≡ Q′

1 by
Comm (commuting the bindings of α1 and β), instead of φ(Q′

2) = Q′
1.

Subcase σ = σ′: Then, Q′
1 is (Q1, α1 ⇒ σ), Q′

2 = Q2 and β = α2. If α1 = β, then we take φ = id and
J = I ∪ α1. Otherwise, φ is the renaming of domain {α1, β} swapping α1 and β. In both cases, Q′

1 ≡J φ(Q′
2)

is derivable by reflexivity.

Second result (by structural induction on t):
◦ Case β: Then, Q′

1 = Q1, Q
′
2 = Q2, P

′
1 = P ′

2 = P , and α1 = α2 = β. We get the expected result by taking
J = I and φ = id.
◦ Case t1 → t2: By hypothesis, we have ftv(t) ⊆ I ∪ αP (24) as well as

(Q1αP) 〈〈t1〉〉 : (Qa
1αP

a
1 , α

a
1) (25) (Q2αP) 〈〈t1〉〉 : (Qa

2αP
a
2 , α

a
2) (26) (Qa

1αP
a
1) 〈〈t2〉〉 : (Qb

1αP
b
1 , α

b
1) (27)

(Qa
2αP

a
2) 〈〈t2〉〉 : (Qb

2αP
b
2 , α

b
2) (28) (Q′

1αP
′
1, α1) = Qb

1αP
b
1 �α1

αa
1 → αb

1 (29)

(Q′
2αP

′
2, α2) = Qb

2αP
b
2 �α2

αa
2 → αb

2 (30)

INRIA

MLF made simple. 51

By induction hypothesis, (25) and (26), there exist a set J1 and a renaming φ1 such that

dom(φ1) # I ∪ αP (31) I ∪ (αa
1 ∩Qa

1) ⊆ J1 Qa
1 ≡J1 φ1(Q

a
2) (32) φ1(α

a
2) = αa

1 φ1(P
a
2) = P a

1

ftv(P a
1) ⊆ J1 ∪ α

Note that (31) and (24) imply φ1(t) = t. By Lemma 4.3.5 (page 35) and (28), we get

(φ1(Q
a
2)αP

a
1) 〈〈t2〉〉 : (φ1(Q

b
2)αφ1(P

b
2), φ1(α

b
2))

By induction hypothesis (taking J1 for I), (32) and (27), there exist a set J2 and a renaming φ2 such that

dom(φ2) # J1 ∪ αP
a
1 J1 ∪ (αb

1 ∩Q
b
1) ⊆ J2 Qb

1 ≡J2 φ2 ◦ φ1(Q
b
2) φ2 ◦ φ1(α

b
2) = αb

1 φ2 ◦ φ1(P
b
2) = P b

1

ftv(P b
1) ⊆ J2 ∪ α

Let φ′ be φ2 ◦ φ1. The results above can be rewritten like this:

dom(φ′) # I ∪ αP I ∪ (αb
1 ∩Q

b
1) ⊆ J2 Qb

1 ≡J2 φ′(Qb
2) φ′(αb

2) = αb
1 φ′(αa

2) = αa
1 φ′(P b

2) = P b
1

ftv(P b
1) ⊆ J2 ∪ α

By applying φ′ to (30), we get

(φ′(Q′
2)αφ

′(P ′
2), φ

′(α2)) = φ′(Qb
2)αP

b
1 �φ′(α2) α

a
1 → αb

1

Then, by using the first result of the Lemma, there exists a set J and a renaming ψ such that

dom(ψ) # J2 ∪ αP
b
1 J2 ∪ (α1 ∩Q

′
1) ⊆ J Q′

1 ≡J ψ ◦ φ′(Q′
2) ψ ◦ φ′(α2) = α1 ψ ◦ φ′(P ′

2) = P ′
1

ftv(P ′
1) ⊆ J ∪ α

Let φ be ψ ◦ φ′. We get

dom(φ) # I ∪ αP I ∪ (α1 ∩Q
′
1) ⊆ J Q′

1 ≡J φ(Q′
2) φ(α2) = α1 φ(P ′

2) = P ′
1 ftv(P ′

1) ⊆ J ∪ α

◦ Case ∀ (β) t0: By hypothesis, we have

(Q1αPβ) 〈〈t0〉〉 : (Qa
1αP

a
1 βP

b
1 , β1) (33) (Q2αPβ) 〈〈t0〉〉 : (Qa

2αP
a
2 βP

b
2 , β2) (34)

