
HAL Id: inria-00157889
https://inria.hal.science/inria-00157889v2

Submitted on 28 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safely composing security protocols
Véronique Cortier, Jérémie Delaitre, Stéphanie Delaune

To cite this version:
Véronique Cortier, Jérémie Delaitre, Stéphanie Delaune. Safely composing security protocols. [Re-
search Report] RR-6234, INRIA. 2007, pp.26. �inria-00157889v2�

https://inria.hal.science/inria-00157889v2
https://hal.archives-ouvertes.fr

a ppor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
62

34
--

F
R

+
E

N
G

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Safely composing security protocols

Véronique Cortier — Jérémie Delaitre — Stéphanie Delaune

N° 6234

Juin 2007

Unité de recherche INRIA Lorraine
LORIA, Technopôle de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lès-Nancy (France)
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 3 83 27 83 19

Safely composing security protocols

Véronique Cortier∗ , Jérémie Delaitre ∗ , Stéphanie Delaune∗

Thème SYM — Systèmes symboliques
Projets Cassis

Rapport de recherche n° 6234 — Juin 2007 — 26 pages

Abstract: Security protocols are small programs that are executed in hostile environ-
ments. Many results and tools have been developed to formally analyze the security of a
protocol in the presence of active attackers that may block, intercept and send new messages.
However even when a protocol has been proved secure, there is absolutely no guarantee if
the protocol is executed in an environment where other protocols, possibly sharing some
common identities and keys like public keys or long-term symmetric keys, are executed.

In this paper, we show that security of protocols can be easily composed. More precisely,
we show that whenever a protocol is secure, it remains secure even in an environment where
arbitrary protocols are executed, provided each encryption contains some tag identifying
each protocol, like e.g. the name of the protocol.

Key-words: verification, security protocols, composition

∗ LORIA, CNRS & INRIA project Cassis, Nancy, France. This work has been partly supported by the

RNTL project POSÉ and the ARA SSIA Formacrypt

Composition de protocoles de sécurité

Résumé : Les protocoles de sécurité sont des petits programmes qui s’exécutent dans un
environnement hostile. De nombreux résultats permettent de réaliser une analyse formelle
de ces protocoles en présence d’un intrus actif qui peut bloquer, intercepter et envoyer de
nouveaux messages. Cependant ces résultats ne fournissent aucune garantie de sécurité dans
le cas où le protocole est exécuté dans un environnement où d’autres protocoles, partageant
éventuellement des clefs, interviennent.

Dans ce papier, nous montrons que la sécurité des protocoles se composent. Plus
précisément, nous montrons que lorsqu’un protocole est sûr, il le reste même lorsque d’autres
protocoles sont exécutés, pourvu que chaque message chiffré du protocole contienne un iden-
tifiant, comme par exemple le nom du protocole.

Mots-clés : vérification, protocoles de sécurité, composition

Safely composing security protocols 3

1 Introduction

Security protocols are small programs that aim at securing communications over a public
network like the Internet. Considering the increasing size of networks and their dependence
on cryptographic protocols, a high level of assurance is needed in the correctness of such
protocols. The design of such protocols is difficult and error-prone; many attacks have been
discovered even several years after the publication of a protocol. Consequently, there has
been a growing interest in applying formal methods for validating cryptographic protocols
and many results have been obtained. The main advantage of the formal approach is its
relative simplicity which makes it amenable to automated analysis. For example, the secrecy
preservation is co-NP-complete for a bounded number of sessions [17], and decidable for an
unbounded number of sessions under some additional restrictions (e.g. [2, 4, 18]). Many
tools have also been developed to automatically verify cryptographic protocols like [14, 3].

However even when a protocol has been proved secure for an unbounded number of
sessions, against a fully active adversary that can intercept, block and send new messages,
there is absolutely no guarantee if the protocol is executed in an environment where other
protocols, possibly sharing some common identities and keys like public keys or long-term
symmetric keys, are executed. This is however very likely to happen since a user connected
to the Internet for example, usually uses simultaneously several protocols with the same
identity. The interaction with the other protocols may dramatically damage the security of
a protocol. Consider for example the two following naive protocols.

P1 : A → B : {s}pub(B)
P2 : A → B : {Na}pub(B)

B → A : Na

In protocol P1, the agent A simply sends a secret s encrypted under B’s public key. In
protocol P2, the agent sends some fresh nonce to B encrypted under B’s public key. The
agent B acknowledges A’s message by forwarding A’s nonce. While P1 executed alone easily
guarantees the secrecy of s, even against an active adversary, the secrecy of s is no more
guaranteed when the protocol P2 is executed. Indeed, an adversary may use the proto-
col P2 as an oracle to decrypt any message. More realistic examples illustrating interactions
between protocols can be found in e.g. [13].

The purpose of this paper is to investigate sufficient and rather tight conditions for a
protocol to be safely used in an environment where other protocols may be executed as
well. Our main contribution is to show that whenever a protocol is proved secure when it is
executed alone, its security is not compromised by the interactions with any other protocol,
provided each protocol is given an identifier (e.g. the protocol’s name) that should appear
in any encrypted message. Continuing our example, let us consider the two slightly modified
protocols.

P ′
1 : A → B : {1, s}pub(B)

P ′
2 : A → B : {2, Na}pub(B)

B → A : Na

Applying our result, we immediately deduce that P ′
1 can be safely executed together with P ′

2,
without compromising the secrecy of s.

RR n° 6234

4 V. Cortier, J. Delaitre & S. Delaune

The idea of adding an identifier in encrypted messages is not novel. This rule is in the
same spirit as those proposed in the paper of Abadi and Needham on prudent engineering
practice for cryptographic protocols [1] (principle 10). The use of unique protocol identifiers
is also recommended in [13, 5] and has also been used in the design of fail-stop protocols [11].
However, to the best of our knowledge, it has never been proved that it is sufficient for
securely executing several protocols in the same environment. Note that some other results
also use tags for different purposes. For instance, Blanchet uses tags to exhibit a decidable
class [4] but his tagging policy is stronger since any two encrypted subterm in a protocol
have to contain different tags.

The result the most closely related to ours is the one of Guttman and Thayer [12]. They
show that two protocols can be safely executed together without damaging interactions, as
soon as the protocols are “independent”. The independence hypothesis requires in particular
that the set of encrypted messages that the two protocols handle should be different. As in
our case, this can be ensured by giving each protocol a distinguishing value that should be
included in the set of encrypted messages that the protocol handles. However, the major
difference with our result is that this hypothesis has to hold on any valid execution of the
protocol. In particular, considering again the protocol P ′

2, an agent should not accept a
message of the form {2, {1, m}k}pub(B) while he might not be able to decrypt the inside
encryption and detect that it contains the wrong identifier. In particular, their result do
not allow to conclude when no typing hypothesis is assumed (that is, when agents are not
required to check the type of each component of a message) or for protocols with cyphertext
forwarding, that is, when agents have to forward unknown message components.

Datta et al. [9, 10] have also studied secure protocol composition in a more broader sense:
protocols can be composed in parallel, sequentially or protocols may use other protocols as
components. However, they do not provide any syntactic conditions for a protocol P to be
safely executed in parallel with other protocols. For any protocol P ′ that might be executed
in parallel, they have to prove that the two protocols P and P ′ satisfy each other invariants.
Their approach is thus rather designed for component-based design of protocols.

2 Models for security protocols

2.1 Syntax

Cryptographic primitives are represented by function symbols. More specifically, we consider
the signature F = {enc, enca, sign, 〈 〉, pub, priv} together with arities of the form ar(f) = 2
for the four first symbols and ar(f) = 1 for the two last ones. The symbol 〈 〉 represents the
pairing function. The terms enc(m, k) and enca(m, k) represent respectively the message m
encrypted with the symmetric (resp. asymmetric) key k. The term sign(m, k) represents
the message m signed by the key k. The terms pub(a) and priv(a) represent respectively the
public and private keys of an agent a. We fix an infinite set of names N = {a, b . . .} among
which we distinghuish two particular names init and stop; and an infinite set of variables

INRIA

Safely composing security protocols 5

X = {x, y . . .}. The set of Terms is defined inductively by

t ::= term
| x variable x
| a name a
| f(a) application of symbol f ∈ {pub, priv} on a name
| f(t1, t2) application of symbol f ∈ {enc, enca, sign, 〈 〉}

As usual, we write vars(t) (resp. names(t)) for the set of variables (resp. names) occur-
ring in t. A term is ground or closed if and only if it has no variables. We write St(t) for the
set of subterms of a term t. This notion is extended as expected to sets of terms. Extended
names are names or terms of the form pub(a), priv(a). The set of extended names of a
term t, denoted by n(t), is n(t) = names(t) ∪ {pub(t), priv(t) | pub(t) or priv(t) ∈ St(t)}.
For example, we have that n(enc(a, pub(b))) = {a, b, pub(b), priv(b)}. Substitutions are writ-
ten σ = {x1 7→ t1, . . . , xn 7→ tn} with dom(σ) = {x1, . . . , xn}. The substitution σ is closed if
and only if all the ti are closed. The application of a substitution σ to a term t is written σ(t)
or tσ.

2.2 Intruder capabilities

The ability of the intruder is modelled by a deduction system described in Figure 1 and
corresponds to the usual Dolev-Yao rules. The first line describes the composition rules.
We call these deduction rules pairing, symmetric and asymmetric encryption and signature
respectively. The two last lines describe the decomposition rules and the axiom. We call
these rules first and second projection, symmetric and asymmetric decryption respectively.
Intuitively, these deduction rules say that an intruder can compose messages by pairing,
encrypting and signing messages provided he has the corresponding keys. Conversely, it can
decompose messages by projecting or decrypting provided it has the decryption keys. For
signatures, the intruder is also able to verify whether a signature sign(m, k) and a message m
match (provided she has the verification key), but this does not give her any new message.
That is why this capability is not represented in the deduction system. We also consider an
optional rule

T ⊢ sign(u, priv(v))

T ⊢ u

that expresses that an intruder can retrieve the whole message from its signature. This
property may or may not hold depending on the signature scheme, and that is why this rule
is optional. Our results hold in both cases (that is, when the deduction relation ⊢ is defined
with or without this rule).

A term u is deducible from a set of terms T , denoted by T ⊢ u if there exists a proof i.e.
a tree such that the root is T ⊢ u, the leaves are of the form T ⊢ v with v ∈ T (axiom rule)
and every intermediate node is an instance of one of the rules of the deduction system.

RR n° 6234

6 V. Cortier, J. Delaitre & S. Delaune

T ⊢ u T ⊢ v

T ⊢ 〈u, v〉

T ⊢ u T ⊢ v

T ⊢ enc(u, v)

T ⊢ u T ⊢ v

T ⊢ enca(u, v)

T ⊢ u T ⊢ v

T ⊢ sign(u, v)

T ⊢ 〈u, v〉

T ⊢ u

T ⊢ 〈u, v〉

T ⊢ v

T ⊢ enc(u, v) T ⊢ v

T ⊢ u

T ⊢ enca(u, pub(v)) T ⊢ priv(v)

T ⊢ u

T ⊢ sign(u, priv(v))
(optional)

T ⊢ u
u ∈ T

T ⊢ u

Figure 1: Intruder deduction system.

Example 1 The term 〈k1, k2〉 is deducible from the set T1 = {enc(k1, k2), k2}. A proof of
T1 ⊢ 〈k1, k2〉 is:

T1 ⊢ enc(k1, k2) T1 ⊢ k2

T1 ⊢ k1 T1 ⊢ k2

T1 ⊢ 〈k1, k2〉

2.3 Protocols

We consider protocols specified in a language similar to the one of [17] allowing parties
to exchange messages built from identities and randomly generated nonces using public
key, symmetric encryption and digital signatures. The individual behavior of each protocol
participant is defined by a role describing a sequence of message receptions/transmissions,
and a k-party protocol is given by k such roles.

Definition 1 (Roles and protocols) The set Roles of roles for protocol participants is
the set of sequences of the form (rcv1, N1, snd1) · · · (rcvℓ, Nℓ, sndℓ) where each element, called
rule, satisfies (rcvi, Ni, sndi) ∈ Terms × 2X × Terms, and for any variable, x ∈ vars(sndi)
implies x ∈

⋃

1≤j≤i Nj ∪ vars(rcvj).
The length of a role is the number of elements in its sequence. A k-party protocol is a

mapping Π : [k] → Roles, where [k] = {1, 2, . . . , k}.

The last condition ensures that each variable which appears in a sent term is either a
nonce or has been introduced in a previously received message. The set of variables, names
or extended names of a protocol is defined as expected, considering all the terms occurring
in the role’s specification.

The jth role of a protocol Π is denoted by (rcvj
1

N
j
1→ snd

j
1) · · · (rcv

j
kj

N
j

kj

→ snd
j
kj

). It specifies

the messages to be sent/received by the party executing the role: at step i, the jth party
expects to receive a message conformed to rcv

j
i , instantiate the variables of N j

i with fresh

INRIA

Safely composing security protocols 7

names and returns the message snd
j
i . We assume the sets N j

i to be pairwise disjoint. The
special constants init and stop will be used to specify that no message is expected or sent.

The composition of two protocols Π1 and Π2, denoted by Π1 | Π2 is the protocol obtained
by the union of the roles of Π1 and Π2. If Π1 : [k1] → Roles and Π2 : [k2] → Roles, then
Π = Π1 | Π2 : [k1 + k2] → Roles with Π(i) = Π1(i) for any 1 ≤ i ≤ k1 and Π(k1 + i) = Π2(i)
for any 1 ≤ i ≤ k2 .

Example 2 Consider the famous Needham-Schroeder asymmetric key authentication pro-
tocol [16] designed for mutual authentication.

A → B : {Na, A}pub(B)

B → A : {Na, Nb}pub(A)

A → B : {Nb}pub(B)

The agent A sends to B his name and a fresh nonce (a randomly generated value) encrypted
with the public key of B. The agent B answers by copying A’s nonce and adds a fresh
nonce NB, encrypted by A’s public key. The agent A acknowledges by forwarding B’s nonce
encrypted by B’s public key. For instance, let a, b, and c be three agent names. The role Π(1)
corresponding to the first participant played by a talking to c is:

(init
{X}
→ enca(〈X, a〉, pub(c))), (enca(〈X, x〉, pub(a))

∅
→ enca(x, pub(c)))

The role Π(2) corresponding to the second participant played by b with a is:

(enca(〈y, a〉, pub(b))
{Y }
→ enca(〈y, Y 〉, pub(a))), (enca(Y, pub(b))

∅
→ stop)

Note that there is also a role corresponding to the first participant played by a talking to b
for example. If more agent identities need to be considered, then the corresponding roles
should be added to the protocol. It has been shown however that two agents are sufficient
(one honest and one dishonest) for proving security properties [6].

Clearly, not all protocols written using the syntax above are meaningful. In particular,
some of them might not be executable. A precise definition of executability is not relevant
for our result. We use instead a weaker hypothesis (see Section 3). In particular, our
combination result also holds for non executable protocols that satisfy our hypothesis.

2.4 Constraint systems

Constraint systems are quite common (see e.g. [17, 7, 8]) in modeling security protocols.
They are used to specify secrecy preservation of security protocols under a particular, finite
scenario. We recall here their formalism and we show in the next section that the secrecy
preservation problem for an unbounded number of sessions can be specified using (infinite)
families of constraint systems.

RR n° 6234

8 V. Cortier, J. Delaitre & S. Delaune

Definition 2 (constraint system) A constraint system C is either ⊥ or a finite set of
expressions T
 u, called constraints, where T is a non empty set of terms, called the left-
hand side of the constraint and u is a term, called the right-hand side of the constraint, such
that:� the left-hand sides of all constraints are totally order by inclusion;� if x ∈ vars(T) for some (T
 u) ∈ C then

Tx
def
= min{T ′ | (T ′

 u′) ∈ C and x ∈ vars(u′)}
exists and Tx (T .

A solution of C is a closed substitution θ such that for every (T
 u) ∈ C, we have
that Tθ ⊢ uθ. The empty constraint system is always satisfiable whereas ⊥ denotes an un-
satisfiable system.

A constraint system C is usually denoted as a conjunction of constraints C =
∧

1≤i≤n(Ti
 ui)
with Ti ⊆ Ti+1, for all 1 ≤ i < n. The second condition in Definition 2 says that if x ∈ vars(Ti)
then ∃j < i such that Tj = Tx and Tj (Ti. In other words, each time a variable occurs
first in some right-hand side, it must not have occurred before in some left-hand side. The
left-hand side of a constraint system usually represents the messages sent on the network.