(Q′
1αP

′
1, α1) = Qa

1αP
a
1 �α1

∀ (βP b
1) β1 (35) (Q′

2αP
′
2, α2) = Qa

2αP
a
2 �α2

∀ (βP b
2) β2 (36)

By induction hypothesis, there exist a set J ′ and a renaming φ′ such that

dom(φ′) # I ∪ αPβ I ∪ (β1 ∩Q
a
1) ⊆ J ′ Qa

1 ≡J′

φ′(Qa
2) φ′(β2) = β1 φ′(P a

2 βP
b
2) = P a

1 βP
b
1 (37)

ftv(P a
1 βP

b
1) ⊆ J ′ ∪ α (38)

Note that (37) implies both φ′(P a
2) = P a

1 and φ′(P b
2) = P b

1 . Additionally, (38) implies both ftv(P a
1) ⊆ J ′ ∪ α

and ftv(P b
1) ⊆ J ′ ∪ αβP a

1 . From (36), we have

(φ′(Q′
2)αφ

′(P ′
2), φ

′(α2)) = φ′(Qa
2)αP

a
1 �φ′(α2) φ

′(∀ (βP b
2) β2)

RR n
�

0123456789

52 Rémy & Le Botlan

We note that φ′(∀ (βP b
2) β2) is an alpha-conversion of ∀ (βφ′(P b

2)) φ′(β2), that is ∀ (βP b
1) β1. By using the first

result of the lemma, there exists a set J and a renaming ψ such that

dom(ψ) # J ′ ∪ αP a
1 J ′ ∪ (α1 ∩Q

′
1) ⊆ J Q′

1 ≡J ψ ◦ φ′(Q′
2) ψ ◦ φ′(α2) = α1 ψ ◦ φ′(P ′

2) = P ′
1

ftv(P ′
1) ⊆ J ∪ α

Let φ be ψ ◦ φ′. We have

dom(φ) # I ∪ αP I ∪ (α1 ∩Q
′
1) ⊆ J Q′

1 ≡J φ(Q′
2) φ(α2) = α1 φ(P ′

2) = P ′
1 ftv(P ′

1) ⊆ J ∪ α

This is the expected result.

Proof of Corollary 4.3.10

Let (Q′, α′) be the translation of t under an empty prefix (formally, (∅) 〈〈t〉〉 : (Q′, α′) (1) holds). We show
below that, for any σ in 〈〈t〉〉, we have (Q) σ ≡ ∀ (Q′) α′ (2) under any suitable Q. Indeed, we then have
∀ (Q) σi ≡ ∀ (Q′) α′ for i in {1, 2} and the result follows by symmetry and transitivity of ≡.

Let us show (2). Let I be ftv(t) and σ in 〈〈t〉〉. By hypothesis, there exist shared rigid prefixes Q1 and Q′
1

such that:

σ = ∀ (Q′
1) α1 (3) (Q1) 〈〈t〉〉 : (Q′

1, α1) (4) I # dom(Q1) (5)

Using (5) and Free repeatedly, one may derive ∅ ≡I Q1. By Lemma 4.3.9 (page 36), there exist a set J and a
renaming φ such that

dom(φ) # I (6) I ∪ α1 ⊆ J (7) Q′
1 ≡J φ(Q′) (8) φ(α′) = α1

From (8), (7), and Lemma 4.3.8 (page 35), we get (Q) ∀ (Q′
1) α1 ≡ ∀ (φ(Q′)) α1 (9) under any suitable Q.