2.5 Secrecy

We define the general secrecy preservation problem for an unbounded number of sessions,
using infinite families of constraint systems. A role may be executed in several sessions,
using different nonces at each session. Moreover, since the adversary may block, redirect
and send new messages, all the sessions might be interleaved in many ways. This is captured
by the notion of scenario.

Definition 3 (scenario) A scenario for a protocol Π : [k] → Roles is a sequence of the
form (r1, s1) · · · (rn, sn) such that 1 ≤ ri ≤ k, si ∈ N, the number of identical occurrences of
a pair (r, s) is smaller than the length of the role r, and whenever si = sj then ri = rj.

The numbers ri and si represent respectively the involved role and the session number. The
last condition ensures that a session number is not reused on other roles. Given a scenario sc,
we say that (r, s) ∈ sc if (r, s) is an element of the sequence sc. Let Π = Π1 | Π2 be a protocol
obtained by composition of Π1 and Π2 and let sc be a scenario for Π. The scenario sc|Π1

is simply the sequence obtained from sc by removing any element (r, s) where r is a role
of Π2. Given a scenario, we can define a sequence of rules that corresponds to the sequence
of expected and sent messages.

Definition 4 Given a scenario sc = (r1, s1) · · · (rn, sn) for a k-party protocol Π, the se-
quence of rules (u1, v1) · · · (un, vn) associated to sc is defined as follows.

Let Π(j) = (rcvj
1

N
j
1→ snd

j
1) · · · (rcv

j
kj

N
j

kj

→ snd
j
kj

) for 1 ≤ j ≤ k.

INRIA

Safely composing security protocols 9

Let pi = #{(rj , sj) ∈ sc | j ≤ i, rj = ri}, i.e. the number of previous occurrences in sc of the
role ri. We have pi ≤ kri

and (ui, vi) = (rcvri
pi

σri,si
, sndri

pi
σri,si

), where� dom(σr,s) =
⋃

1≤i≤kr
(Nr

i ∪ vars(rcvr
i)), i.e. variables occurring in Π(r),� σr,s(x) = nx,s if x ∈

⋃

1≤i≤kr
Nr

i , where nx,s is a name.� σr,s(x) = xs otherwise, where xs is a variable.

We assume that names (resp. variables) with different indexes are pairwise different and
also different from the names (resp. variables) occurring in Π,

We say that a protocol preserves the secrecy of a data if it preserves its secrecy for any
scenario. In particular, the secrecy of the data must be preserved for any possible instances
of its fresh values (e.g. nonces and keys).

Definition 5 (secrecy) A protocol Π preserves the secrecy of a term m for the initial
knowledge T0 if for any scenario sc for Π, for any role number 1 ≤ i ≤ k, for any session
number si ∈ N that either corresponds to role i, that is (i, si) ∈ sc or does not appear in the
scenario, that is ∀j, (j, si) /∈ sc, the following constraint system is not satisfiable

T ′
0
 u1 ∧

∧

1≤i<n

(T ′
0 ∪ {v1, . . . , vi}
 ui+1) ∧ (T ′

0 ∪ {v1, . . . , vn}
 mσ1,s1
· · ·σk,sk

)

where T ′
0 = T0∪{init} and (u1, v1) · · · (un, vn) is the sequence of rules associated to sc and σr,s

is the substitution defined in Definition 4.

The initial knowledge typically contains the names and the public keys of all agents and the
private keys of all dishonest agents.

Example 3 Consider again the Needham-Schroeder protocol. Let Π(1) and Π(2) the two
roles introduced in Example 2. This protocol is well-known to be insecure w.r.t. m = Y and
T0 = {priv(c), pub(c), a, b, pub(a), pub(b)}. Let s1 and s2 be two session numbers (s1 6= s2)
and consider sc = (1, s1) (2, s2) (1, s1) (2, s2). The constraint system C associated to T0, sc

and mσ1,s1
σ2,s2

= nY,s2
(according to Definition 5) is given below.

C :=



























T0, init
 init

T1
def
= T0, init, enca(〈nX,s1

, a〉, pub(c))
 enca(〈ys2
, a〉, pub(b))

T2
def
= T1, enca(〈ys2

, nY,s2
〉, pub(a))
 enca(〈nX,s1

, xs1
〉, pub(a))

T2, enca(xs1
, pub(c))
 enca(nY,s2

, pub(b))
T2, enca(xs1

, pub(c))
 nY,s2

The substitution σ = {ys2
7→ nX,s1

, xs1
7→ nY,s2

} is a solution of C.

RR n° 6234

10 V. Cortier, J. Delaitre & S. Delaune

3 Composition result

3.1 Hypothesis

Even if a protocol is secure for an unbounded number of sessions, its security may collapse
if the protocol is executed in an environment where other protocols sharing some common
keys are executed. We have seen a first example in introduction. To avoid a cyphertext
from a protocol Π1 to be decrypted in an another protocol Π2, we introduce the notion of
well-tagged protocol.

Definition 6 (well-tag, α-tag) Let α be a term. We say that a term t is α-tagged if for
every t′ ∈ St(t) of the form t′ = enc(t1, t2), t′ = enca(t1, t2), or t′ = sign(t1, t2), we have
t1 = 〈α, t′1〉 for some term t′1. A term is said well-tagged if it is α-tagged for some term α.

A protocol Π is α-tagged is any term occurring in the role of the protocol is α-tagged. A
protocol is said well-tagged if it is α-tagged for some term α.

Requiring that a protocol is well-tagged can be very easily achieved in practice: it is sufficient
for example to add the name of the protocol in each encrypted term. Moreover, note that
(as opposite to [12]) this does not require that the agents check that nested encrypted terms
are correctly tagged. For example, let Π be a protocol with one role as follows:

Π(1) = (enca(〈α, x〉, pub(a)) → enca(〈α, x〉, pub(b))).

The protocol Π is α-tagged and still the message enca(〈α, enc(a, k)〉, pub(a)) (which is not
α-tagged) would be accepted by the agent playing the role.

Tagging protocols is not sufficient, indeed critical long-term keys should not be revealed
in clear. Consider for example the following two well-tagged protocols

P3 : A → B : {α, s}kab
P4 : A → B : kab

The security of protocol P3 is again compromised by the execution of P4. Thus we will
require that long-term keys (except possibly the public ones) do not occur in plaintext in
the protocol.

Definition 7 (plaintext) The set plaintext(t) of plaintext of a term t is the set of extended
names and variables, that is recursively defined as follows.

plaintext(u) = {u} if u is a variable or a name
plaintext(f(u)) = {f(u)} for f ∈ {pub, priv}
plaintext(〈u1, u2〉) = plaintext(u1) ∪ plaintext(u2)
plaintext(f(u1, u2)) = plaintext(u1) for f ∈ {enc, enca, sign}

This notation is extended to set of terms and protocols as expected .

INRIA

Safely composing security protocols 11

Some weird protocols may still reveal critical keys in a hidden way. Consider for example
the following one role (α-tagged) protocol.

Π(1) = (init → enc(〈α, a〉, kab)), (enc(〈α, a〉, x) → x)

While the long-term key kab does not appear in plaintext, the key kab is revealed after simply
one normal execution of the role. This protocol is however not realistic since an unknown
value cannot be learned (and sent) if it does not appear previously in plaintext. Thus we
will further require (Condition 2 of Theorem 1) that a variable occurring in plaintext in a
sent message, has to previously occur in plaintext in a received message.

3.2 Composition theorem

We show that any two well-tagged protocols can be safely composed as soon as they use
different tags and that critical long-term keys do not appear in plaintext.

Theorem 1 Let Π1 and Π2 be two well-tagged protocols such that Π1 is α-tagged and Π2

is β-tagged with α 6= β. Let T0 (intuitively the initial knowledge of the intruder) be a set
of extended names. Let KC = (n(Π1) ∪ n(Π2)) r T0 be the set of critical extended names.
Let m be a term constructed from Π1 such that m is α-tagged and vars(m) ⊆ vars(Π1).
Moreover, we assume that

1. critical extended names do not appear in plaintext, that is
KC ∩ (plaintext(Π1) ∪ plaintext(Π2)) = ∅.

2. for any role (rcv1
N1→ snd1) · · · (rcvk

Nk→ sndk) of Π1 or Π2, for any variable x ∈
plaintext(sndi), we have x ∈

⋃

1≤j≤i Nj ∪ {plaintext(rcvj)}.

Then Π1 preserves the secrecy of m for the initial knowledge T0 if and only if Π1 | Π2

preserves the secrecy of m for T0.

We have seen in Section 3.1 that conditions 1 and 2 are necessary conditions. Moreover,
condition 2 will be satisfied by any realistic (executable) protocol. We require that terms
from Π1 and Π2 are tagged with distinct tags for simplicity. The key condition is actually
that for any encrypted (or signed) subterm t1 of Π1 and for any encrypted (or signed)
subterm t2 of Π2, the terms t1 and t2 cannot be unified.

Theorem 1 is proved by contradiction. Assume that Π1 | Π2 does not preserve the secrecy
of m for T0. It means that there exists a scenario sc for Π1 | Π2 such that the constraint
system associated to sc, T0 and m is satisfiable. Proposition 1 ensures that in this case,
there exists a scenario sc′ for Π1 such that the constraint system associated to sc′, T0 and m
is satisfiable, which means that Π1 does not preserve the secrecy of m for some initial
knowledge T0, contradiction.

RR n° 6234

12 V. Cortier, J. Delaitre & S. Delaune

Proposition 1 Let Π1 = [k1] → Roles, Π2 = [k2] → Roles, T0 and m defined as in Theo-
rem 1 and satisfying the conditions 1 and 2. Let k = k1+k2 and sc be a scenario for Π1 | Π2.
For any role number 1 ≤ i ≤ k, let si ∈ N such that (i, si) ∈ sc or ∀j, (j, si) 6∈ sc. Let C be
the constraint system associated to sc, T0 and mσ1,s1

· · ·σk,sk
. Let sc′ = sc|Π1

and C′ be the
constraint system associated to sc′, T0 and mσ1,s1

· · ·σk1,sk1
. If C is satisfiable, then C′ is

also satisfiable.

The next section is devoted to the (sketch of) proof of this proposition.

4 Proof of our combination result

To prove our decision procedure, we first refine an existing decision procedure for solving
constraint systems. Several decision procedures already exist [15, 7, 8, 17] for solving con-
straint systems. Some of them [15, 7, 8] are based on a set of simplification rules allowing a
general constraint system to be reduced to some simpler one, called solved, on which satis-
fiability can be easily decided. A constraint system is said solved [8] if it is different from ⊥
and if each of its constraints is of the form T
 x, where x is a variable. Note that the
empty constraint system is solved. Solved constraint systems are particularly simple since
they always have a solution. Indeed, let T1 be the smallest (w.r.t. inclusion) left hand side
of a constraint. From the definition of a constraint system we have that T1 is non empty and
has no variable. Let t ∈ T1. Then the substitution τ defined by xτ = t for every variable x
is a solution since T ⊢ xθ for any constraint T
 x of the solved constraint system.

The simplification rules we consider are given below. All the rules are indexed by a sub-
stitution (when there is no index then the identity substitution is implicitly considered). We
write C ∗

σ C′ if there are C1, . . . , Cn such that C σ0
C1 σ1

. . . σn
C′ and σ = σ0σ1 . . . σn.

Our rules are the same than in [8] except that we forbid unification of terms headed by 〈 〉.
We show that it still forms a complete decision procedure (see Appendix A). Correction
and termination are still ensured by [8].

R1 : C ∧ T
 u C if T ∪ {x | T ′

 x ∈ C, T ′ (R} ⊢ u

R2 : C ∧ T
 u σ Cσ ∧ Tσ
 uσ if σ = mgu(t, u) where t ∈ St(T), t 6= u,
and t, u are neither variables nor pairs

R3 : C ∧ T
 u σ Cσ ∧ Tσ
 uσ if σ = mgu(t1, t2), t1, t2 ∈ St(T), t1 6= t2,
and t1, t2 are neither variables nor pairs

R4 : C ∧ T
 u ⊥ if vars(T, u) = ∅ and T 6⊢ u
R5 : C ∧ T
 f(u, v) C ∧ T
 u ∧ T
 v for f ∈ {〈〉, enc, enca, sign}

Theorem 2 Let C be an unsolved constraint system.

1. (Correctness) If C ∗
σ C′ for some constraint system C′ and some substitution σ and

if θ is a solution of C′ then σθ is a solution of C.

INRIA

Safely composing security protocols 13

2. (Completeness) If θ is a solution of C, then there exist a solved constraint system C′

and substitutions σ, θ′ such that θ = σθ′, C ∗
σ C′ and θ′ is a solution of C′.

3. (Termination) There is no infinite chain C σ1
C1 . . . σn

Cn.

Proving that forbiding unification between pairs still leads to a complete decision procedure
required in particular to introduce a new notion of minimality for tree proofs for deduction.
Note that this result is of independent interest. Indeed, we provide a more efficient decision
procedure for solving constraint systems, thus for deciding secrecy for a bounded number of
sessions. Of course, the theoretical worst-case complexity remains the same (NP).

Proposition 1 is then proved in three main steps (see Appendix). First, Theorem 2 serves
as a key result for proving that if C is satisfiable, then there exists a solution θ such that
every term in Cθ is well-tagged. Intuitively, it shows that there is a solution where messages
from Π1 and Π2 are not mixed up.

Second, conditions 1 and 2 ensure that for any solution θ of C, the critical extended
names of KC do not appear in plaintext in Cθ.

Third, thanks to the two previous steps, we prove that β-tagged terms (intuitively mes-
sages from Π2) are not useful for deducing α-tagged terms. The proof required in particular
the introduction of a new locality lemma for deduction of ground terms. We deduce that,
removing from C all constraints inherited from Π2 and all β-tagged terms, we obtain a
satisfiable constraint C′ that is associated to a scenario of Π1.

5 Conclusion

In this paper, we have shown how to safely compose secure protocols by tagging encryption,
focusing on secrecy properties. Whenever a protocol preserves the secrecy of some data s, it
still preserves s secrecy when other tagged protocols are executed in the same environment.
We plan to consider the protocol composition problem for larger classes of security properties.
In particular, we believe that our result can be extended to authentication-like properties.

More broadly, we foresee composition results in a more general way. In this paper,
protocols are composed in the sense that they can be executed in the same environment.
We plan to develop composition results where protocols can use other protocols as sub-
programs. For example, a protocol could use a secure channel, letting the implementation of
the secure channel underspecified. This secure channel could be then possibly implemented
by any protocol establishing session keys.

References

[1] M. Abadi and R. M. Needham. Prudent engineering practice for cryptographic proto-
cols. IEEE Trans. Software Eng., 22(1):6–15, 1996.

RR n° 6234

14 V. Cortier, J. Delaitre & S. Delaune

[2] R. Amadio and W. Charatonik. On name generation and set-based analysis in the
Dolev-Yao model. In Proc. Inter. Conference on Concurrency Theory (CONCUR’02),
volume 2421 of LNCS, pages 499–514. Springer-Verlag, 2002.

[3] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In Proc.
14th Computer Security Foundations Workshop (CSFW’01), pages 82–96. IEEE Comp.
Soc. Press, 2001.

[4] B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging enforces
termination. In Foundations of Software Science and Computation Structures (FoS-
SaCS’03), volume 2620 of LNCS. Springer, 2003.

[5] R. Canetti, C. Meadows, and P. F. Syverson. Environmental requirements for authen-
tication protocols. In Proc. Symposium on Software Security – Theories and Systems,
volume 2609 of LNCS, pages 339–355. Springer, 2002.

[6] H. Comon-Lundh and V. Cortier. Security properties: two agents are sufficient. Science
of Computer Programming, 50(1-3):51–71, 2004.

[7] H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and inse-
curity decision in presence of exclusive or. In Proc. 18th Annual Symposium on Logic
in Comp. Sc. (LICS’03), pages 271–280. IEEE Comp. Soc. Press, 2003.

[8] V. Cortier and E. Zalinescu. Deciding key cycles for security protocols. In Proc. 13th
Inter. Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR’06), volume 4246 of LNCS, pages 317–331. Springer, 2006.

[9] A. Datta, A. Derek, J. Mitchell, and D. Pavlovic. A derivation system and compositional
logic for security protocols. Journal of Computer Security, 13(3), 2005.