The left-hand type is σ. The right-hand term is ∀ (φ(Q′)) φ(α′), which is alpha-convertible to φ(∀ (Q′) α′).
Noting that ftv(Q′) ⊆ I holds from (1), we get φ(∀ (Q′) α′) = ∀ (Q′) α′ from (6). Therefore, (9) can be written
(Q) σ ≡ ∀ (Q′) α′, which is the expected result (2).

Proof of Lemma 4.3.12

Each property is shown separately.
P-i: By hypothesis, Q�α′ σ is defined and ψ(Q) −−−−>φ Q

′ (1) holds. Also, φ ◦ ψ(σ) −−−−> σ′ (2) holds. There are
two subcases:

Subcase α′ ∈ dom(Q): Then, (α′ ⇒σ) ∈ Q and Q�α′ σ is Q. Therefore, (α′ ⇒ψ(σ)) ∈ ψ(Q). From (1)
and (2), we get (φ(α′) ⇒ σ′) ∈ Q′. Consequently, Q′ �φ(α′) σ

′ is defined and equals Q′. This is the expected
result, taking φ′ = id.

Subcase α′ /∈ dom(Q): Let Q be Q0α1Q1..αnQn with Q1, .., Qn rigid. From (1), we know that Q′

equals Q′
0α1Q

′
1..αnQ

′
n with Q′

1, .., Q
′
n rigid and φi−1 ◦ .. ◦ φ0 ◦ ψ(Qi) −−−−>φi

Q′
i holds for all 0 6 i 6 n. Besides,

φ = φn ◦ .. ◦ φ0. Also, φ(α′) = α′ since dom(φ) ⊆ dom(Q).
Let i be the index corresponding to the insertion of (α′⇒σ). Then, Q�α′σ is Q0α1Q1..αiQi, (α

′⇒σ), ..αnQn.
We distinguish two other subcases: either (γ ⇒ σ′) ∈ Q′ for some γ or not. In the latter case, Q′ �α′ σ′ is

defined and equals Q′
0α1Q

′
1..αiQ

′
i, (α

′⇒σ′), ..αnQ
′
n. We note that φi−1 ◦ ..◦φ0 ◦ψ(Qi, α

′⇒σ) −−−−> (Q′
i, α

′⇒σ′).
Therefore, ψ(Q�α′ σ) −−−−>φ Q

′ �α′ σ′. This is the expected result taking φ′ = id.
We now consider the last remaining case, when (γ ⇒ σ′) ∈ Q′ for some γ. Let φ′ be [γ/α′]. Then,

ψ(Q�α′ σ) −−−−>φ′◦φ Q
′. This is the expected result since Q′ �γ σ

′ is Q′ and γ equals φ′ ◦ φ(α′).
P-ii: by structural induction on t.

Subcase t = γ (with γ 6= β or γ = β): Then Q′
1 = Q1 and α1 = γ. We conclude by taking Q′

2 = Q2,
α2 = ψ(γ) and φ′ = id.

Subcase t1 → t2: By hypothesis, (Q1) 〈〈t〉〉 : (Q′
1, α1) holds. The premises are (Q1) 〈〈t1〉〉 : (Qa

1 , α
a
1) (3)

and (Qa
1) 〈〈t2〉〉 : (Qb

1, α
b
1) (4), and Q′

1 is Qb
1 �α1

αa
1 → αb

1. By induction hypothesis and (3), there exist Qa
2 , α

a
2

INRIA

MLF made simple. 53

and φa such that

(Q2) 〈〈ψ(t1)〉〉 : (Qa
2 , α

a
2) (5) ψ(Qa

1) −−−−>φa◦φ Q
a
2 φa ◦ φ ◦ ψ(αa

1) = αa
2

By induction hypothesis and (4), there exist Qb
2, α

b
2 and φb such that

(Qa
2) 〈〈ψ(t2)〉〉 : (Qb

2, α
b
2) (6) ψ(Qb

1) −−−−>φb◦φa◦φ Q
b
2 (7) φb ◦ φa ◦ φ ◦ ψ(αb

1) = αb
2

We note that φb ◦ φa ◦ φ ◦ ψ(αa
1 → αb

1) equals αa
2 → αb

2 and so φb ◦ φa ◦ φ ◦ ψ(αa
1 → αb

1) −−−−> αa
2 → αb

2 holds.
Thus, Property P-i and (7), imply that there exists φc such that dom(φc) ⊆ {α1} (8) and ψ(Q′