[10] A. Datta, A. Derek, J. C. Mitchell, and A. Roy. Protocol composition logic (PCL).
Electr. Notes Theor. Comput. Sci., 172:311–358, 2007.

[11] L. Gong and P. Syverson. Fail-stop protocols: An approach to designing secure pro-
tocols. In Proc. 5th Inter. Working Conference on Dependable Computing for Critical
Applications, pages 44–55, 1995.

[12] J. D. Guttman and F. J. Thayer. Protocol independence through disjoint encryption. In
Proc. 13th Computer Security Foundations Workshop (CSFW’00), pages 24–34. IEEE
Comp. Soc. Press, 2000.

[13] J. Kelsey, B. Schneier, and D. Wagner. Protocol interactions and the chosen protocol
attack. In Proc. 5th Inter. Workshop on Security Protocols, volume 1361 of LNCS,
pages 91–104. Springer, 1997.

[14] G. Lowe. Casper: A compiler for the analysis of security protocols. In Proc. 10th
Computer Security Foundations Workshop (CSFW’97). IEEE Comp. Soc. Press, 1997.

INRIA

Safely composing security protocols 15

[15] J. K. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic
protocol analysis. In Proc. 8th ACM Conference on Computer and Communications
Security (CCS’01), pages 166–175, 2001.

[16] R. Needham and M. Schroeder. Using encryption for authentication in large networks
of computers. Communication of the ACM, 21(12):993–999, 1978.

[17] M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions and
composed keys is NP-complete. Theoretical Comp. Sc., 299:451–475, 2003.

[18] H. Seidl and K. N. Verma. Flat and one-variable clauses: Complexity of verifying
cryptographic protocols with single blind copying. In Proc. 11th Inter. Conference on
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’04), volume 3452
of LNCS. Springer, 2005.

RR n° 6234

16 V. Cortier, J. Delaitre & S. Delaune

A Proof of completeness

Let T1 ⊆ T2 ⊆ . . . ⊆ Tn. We say that a proof π of Ti ⊢ u is left-minimal if for any j < i
such that Tj ⊢ u, π′ is a proof of Tj ⊢ u where π′ is obtained from π by replacing Ti with Tj

in the left hand side of each node of π.

Definition 8 (simple) We say that a proof π is simple if� any subproof of π is left-minimal,� any term of the form 〈u1, u2〉 obtained by application of a decomposition rule or an
axiom rule is followed by a projection rule� a composition rule is not directly followed by a decomposition rule.

Example 4 Let T1 = {a} and T2 = {a, enc(〈a, b〉, k), k}. We have that T2 ⊢ 〈a, b〉.

T2 ⊢ enc(〈a, b〉, k) T2 ⊢ k

T2 ⊢ 〈a, b〉

The proof above is not a simple proof of T2 ⊢ 〈a, b〉. The term 〈a, b〉 has been obtained
by an application of a decomposition rule. Thus we have to decompose it. A simple proof
of T2 ⊢ 〈a, b〉 is described below:

T2 ⊢ a

T2 ⊢ enc(〈a, b〉, k) T2 ⊢ k

T2 ⊢ 〈a, b〉

T2 ⊢ b

T2 ⊢ 〈a, b〉

Lemma 1 If Ti ⊢ u then there is a simple proof of it.

Given a constraint system C, we say that Ti is a minimal unsolved left hand side of C
if Ti is a left hand side of C and for all T
 u ∈ C such that T (Ti, u is a variable.

Lemma 2 Let C be an unsolved constraint system, θ be a solution to C and Ti be a minimal
unsolved left hand side of C. If there is a simple proof of Tiθ ⊢ u having the last rule an
axiom or a decomposition then there is t ∈ St(Ti) r X such that tθ = u.

Proof. Consider a simple proof π of Tiθ ⊢ u. Let j be minimal such that the proof π′

obtained from π by replacing Ti with Tj is a proof of Tjθ ⊢ u. According to the last applied
rule in the proof, we have:

INRIA

Safely composing security protocols 17

� The last rule is an axiom.
Then u ∈ Tjθ and hence there is t ∈ Tj such that tθ = u. If t is a variable then Tt
 t
is a constraint in C with Tt (Tj (see the definition of a constraint system). Hence
Ttθ ⊢ tθ, that is Ttθ ⊢ u, which contradicts the minimality of j.� The last rule is a decomposition.
Suppose that it is a symmetric decryption. Then, in such a case, there exists w such
that Tjθ ⊢ enc(u, w) and Tjθ ⊢ w. By simplicity of the proof, the last rule applied to
obtain enc(u, w) can not be a composition. Hence, it is either an axiom or a decom-
position. Then, applying the induction hypothesis we have that there is t ∈ St(Tj), t
not a variable, such that tθ = enc(u, w). It follows that t = enc(t′, t′′) with t′θ = u.
If t′ is a variable then Tt′θ ⊢ t′θ, that is Tt′θ ⊢ u which contradicts the minimality
of j. Hence t′ is not a variable. For the other decomposition rules, the same reasoning
holds. �

Let t be a term, we denote by comp(t) the components of the term t. This notion is formally
defined as follows: comp(〈t1, t2〉) = comp(t1) ∪ comp(t2) and comp(t) = t otherwise.

Lemma 3 Let C be an unsolved constraint system, θ be a solution of C and Ti be a minimal
unsolved left hand side of C such that for all t1, t2 ∈ St(Ti)

t1θ = t2θ implies t1 or t2 is a variable or a pair

If ui ∈ St(Ti) r X and Tiθ ⊢ uiθ then T ′
i ⊢ ui where T ′

i = Ti ∪ {x | T
 x ∈ C, T (Ti}.

Proof. Let j be minimal such that Tjθ ⊢ uiθ. Thus j ≤ i and Tj ⊆ Ti. Consider a simple
proof of Tjθ ⊢ uiθ. We reason by induction on the depth of the proof. We can have that:� The proof is reduced to an application of the rule axiom that might be followed by

several application of the projection rules until the resulting term is not a pair. Since
the proof is a simple proof, we have that uiθ is not a pair. Hence, ui is not a pair.

There exists t ∈ Tj such that uiθ ∈ comp(tθ). Either uiθ = t′θ for some t′ ∈ comp(t) r X
or uiθ ∈ comp(xθ) for some x ∈ comp(t) ∩ X . In the first case, we easily deduce that
neither ui nor t is a pair or a variable and hence by hypothesis, we have that ui = t′

and hence T ′
i ⊢ ui. In the second case, we have that Txθ ⊢ xθ. Thus Txθ ⊢ uiθ which

contradicts the minimality of j, since Tx (Tj .� The proof ends with an application of a decomposition rule that might be followed by
several application of the projection rules until the resulting term is not a pair. Note
that, since the proof is a simple proof, we have that uiθ is not a pair. Hence ui is not
a pair.

Suppose for example that it is the symmetric decryption rule. That is, there exist
w1, w2 such that Tjθ ⊢ enc(w1, w2), Tjθ ⊢ w2 and uiθ ∈ comp(w1). The last rule
applied to obtain Tjθ ⊢ enc(w1, w2) was not a composition by simplicity of the proof.

RR n° 6234

18 V. Cortier, J. Delaitre & S. Delaune

We can hence apply Lemma 2 and obtain that there is t ∈ St(Tj) r X such that
tθ = enc(w1, w2). Since t is not a variable, we have that t = enc(t1, t2) with t1θ = w1

and t2θ = w2. Either uiθ = pθ for some p ∈ comp(t1) rX or uiθ ∈ comp(xθ) for some
x ∈ comp(t1) ∩ X . In the second case, we have that Txθ ⊢ xθ. Thus Txθ ⊢ uiθ which
contradicts the minimality of j, since Tx (Tj . In the first case, we easily deduce that
neither ui nor p is a variable or a pair and hence by hypothesis, we have that ui = p.
We can apply the induction hypothesis on Tjθ ⊢ enc(t1, t2)θ (this subproof is simple)
to obtain that T ′

i ⊢ enc(t1, t2).