1) −−−−>φc◦φb◦φa◦φ

Qb
2 �φc◦φb◦φa◦φ(α1) α

a
2 → αb

2 (9). Let φ′ be φc ◦ φb ◦ φa. Let Q′
2 be Qb

2 �φ′◦φ(α1) α
a
2 → αb

2. From (5) and (6), we
have (Q2) 〈〈ψ(t)〉〉 : (Q′

2, α2) by taking α2 = φ′ ◦ φ(α1) (10). From (9), we have ψ(Q′
1) −−−−>φ′◦φ Q

′
2. Since α1 is

not β, we have ψ(α1) = α1 which gives α2 = φ′ ◦ φ ◦ ψ(α1) from (10). This is the expected result.
Subcase ∀ (γ) t′: By hypothesis, (Q1) 〈〈t〉〉 : (Q′

1, α1) holds. The premise is (Q1γ) 〈〈t′〉〉 : (Qa
1γQ

b
1, δ) and

Q′
1 is Qa

1 �α1
∀ (γQb

1) δ. We observe that ψ(Q1γ) −−−−>φ Q2γ holds. Thus, by induction hypothesis, there exist
Qa

2 , Q
b
2, δ

′ and φa such that

(Q2γ) 〈〈ψ(t′)〉〉 : (Qa
2γQ

b
2, δ

′) (11) ψ(Qa
1γQ

b
1) −−−−>φa◦φ Q

a
2γQ

b
2 (12) φa ◦ φ ◦ ψ(δ) = δ′ (13)

We note that (12) implies that there exist φb and φc such that ψ(Qa
1) −−−−>φb◦φ Q

a
2 (14) and φb◦φ◦ψ(Qb

1) −−−−>φc Qb
2

with φa = φc ◦ φb (15). As a consequence, φb ◦ φ ◦ψ(∀ (γQb
1) δ) −−−−> ∀ (γQb

2) φ
c ◦ φb ◦ φ ◦ψ(δ) holds. Remarking

that φc ◦ φb ◦ φ ◦ ψ(δ) equals δ′ from (13) and (15), we may use Property P-i with (14) which provides φd

such that ψ(Q′
1) −−−−>φd◦φb◦φ Qa

2 �φd◦φb◦φ(α1) ∀ (γQb
2) δ′. Let φ′ be φd ◦ φb, α2 be φ′ ◦ φ(α1) (16) and Q′

2

be Qa
2 �α2

∀ (γQb
2) δ

′ (17). We have ψ(Q′
1) −−−−>φ′◦φ Q′

2, (Q2) 〈〈ψ(t)〉〉 : (Q′
2, α2) (from (11) and (17)), and

φ′ ◦ φ ◦ ψ(α1) = α2 (from (16) and noting that ψ(α1) = α1).
P-iii: Let θ be the substitution [t′/β]. Property P-iii is a particular case of the following rule, taking P = ∅:

(∅) 〈〈t′〉〉 : (Q′, α) (Q′P) 〈〈ψ(t)〉〉 : (Q′P ′, α′)

(Q′P) 〈〈θ(t)〉〉 : (Q′P ′, α′)

The proof is by structural induction on t.
◦ Case t = γ with γ 6= β: Then, P ′ = P and α′ = γ. The result is immediate.
◦ Case t = β: Then, ψ(t) is α and so P ′ is P and α′ is α. Using Lemma 4.3.7 (page 35), we have (Q′P) 〈〈t′〉〉 :

(Q′P, α), which is the expected result.
◦ Case t1 → t2: by induction hypothesis.
◦ Case ∀ (γ) t1: by induction hypothesis.