Now, it t2 is a variable then t2 ∈ T ′
i , thus T ′

i ⊢ t2. Otherwise, if t2 is not a variable then,
by induction hypothesis on Tjθ ⊢ t2θ (this subproof is a simple one), we obtain T ′

i ⊢ t2.
Hence, in both cases, we obtain that T ′

i ⊢ t2. Then, together with T ′
i ⊢ enc(t1, t2) and

ui ∈ comp(t1), it follows that T ′
i ⊢ ui. For the other decomposition rules the same

reasoning holds.� The last rule is a composition.
Suppose that it is the symmetric encryption rule. Then uiθ = enc(w1, w2) and Tjθ ⊢ w1

and Tjθ ⊢ w2. Since ui is not a variable, we have that ui = enc(v′1, v
′
2), v′1θ = w1 and

v′2θ = w2. If v′1 (resp. v′2) is a variable then v′1 (resp. v′2) is in T ′
i (this is because

vj ∈ St(Ti)). Otherwise, we apply our induction hypothesis (note that the two sub-
proofs are simple). Hence, in both cases, we have that T ′

i ⊢ v′1 and also that T ′
i ⊢ v′2.

Hence, we easily deduce that T ′
i ⊢ ui. For the other composition rules the same

reasoning holds. �

Proposition 2 (completeness) Let C be an unsolved constraint system and θ be a solution
of C. Then, there is a constraint system C′ and a solution τ of C′ such that C σ C′

and θ = στ .

Proof. Consider the minimal unsolved constraint Ti
 ui. Hence, we have that ui is not a
variable whereas uj is a variable for all j < i. Firstly, assume that ui = 〈v1, v2〉 for some
terms v1, v2. In such a case, let C′ be the constraint system obtained from C by applying R〈〉

and τ = θ. Since Tiθ ⊢ uiθ, we have also that Tiθ ⊢ v1θ and Tiθ ⊢ v2θ meaning that τ = θ
is a solution of C′.

Now, assume that ui is neither a variable nor a pair and consider a simple proof
of Tiθ ⊢ uiθ. According to the last applied rule in this proof, we have:

1. The last rule is a composition.
Suppose that it is the symmetric encryption rule. Hence, there are w1, w2 such
that Tiθ ⊢ w1 and Tiθ ⊢ w2 and enc(w1, w2) = uiθ. Since ui is not a variable, there ex-
ist v1, v2 such that ui = enc(v1, v2). Let C′ be the constraint system obtained from C by
applying the simplification rule Renc on T
 enc(v1, v2). Since v1θ = w1 and v2θ = w2,
the substitution θ is also a solution to C′. For the other composition rules the same
reasoning holds, applying this time the corresponding Rf rule.

INRIA

Safely composing security protocols 19

2. The last rule is an axiom or a decomposition.
Applying Lemma 2 we obtain that there is t ∈ St(Ti) r X such that tθ = uiθ. We
distinguish two cases:� t 6= ui. Note that ui is neither a pair nor a variable. Since tθ = uiθ and t is

not a variable, we easily deduce that t is not a pair. Hence, we can apply the
simplification rule R2.� t = ui. In such a case, we have that ui ∈ St(Ti). Either there are two distinct
non variable and non pair terms t1, t2 ∈ St(Ti) such that t1θ = t2θ and we apply
the simplification rule R3. Otherwise, the simplification rule R1 can be applied.
This follows from Lemma 3. �

B Proof of our combination result

The left-hand side of a constraint system C, denoted by lhs(C), is the maximal left-hand side
of the constraints of C. The right-hand side of a constraint system C, denoted by rhs(C), is
the set of right-hand sides of its constraints. The set vars(C) denotes the set of variables
occurring in C and ⊥ denotes the unsatisfiable system.

B.1 Existence of a solution without any mixing

Consider a constraint system C issued from Π1 | Π2. The goal of this subsection is to
establish the existence of a solution of C having some features (see Proposition 3).

Lemma 4 Let Tα and Tβ be two sets of terms which are respectively α-tagged and β-tagged
and such that vars(Tα)∩vars(Tβ) = ∅. Let C be a constraint system such that lhs(C)∪rhs(C) ⊆
St(Tα ∪ Tβ). Let C′ be a constraint system such that C ∗

σ C′ for some substitution σ. We
have that lhs(C′)∪rhs(C′) ⊆ St(Tασ∪Tβσ). Moreover, terms in Tασ and Tβσ are respectively
α-tagged and β-tagged, n(Tασ) ⊆ n(Tα), n(Tβσ) ⊆ n(Tβ) and vars(Tασ) ∩ vars(Tβσ) = ∅.

Proof. This result is easy to prove by induction on the length ℓ of the derivation from C to C′.
When ℓ = 0, the result is obvious. Now, assume that ℓ ≥ 1. In such a case, we have that
there exists C1, σ1 and σ2 such that C σ1

C1
∗
σ2

C′ and σ = σ1σ2. If the rule involved in
the first step is R1, R4 or R5, then we easily conclude by applying the induction hypothesis.
Now, assume that the simplification rule involved in the first step is either R2 or R3. In such
a case, we know that σ1 = mgu(t1, t2) with t1, t2 ∈ St(Tα ∪ Tβ) Actually, it is impossible
that t1 ∈ St(Tα) and t2 ∈ St(Tβ) (or the converse). Indeed, t1, t2 are neither variables, nor
pairs and have to contain the same tag to be unifiable. Hence, we know that t1, t2 ∈ St(Tα)
(or t1, t2 ∈ St(Tβ)). Now, it is easy to see that σ1 is α-tagged (or β-tagged), thus Tασ1

(or Tβσ1) too. Since vars(Tα) ∩ vars(Tβ) = ∅, we have that Tβσ1 = Tβ (or Tασ1 = Tα).
Moreover, it is easy to see that n(Tασ1) ⊆ n(Tα) and n(Tβσ1) ⊆ n(Tβ). Then, we can apply
our induction hypothesis on C1

∗
σ2

C′. Putting all together we easily conclude. �

RR n° 6234

20 V. Cortier, J. Delaitre & S. Delaune

Lemma 5 Let T be a set of ground terms and u be a ground term such that T ⊢ u. Then,
we have that plaintext(u) ⊆ plaintext(T).

Proof. let π be a proof of T ⊢ u. We prove this result by induction on the depth of π. We
can have:� The last rule is an axiom. Then u ∈ T and we have that plaintext(u) ⊆ plaintext(T).� The last rule is a composition. Suppose for example that it is the symmetric encryp-

tion rule. Then u = enc(u1, u2), T ⊢ u1 and T ⊢ u2. By definition, we have that
plaintext(u) = plaintext(u1). Hence, we easily conclude by applying our induction
hypothesis on T ⊢ u1.� The last rule is a decomposition. Suppose for example that it is the symmetric decryp-
tion rule. In such a case, we have that T ⊢ enc(u, v) and T ⊢ v for some term v. By
induction hypothesis, plaintext(enc(u, v)) ⊆ plaintext(T). Hence, we easily conclude
that plaintext(u) ⊆ plaintext(T). �

Definition 9 Let C be a constraint system. We say that C satisfies the origination property
if the following holds

if x ∈ plaintext(T) ∩ X for some (T
 u) ∈ C then

T p
x

def
= min{T ′ | (T ′

 u′) ∈ C and x ∈ plaintext(u′)}

exists and T p
x (T .

Intuitively, this means that when a variable x appears at a plaintext position on the left-
hand side of a constraint, then x appears also at a plaintext position on the right-hand side
of a smaller constraint (w.r.t. the inclusion ordering of the left-hand sides of the constraints)

Proposition 3 Let T0 and KC be two sets of extended names such that init ∈ T0. Let Tα

and Tβ be two sets of terms which are respectively α-tagged and β-tagged and such that
vars(Tα) ∩ vars(Tβ) = ∅ and (plaintext(Tα) ∪ plaintext(Tβ)) ∩ KC = ∅.

Let C be a constraint system such that lhs(C) ⊆ T0 ∪Tα ∪Tβ, rhs(C) ⊆ Tα ∪Tβ and which
satisfies the origination property. If C is satisfiable, then there exists a solution θ′ of C such
that

1. Tαθ′ is a set of α-tagged terms and n(Tαθ′) ⊆ n(Tα) ∪ {init},

2. Tβθ′ is a set of β-tagged terms and n(Tβθ′) ⊆ n(Tβ) ∪ {init},

3. for all x ∈ plaintext(Tα ∪ Tβ), we have that plaintext(xθ′) ∩ KC = ∅.