Proof of Lemma 4.3.13

By structural induction on t. We assume (Q1βQ2P) 〈〈t〉〉 : (Q′
1βQ

′
2P

′, α) holds (1).
◦ Case t is γ: In order for (1) to hold, α must be γ and Q1βQ2P must be Q′

1βQ
′
2P

′ (exactly in the same
order). Hence Q′

1 is Q1 and Q′
2 is Q2. We take Q′

3 for Q3.
◦ Case t is ta → tb: The premises of (1) are

(Q1βQ2P) 〈〈ta〉〉 : (Qa
1βQ

a
2P

a, αa) (2) (Qa
1βQ

a
2P

a) 〈〈tb〉〉 : (Qb
1βQ

b
2P

b, αb) (3)

(Q′
1βQ

′
2P

′, α) = Qb
1βQ

b
2P

b �α αa → αb (4)

By induction hypothesis applied to (2) and (3), we get (Q3P) 〈〈ta〉〉 : (Qa
3P

a, αa) with Qa
1Q

a
2 ≈ Qa

3 and
(Qa

3P
a) 〈〈tb〉〉 : (Qb

3P
b, αb) with Qb

1Q
b
2 ≈ Qb

3. Let Q′′
3 be Qb

3P
b �α αa → αb (5). We have (Q3P) 〈〈t〉〉 : (Q′′

3 , α).
It remains to show that Q′′

3 is of the form Q′
3P

′ with Q′
3 ≈ Q3. If α ∈ dom(P ′), then Q′

1 is Qb
1 and Q′

2 is
Qb

2 and α /∈ dom(Q′
1Q

′
2). It follows from (4) that α was inserted in at most one of Qb

1, Q
b
2, or P b, and as left as

possible. If α was inserted in Qb
1 or Qb

2, leaving P ′ equal to Pb then (5) would also insert α in Qb
3, leaving Pb

unchanged, hence Q′′
3 is of the form Q′

3P
′ and Q′

3 ≈ Q′
1Q

′
2. Otherwise, α could not be inserted in Qb

1Q
b
2 and

RR n
�

0123456789

54 Rémy & Le Botlan

was inserted in P b leading to P ′. Thus (5) could not either insert α in Qb
3 but in P ′. Hence again, Q′′

3 is of the
form Q′

3P
′ and Q′

3 ≈ Q′
1Q

′
2.

◦ Case t is ∀ (γ) ta: For (1) to hold, we must have (Q′
1βQ

′
2P

′, α) equal to Qa
1βQ

a
2P

a �α ∀ (γP b) α′ and
(Q1βQ2Pγ) 〈〈ta〉〉 : (Qa

1βQ
a
2P

aγP b, α′) (6) By induction hypothesis applied to (6), we get (Q3Pγ) 〈〈ta〉〉 :
(Qa

3P
aγP b, α′) with Qa

1Q
a
2 ≈ Qa

3 . Let Q′
3P

′ be Qa
3P

a �α ∀ (γP b) α′. . It remains only to show that Q′
3 ≈ Q′

1Q
′
2.

Proof of Property 4.4.6

Property i): It is a consequence of the following: If 〈〈Q〉〉 = (ᾱ, θ′) and dom(θ) # ᾱ ∪ dom(Q), then 〈〈θ(Q)〉〉 =
(ᾱ, θ ◦ θ′).
Property ii): As a preliminary result, we show the same property for equivalence, that is, if (Q) σ1 ≡ σ2 holds,
then θ(〈〈σ1〉〉) and θ(〈〈σ2〉〉) are equivalent in ML. The proof is by induction on the derivation of (Q) σ1 ≡ σ2.
Transitivity is by induction hypothesis. Reflexivity and symmetry are immediate: the ML equivalence relation
is reflexive and symmetric. For congruence, the proof is similar to the one for the instance relation (see below).
It remains to consider the following cases:
◦ Case Eq-Free: We may as well add or remove useless binders in an ML type scheme.
◦ Case Eq-Comm: We may as well commute binders in an ML type scheme.
◦ Case Eq-Var: By definition, 〈〈∀ (α ≥ σ) α〉〉 and 〈〈σ〉〉 are identical.
◦ Case Eq-Mono: Then σ2 is of the form σ1[τ/α] and the premise is (α ≥ τ) ∈ Q. Hence, Q is of the form