INRIA

Safely composing security protocols 21

Proof. Let T0, Tα, Tβ and C be as described in the proposition and let θ be a solution of C.
Thanks to our completeness result (Theorem 2), we know that there exists a constraint
system C′ in solved form and a substitution σ such that C ∗

σ C′. Let θ′ = στ where xτ = init

for every x ∈ vars(C′). It is clear that θ′ is a solution of C, it remains to show that θ′ satisfies
the requirements.

Thanks to Lemma 4, it is easy to establish that� terms in Tασ are α-tagged and also that n(Tασ) ⊆ n(Tα),� terms in Tβσ are β-tagged and also that n(Tβσ) ⊆ n(Tβ).

From this, it is easy to establish the two first conditions.� terms in Tαθ′ = Tαστ are α-tagged and n(Tαθ′) ⊆ n(Tα) ∪ {init},� terms in Tβθ′ = Tβστ are β-tagged and n(Tβθ′) ⊆ n(Tβ) ∪ {init}.

Now, let V = {x ∈ plaintext(Tα ∪ Tβ) ∩ X | plaintext(xθ′) ∩ KC 6= ∅}. If V = ∅, then the
condition holds. Otherwise, let x ∈ V such that T p

x is minimal w.r.t. the inclusion ordering
(see Definition 9 for the definition of T p

x). Since C satisfies the origination property, there
exists (T p

x
 u) ∈ C such that x ∈ plaintext(u) and x 6∈ plaintext(T p
x). We have that

plaintext(uθ′) ∩ KC 6= ∅ and thanks to Lemma 5, we deduce that plaintext(T p
x θ) ∩ KC 6= ∅.

It is easy to see that plaintext(T p
x) ∩ KC = ∅ since this property holds for Tα, Tβ and T0.

Hence, we deduce that there exists y ∈ vars(T p
x) such that plaintext(yθ) ∩ KC 6= ∅ and

y ∈ plaintext(T p
x). This means that there exists a variable y ∈ V such that T p

y (T p
x ,

contradiction. �

B.2 Getting rid of the terms coming from Π2

We define a function, denoted by · , whose goal is to project terms which come from Π2

(and which are β-tagged) onto a special term init. Given a set Names of names, we define
the function · inductively as follows:� u = init if u ∈ Names,� u = u if u is a name and u 6∈ Names,� f(〈β, u1〉, u2) = init if f ∈ {enca, enc, sign}� f(u1, . . . , un) = f(u1, . . . , un) otherwise

Before to prove Lemmas 7 and 8 which will be useful to establish our main result (Propo-
sition 1), we need to show a locality lemma (Lemma 6). This locality lemma relies on the
following definition.

Definition 10 (Stplain(t)) Let t be a ground term. The set Stplain(t) of subterms of t that
appear at a plaintext position is inductively defined as follows:

RR n° 6234

22 V. Cortier, J. Delaitre & S. Delaune

� Stplain(u) = {u} if u ∈ n(u)� Stplain(f(u1, u2)) = {f(u1, u2)} ∪ Stplain(u1) if f ∈ {enc, enca, sign}� Stplain(〈u1, u2〉) = {〈u1, u2〉} ∪ Stplain(u1) ∪ Stplain(u2).

Lemma 6 (locality) Let T be a set of ground terms and u be a ground term such that
T ⊢ u. Let π be a proof of T ⊢ u which is minimal w.r.t. its number of nodes. Then π only
involves terms in St(T, u). Moreover, if π ends with an instance of a decomposition rule or
an instance of the axiom rule then π only involves terms in St(T) and u ∈ Stplain(T).

Proof. Let π be a proof of T ⊢ u which is minimal w.r.t. to its number of nodes. We will
show the result by induction on π. We can have that:� The last rule is an axiom. In such a case, we easily conclude.� The last rule is a composition. Suppose for example that it is the symmetric encryption

rule. In such a case, we have that u = enc(u1, u2). Let π1 (resp. π2) be the subproof of π
ending on T ⊢ u1 (resp. T ⊢ u2). By induction hypothesis, we know that π1 (resp. π2)
only involves terms in St(T, u1) (resp. St(T, u2)). Hence, we easily deduce that π only
involves terms in St(T, u). The same reasoning holds for the other composition rules.� The last rule is a decomposition. Suppose for example that it is the symmetric de-
cryption rule. In such a case, we have that

π1 =

{ . . .

T ⊢ enc(u, v) π2 =

{ . . .

T ⊢ v

T ⊢ u

Note that, by minimality of π, the proof π1 necessarily ends with a decomposition rule.
Hence, by induction hypothesis, we know that π1 only involves terms in St(T) and also
that enc(u, v) ∈ Stplain(T). Then, we easily deduce that π only involves terms in St(T)
and also that u ∈ Stplain(T). For the other decomposition rules a similar reasoning
holds. In the case of the asymmetric decryption rule, we have that v ∈ St(T) since a
term of the form priv(v′) can only be obtained by the axiom rule or an instance of a
decomposition rule. �

Lemma 7 Let T0 be a set of extended names and Names be a set of names such that n(T0)∩
Names = ∅ and init ∈ T0. Let v be a β-tagged term such that plaintext(v) ⊆ T0 ∪ Names.
Then, we have that T0 ⊢ v.

The proof below relies on the notion of component which is formally defined in Appendix A.
Proof. We will show that for every p ∈ comp(v), we have that T0 ⊢ p. By definition of · ,
we have that

{p | p ∈ comp(v)} = {p′ | p′ ∈ comp(v)}.

INRIA

Safely composing security protocols 23

Then, we easily deduce that T0 ⊢ p′ for every p′ ∈ comp(v), and thus T0 ⊢ v.

Let p ∈ comp(v). We distinguish three cases:

1. p is of the form enc(w1, w2), enca(w1, w2) or sign(w1, w2). In such a case, since p is
β-tagged, we have that p = init, thus T0 ⊢ p.

2. p is of the form pub(t) (or priv(t)), thus pub(t) ∈ T0 ∪ Names. We have that p ∈ T0

and thus p ∈ T0 since n(T0) ∩ Names = ∅.

3. p is a name. We have that p ∈ plaintext(v) and p ∈ T0 ∪ Names, thus T0 ⊢ p. This
allows us to conclude. �

Remark. The condition T0 ∩ Names = ∅ is not sufficient to prove Lemma 7. For instance,
let v = pub(a), Names = {a} and T0 = {pub(a)}. We have that v = pub(init) and v is not
deducible from T0.

Lemma 8 Let T0 be a set of extended Names and Names be a set of names such that
n(T0) ∩ Names = ∅ and init ∈ T0. Let Tα be a set of α-tagged terms and Tβ be a set of
β-tagged terms such that plaintext(Tβ) ⊆ T0 ∪ Names. Let u be a ground term such that
T0, Tα, Tβ ⊢ u. Then we have that T0, Tα, Tβ ⊢ u.

Proof. By hypothesis, we have T0, Tα, Tβ ⊢ u. Let π be a proof of T0, Tα, Tβ ⊢ u which is
minimal w.r.t. its number of nodes. We will show that T0, Tα, Tβ ⊢ u by induction on the
proof. We can have that:� The last rule is an axiom. In such a case, we have that u ∈ T0 ∪ Tα ∪ Tβ . We easily

deduce that u ∈ T0 ∪ Tα ∪ Tβ . This allows us to conclude that T0, Tα, Tβ ⊢ u.� The last rule is a composition. Either u = init and we easily conclude. Otherwise,
suppose for example that the last rule is the symmetric encryption rule. In such a
case, we have that u = enc(u1, u2) and u = enc(u1, u2). By induction hypothesis, we
know that T0, Tα, Tβ ⊢ u1 and T0, Tα, Tβ ⊢ u2. Hence, we deduce that T0, Tα, Tβ ⊢
enc(u1, u2), that is T0, Tα, Tβ ⊢ u� The last rule is a decomposition. Suppose for example that it is the symmetric de-
cryption rule. In such a case, we have that

π1 =

{ . . .

T0, Tα, Tβ ⊢ enc(u, v) π2 =

{ . . .

T0, Tα, Tβ ⊢ v

T0, Tα, Tβ ⊢ u

If u is not of the form 〈β, u1〉 for some term u1, then by applying our induction
hypothesis, we easily conclude since enc(u, v) = enc(u, v).