(Q1, α ≥ τ,Q2). Therefore, θ equals θ1 ◦ [τ/α] ◦ θ2 with θ1 and θ2 being the substitutions associated with Q1

and Q2 respectively. By well-formedness, ftv(τ) # dom(θ2) and α /∈ dom(θ2). As a consequence, we also have
θ = θ ◦ [τ/α]. We have 〈〈σ2〉〉 = 〈〈σ1〉〉[τ/α] from Property i). Then, θ(〈〈σ1〉〉) = θ ◦ [τ/α](〈〈σ1〉〉) = θ(〈〈σ2〉〉). This
implies the expected result by reflexivity of ≤ML. The ends the proof for the case of equivalence.

The proof for the general case is by induction on the derivation of (Q) σ1 v σ2. Transitivity is by induction
hypothesis and transitivity of the ≤ML. Rule I-Rigid cannot occur since it mentions a rigid binding, whereas
the derivation is assumed to be flexible.
◦ Case I-Bot: ∀ (α) α ≤ML σ holds for any ML type σ.
◦ Case I-Hyp: We have (α ≥ σ1) ∈ Q and σ2 is α. Let ∀ (β̄) τ1 be 〈〈σ1〉〉 and (ᾱ, θ) be 〈〈Q〉〉. By definition

of 〈〈Q〉〉, θ(α) = θ(τ1) (1). Besides, θ(∀ (β̄) τ1) is ∀ (β̄) θ(τ1) (2), and ∀ (β̄) θ(τ1) ≤ML θ(τ1) (3) holds. By
combining (2), (3), and (1), we have θ(∀ (β̄) τ1) ≤ML θ(α), as expected.
◦ Case I-Abstract: The premise is (Q) σ1 @− σ2. Necessarily, we have (Q) σ1 ≡ σ2 (Rule A-Equiv), because

other possible rules for abstraction mention rigid bindings. Then, we conclude using the preliminary result.
◦ Case Flexible Congruence: We recall the congruence rule:

(Q) σ1 v σ2 (5) (Q,α≥ σ2) σ
′
1 v σ′

2 (4)

(Q) ∀ (α≥ σ1) σ
′
1 v ∀ (α≥ σ2) σ

′
2

Keeping the notations of this rule, we have to show θ(〈〈∀ (α≥σ1) σ
′
1〉〉) ≤ML θ(〈〈∀ (α≥σ2) σ

′
2〉〉) (6). Let ∀ (ᾱ1) τ1

be 〈〈σ1〉〉 and ∀ (ᾱ2) τ2 be 〈〈σ2〉〉. By induction hypothesis and (5), we have θ(∀ (ᾱ1) τ1) ≤ML θ(∀ (ᾱ2) τ2) (7)
Using the definition of 〈〈·〉〉, we may rewrite (6) as follows:

θ(∀ (ᾱ1) 〈〈σ
′
1〉〉[τ1/α]) ≤ML θ(∀ (ᾱ2) 〈〈σ

′
2〉〉[τ2/α])

We show this result in two steps, as follows:

θ(∀ (ᾱ1) 〈〈σ
′
1〉〉[τ1/α]) ≤ML θ(∀ (ᾱ2) 〈〈σ

′
1〉〉[τ2/α]) (8) θ(∀ (ᾱ2) 〈〈σ

′
1〉〉[τ2/α]) ≤ML θ(∀ (ᾱ2) 〈〈σ

′
2〉〉[τ2/α]) (9)

The first step (8) is a consequence of Lemma 4.4.4 (page 40) and (7). The second step (9) is by induction
hypothesis applied to (4).

INRIA

MLF made simple. 55

References

[Bar84] Henk P. Barendregt. The Lambda Calculus. North Holland, revised edition, 1984.

[Boe85] H.-J. Boehm. Partial polymorphic type inference is undecidable. In 26th Annual Symposium on
Foundations of Computer Science, pages 339–345. IEEE Computer Society Press, October 1985.

[Car93] Luca Cardelli. An implementation of FSub. Research Report 97, Digital Equipment Corporation
Systems Research Center, 1993.

[CPWK04] Sébastien Carlier, Jeff Polakow, J.B. Wells, and A.J. Kfoury. System e: Expansion variables for
flexible typing with linear and non-linear types and intersection types. In David A. Schmidt, editor,
Prooceedings of the 13th European Symposium on Programming., volume 2986 of Lecture Notes in
Computer Science, pages 294–309. Springer, 2004.

[DHKP96] Gilles Dowek, Thérèse Hardin, Claude Kirchner, and Frank Pfenning. Higher-order unification via
explicit substitutions: the case of higher-order patterns. In M. Maher, editor, Joint international
conference and symposium on logic programming, pages 259–273, 1996.

[Gir72] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arith-mé-tique
d’ordre supérieur. Thèse d’état, University of Paris VII, 1972.

[GR88] P. Giannini and S. Ronchi Della Rocca. Characterization of typings in polymorphic type discipline.
In Third annual Symposium on Logic in Computer Science, pages 61–70. IEEE, 1988.

[GR99] Jacques Garrigue and Didier Rémy. Extending ML with Semi-Explicit higher-order polymorphism.
Journal of Functional Programming, vol 155, pages pages 134–169, 1999. A preliminary version
appeared in TACS’97.

[HP99a] Haruo Hosoya and Benjamin C. Pierce. How good is local type inference? Technical Report
MS-CIS-99-17, University of Pennsylvania, June 1999.

[HP99b] Haruo Hosoya and Benjamin C. Pierce. How good is local type inference? Technical Report
MS-CIS-99-17, University of Pennsylvania, June 1999.

[Jim95] Trevor Jim. Rank-2 type systems and recursive definitions. Technical Report MIT/LCS/TM-531,
Massachusetts Institute of Technology, Laboratory for Computer Science, November 1995.

[Jim00] T. Jim. A polar type system. ICALP Workshops, 8:323–338, 2000.

[JS04] S. Peyton Jones and M. Shields. Practical type inference for arbitrary-rank types, 2004.

[JVWS07] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. Practical type
inference for arbitrary-rank types. J. Funct. Program., 17(1):1–82, 2007.

[JWOG89] Jr. James William O’Toole and David K. Gifford. Type reconstruction with first-class polymor-
phic values. In SIGPLAN ’89 Conference on Programming Language Design and Implementation,
Portland, Oregon, June 1989. ACM. also in ACM SIGPLAN Notices 24(7), July 1989.

[KW94] A. J. Kfoury and J. B. Wells. A direct algorithm for type inference in the rank-2 fragment of the
second-order λ-calculus. In Proceedings of the ACM Conference on Lisp and functional program-
ming, pages 196–207, June 1994.

[LB04] Didier Le Botlan. MLF : Une extension de ML avec polymorphisme de second ordre et instanciation
implicite. PhD thesis, Ecole Polytechnique, May 2004. 326 pages.

[LBR03] Didier Le Botlan and Didier Rémy. MLF: Raising ML to the power of System-F. In Proceedings
of the International Conference on Functional Programming (ICFP 2003), Uppsala, Sweden, pages
27–38. ACM Press, August 2003.

[Lei90] Daniel Leivant. Discrete polymorphism (summary). In Proceedings of the 1990 ACM Conference
on Lisp and Functional Programming, pages 288–297, 1990.

RR n
�

0123456789

56 Rémy & Le Botlan

[LL05] Daan Leijen and Andres Löh. Qualified types for mlf. In The International Conference on Functional
Programming (ICFP’05). ACM Press, September 2005.

[LO94] Konstantin Läufer and Martin Odersky. Polymorphic type inference and abstract data types. ACM
Transactions on Programming Languages and Systems, 16(5):1411–1430, September 1994.

[Mil78] R. Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17:348–375, December 1978.

[Mil92] Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation, 14:321–358, 1992.

[Mit88] John C. Mitchell. Polymorphic type inference and containment. Information and Computation,
2/3(76):211–249, 1988.

[OL96] Martin Odersky and Konstantin Läufer. Putting type annotations to work. In Proceedings of the
23rd ACM Conference on Principles of Programming Languages, pages 54–67, January 1996.