RR n° 6234

24 V. Cortier, J. Delaitre & S. Delaune

Now, we have to consider the case where u is of the form 〈β, u1〉. By minimality of the
proof we know that π1 ends either with an instance of axiom or with an instance of a de-
composition rule. Hence, by Lemma 6, we have that enc(u, v) ∈ Stplain(T0 ∪ Tα ∪ Tβ).
Moreover, since enc(u, v) is β-tagged, we finally deduce that enc(u, v) ∈ Stplain(Tβ)
and hence u ∈ Stplain(Tβ). Since plaintext(Tβ) ⊆ T0 ∪ Names, we easily deduce that
plaintext(u) ⊆ T0 ∪ Names and Lemma 7 allows us to conclude that T0 ⊢ u.

For the other decomposition rules, a similar reasoning holds. �

B.3 Proof of the Proposition 1

Proposition 1 Let Π1 = [k1] → Roles, Π2 = [k2] → Roles, T0 and m defined as in Theo-
rem 1 and satisfying the conditions 1 and 2. Let k = k1+k2 and sc be a scenario for Π1 | Π2.
For any role number 1 ≤ i ≤ k, let si ∈ N such that (i, si) ∈ sc or ∀j, (j, si) 6∈ sc. Let C be
the constraint system associated to sc, T0 and mσ1,s1

· · ·σk,sk
. Let sc′ = sc|Π1

and C′ be the
constraint system associated to sc′, T0 and mσ1,s1

· · ·σk1,sk1
. If C is satisfiable, then C′ is

also satisfiable.

Proof. Let Π1 : [k1] → Roles, Π2 : [k2] → Roles, T0 and m defined as in Theorem 1. Let k =
k1 +k2 and sc be a scenario for Π1 | Π2. For any role number 1 ≤ i ≤ k, let si ∈ N such that
(i, si) ∈ sc or ∀j, (j, si) 6∈ sc. Let (u1, v1) · · · (un, vn) be the sequence of rules associated to sc.
Let C be the constraint system associated to sc, T0 and m1 = mσ1,s1

· · ·σk,sk
. Let sc′ = sc|Π1

,
i.e. the sequence obtained from sc by removing any element (r, s) where r is a role of Π2.
Let C′ be the constraint system associated to sc′, T0 and the term m2 = mσ1,s1

· · ·σk1,sk1
.

Note that m1 = m2 since vars(m) ⊆ vars(Π1). In the remainder, we will denote it by m′.
For sake of simplicity, we will assume that init ∈ T0. The constraint systems C and C′ are as
follows:

C :=























T0
 u1

T0, v1
 u2

T0, v1, v2
 u3

· · ·
 · · ·
T0, v1, . . . , vn
 m′

C′ :=























T0
 ui1

T0, vi1
 ui2

T0, vi1 , vi2
 ui3

· · ·
 · · ·
T0, vi1 , . . . , vin

 m′

where i1 · · · in is a sequence obtained from 1 · · ·n by removing any element j when the jth

element, say (r, s), of the sequence sc is such that k1 < r ≤ k. Intuitively, we remove the
elements corresponding to a step of the protocol Π2.

Now, before to apply Proposition 3, we have to check that all the hypothesis are satisfied.
Let� Tα = {ui1 , vi1 , . . . , uin

, vin
, m′}, and� Tβ = {uj , vj | 1 ≤ j ≤ n and j 6∈ {i1, . . . , in}}.

INRIA

Safely composing security protocols 25

First of all, we have that Tα and Tβ are two sets of terms which are respectively α-tagged and
β-tagged. We have that vars(Tα) ∩ vars(Tβ) = ∅. Intuitively, this is because, terms in Tα

come from Π1 whereas terms in Tβ come from Π2. We have also that lhs(C) ⊆ T0 ∪ Tα ∪ Tβ

and rhs(C) ⊆ Tα ∪ Tβ. Moreover, C satisfies the origination property thanks to the condi-
tion 2 given in Theorem 1 and by hypothesis, we know that C is satisfiable. Hence, we can
apply Proposition 3 to deduce that there exists a solution θ of C such that:� Tαθ is a set of α-tagged terms and n(Tαθ) ⊆ n(Tα) ∪ {init}, (⋆)� Tβθ is a set of β-tagged terms and n(Tβθ) ⊆ n(Tβ) ∪ {init}, (⋆⋆)� for all x ∈ plaintext(Tα ∪ Tβ), we have that plaintext(xθ) ∩ KC = ∅.

Let θ′ = θ|vars(C
′). We will show that θ′ is a solution of C′. Let (T ′

 u′) ∈ C′

be the jth constraint of C′. We have that T ′ = T0 ∪ {vi1 , . . . , vij−1
} and u′ = uij

. By
construction of C′ and thanks to the fact that θ is a solution of C, we know that the constraint
T0, v1, v2, . . . , vij−1
 uij

is a constraint of C and also that

T0, v1θ, v2θ, . . . , vij−1θ ⊢ uij
θ

Let Names = {img(σr,s) ∩ N | (r, s) ∈ sc and r > k1}. Intuitively, Names are the fresh
names generated during the execution of Π2. Hence, we have that Names ∩ n(T0) = ∅ and
Names ∩ KC = ∅.

In the remainder of this proof, we will show that

1. T0, v1θ, v2θ, . . . , vij−1θ ⊢ uij
θ, and then

2. T0 ∪ {vi1θ, . . . , vij
θ} ⊢ uij

θ.

From this, we easily obtain that T0 ∪ {vi1θ
′, . . . , vij

θ′} ⊢ uij
θ′ since θ′ = θ|vars(C′) and

vars({vi1 , . . . , vij
, uij

}) ⊆ vars(C′). This allows us conclude that T ′θ′ ⊢ u′θ′ for any
(T ′

 u′) ∈ C′, and thus θ′ is a solution of C′.

1. T0, v1θ, v2θ, . . . , vij−1θ ⊢ uij
θ.

By hypothesis, we have that plaintext(Π2) ∩ KC = ∅, from this, we easily deduce that
plaintext(Tβ)∩KC = ∅. Thanks to Proposition 3, we have that plaintext(xθ)∩KC = ∅
for every x ∈ vars(Tβ). Hence, we easily deduce that plaintext(Tβθ)∩KC = ∅. Thanks
to Proposition 3, we have also that n(Tβθ) ⊆ n(Tβ) ∪ {init}. Hence, we have that
n(Tβθ) ⊆ Names ∪ T0 ∪ KC. Putting all together, we obtain that plaintext(Tβθ) ⊆
T0 ∪ Names. Now, thanks to Lemma 8, we obtain that

T0, v1θ, v2θ, . . . , vij−1θ ⊢ uij
θ

2. T0 ∪ {vi1θ, . . . , vij
θ} ⊢ uij

θ.

We have that T0 = T0. Moreover, thanks to Lemma 7, we deduce that T0 ⊢ viθ for
every i such that i 6∈ i1 · · · in. To conclude, it remains to show that

RR n° 6234

26 V. Cortier, J. Delaitre & S. Delaune

� viθ = viθ and uiθ = uiθ for every i ∈ {i1, . . . , in}, and� m′θ = m′θ

In other words, we have to show that wθ = w for any w ∈ Tα. This fact is trivially
true as soon as wθ is an α-tagged term such that n(wθ) ∩ Names = ∅. To conclude, it
remains to show that n(wθ) ∩ Names = ∅ for any w ∈ Tα.

Let w ∈ Tα, we have that n(wθ) ⊆ n(Tαθ). Moreover, thanks to (⋆), we have that
n(Tαθ) ⊆ n(Tα) ∪ {init}. Hence, we deduce that n(wθ) ⊆ n(Tα) ∪ {init}. Thus,
n(wθ) ∩ Names = ∅.

Hence, we easily deduce that T0 ∪ {vi1θ, . . . , vij
θ} ⊢ uij

θ by relying on the fact that

T0, v1θ, v2θ, . . . , vij−1θ ⊢ uij
θ. �

INRIA

Unité de recherche INRIA Lorraine
LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau- Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

	Introduction
	Models for security protocols
	Syntax
	Intruder capabilities
	Protocols
	Constraint systems
	Secrecy

	Composition result
	Hypothesis
	Composition theorem

	Proof of our combination result
	Conclusion
	Proof of completeness
	Proof of our combination result
	Existence of a solution without any mixing
	Getting rid of the terms coming from 2
	Proof of the Proposition 1