[OZZ01] Martin Odersky, Christoph Zenger, and Matthias Zenger. Colored local type inference. ACM
SIG-PLAN Notices, 36(3):41–53, March 2001.

[Pfe88] Frank Pfenning. Partial polymorphic type inference and higher-order unification. In Proceedings of
the ACM Conference on Lisp and Functional Programming, pages 153–163. ACM Press, July 1988.

[Pfe93] Frank Pfenning. On the undecidability of partial polymorphic type reconstruction. Fundamenta
Informaticae, 19(1,2):185–199, 1993. Preliminary version available as Technical Report CMU-CS-
92-105, School of Computer Science, Carnegie Mellon University, January 1992.

[Pie91] Benjamin C. Pierce. Programming with Intersection Types and Bounded Polymorphism. PhD thesis,
Carnegie Mellon University, December 1991. Available as School of Computer Science technical
report CMU-CS-91-205.

[Pie94] Benjamin C. Pierce. Bounded quantification is undecidable. Information and Computation,
112(1):131–165, July 1994.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, Massachusetts Institute
of Technology Cambridge, Massachusetts 02142, 2002.

[PT98] Benjamin C. Pierce and David N. Turner. Local type inference. In Proceedings of the 25th ACM
Conference on Principles of Programming Languages, 1998. Full version in ACM Transactions on
Programming Languages and Systems (TOPLAS), 22(1), January 2000, pp. 1–44.

[Rém94] Didier Rémy. Programming objects with ML-ART: An extension to ML with abstract and record
types. In Masami Hagiya and John C. Mitchell, editors, Theoretical Aspects of Computer Software,
volume 789 of Lecture Notes in Computer Science, pages 321–346. Springer-Verlag, April 1994.

[Rém05] Didier Rémy. Simple, partial type-inference for System F based on type-containment. In Proceedings
of the tenth International Conference on Functional Programming, September 2005.

[Rey74] John C. Reynolds. Towards a theory of type structure. In Proc. Colloque sur la Programmation,
pages 408–425, New York, 1974. Springer-Verlag LNCS 19.

[RY07] Didier Rémy and Boris Yakobowski. A graphical presentation of MLF types with a linear-time
unification algorithm. In TLDI’07: Proceedings of the 2007 ACM SIGPLAN International Workshop
on Types in Languages Design and Implementation, pages 27–38, Nice, France, January 2007. ACM
Press.

[Sch98] Aleksy Schubert. Second-order unification and type inference for Church-style polymorphism. In
Conference Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Diego, California, pages 279–288, New York, NY, 1998.

[VWJ06] Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones. Boxy types: inference for higher-
rank types and impredicativity. SIGPLAN Not., 41(9):251–262, 2006. Proceedings of the 2006
International Conference on Functional Programming.

INRIA

MLF made simple. 57

[Wel96] Joe B. Wells. Type Inference for System F with and without the Eta Rule. PhD thesis, Boston
University, 1996.

[Wel99] J. B. Wells. Typability and type checking in System F are equivalent and undecidable. Ann. Pure
Appl. Logic, 98(1–3):111–156, 1999.

RR n
�

0123456789

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)��������� �	��
�

���������� ��� ���

ISSN 0249-6399

	Introduction
	An intuitive introduction to MLF
	A Generic Curry's style second-order type system
	Curry's style MLF.
	Church's style MLF.
	Flet, the closure of System F with let-contraction

	IMLF, Curry's style MLF
	Types and Prefixes
	Interpretation of types and prefixes
	Syntactic versions of instance and equivalence
	Typing rules
	System F as a subset of (Simple) IMLF
	Type soundness, by viewing IMLF as a subset of Flet
	Expressiveness and modularity

	XMLF, Church's style MLF
	Types, prefixes and relations under prefix
	Typing rules and type soundness
	Translating System F into XMLF
	Embedding ML into XMLF
	Programs that we intendedly reject

	Related works
	Type inference for System F
	Embedding first-class polymorphism in ML

	Conclusion and future work
	Proofs

