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Abstract: Traffic grooming is a central problem in optical networks. It refers to pack low
rate signals into higher speed streams, in order to improve bandwidth utilization and reduce
network cost. In WDM networks, the most accepted criterion is to minimize the number
of electronic terminations, namely the number of SONET Add-Drop Multiplexers (ADMs).
In this article we focus on ring and path topologies. On the one hand, we provide the first
inapproximability result for TRAFFIC GROOMING for fixed values of the grooming factor
g, answering affirmatively the conjecture of Chow and Lin (Networks, 44:194-202, 2004).
More precisely, we prove that RING TRAFFIC GROOMING for fixed g > 1 and PATH TRAFFIC
GROOMING for fixed g > 2 are APX-complete. That is, they do not accept a PTAS unless
P = NP. Both results rely on the fact that finding the maximum number of edge-disjoint
triangles in a graph (and more generally cycles of length 2¢g + 1 in a graph of girth 2¢g + 1)
is APX-complete.

On the other hand, we provide a polynomial-time approximation algorithm for RING
and PATH TRAFFIC GROOMING, based on a greedy cover algorithm, with an approximation
ratio independent of g. Namely, the approximation guarantee is O(n'/3log®n) for any
g > 1, n being the size of the network. This is useful in practical applications, since in
backbone networks the grooming factor is usually greater than the network size. As far as
we know, this is the first approximation algorithm with this property. Finally, we improve
this approximation ratio under some extra assumptions about the request graph.
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Difficulté et approximation du probléme de groupage

Résumé : Le groupage de traffic (TRAFFIC GROOMING) est un probléme important dans
les réseaux optiques. Il s’agit de regrouper des signaux de faible débit en signaux de plus
haut débit, avec comme objectifs d’utiliser efficacement la bande-passante et réduire le cott
du réseau. Dans les réseaux WDM, le critére le plus accepté est de minimiser le nombre
de terminaisons électroniques, c’est & dire le nombre de "SONET Add-Drop Multiplexers"
(ADMs). Dans cet article, nous étudions les topologies de I’anneau et le chemin.

D’abord, nous prouvons le premier résultat d’inapproximabilité pour TRAFFIC GROO-
MING quand le facteur de groupage g est fixé. Plus précisément, nous prouvons que RING
TRAFFIC GROOMING pour g > 1 fixé, et PATH TRAFFIC GROOMING pour g > 2 fixé, sont
APX-complets. En d’autres termes, ces problémes n’acceptent pas de PTAS, & moins que
P = NP. Cela fournit une réponse a la conjecture de Chow et Lin (Networks, 44:194-202,
2004). Notre méthode est basée sur le fait que trouver le nombre maximum de triangles
aréte-disjoints dans un graphe (et de fagon plus générale, cycles de longueur 2g + 1 dans un
graphe de maille 2g + 1) est APX-complet.

Nous proposons ensuite un algorithme d’approximation en temps polynomial pour RING
et PATH TRAFFIC GROOMING, avec un rapport d’approximation indépendant de g. Plus
précisement, le rapport d’approximation est (’)(nl/ 3 1og? n) pour toutes les valeurs de g > 1,
ou n est la taille du réseau. Ce résultat est utile dans les applications, car dans les réseaux de
coeur, le facteur de groupage est généralement plus grand que la taille du réseau. Finalement,
nous améliorons le rapport d’approximation sous certaines hypothéses sur le graphe des
requétes.

Mots-clés : Algorithme d’approximation, Groupage de traffic, Réseau optique, SONET
ADM, Apx, PTAS, Difficulté d’approximation
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1 Introduction

1.1 Background and Problem Definition

Optical wavelength division multiplexing (WDM) is today the most promising technology to
accommodate the explosive growth of Internet and telecommunication traffic in wide-area,
metro-area, and local-area networks. Using WDM, the potential bandwidth of 50 THz of a
fiber can be divided into multiple non-overlapping wavelength or frequency channels. Since
currently the commercially available optical fibers can support over a hundred frequency
channels, such a channel has over one gigabit-per-second transmission speed. However, the
network is usually required to support traffic connections at rates that are lower than the
full wavelength capacity. In order to save equipment cost and improve network performance,
it turns out to be very important to aggregate the multiple low-speed traffic connections,
namely requests, into higher speed streams. Traffic grooming is the term used to carry out
this aggregation, while optimizing the equipment cost. In WDM optical networks the most
accepted criterion is to minimize the number of electronic terminations, which is unanimously
considered as the dominant cost, rather than the number of wavelengths.

SONET ring is the most widely used optical network infrastructure today. In these net-
works, a communication between a pair of nodes is done via a lightpath, and each lightpath
uses an Add-Drop Multiplexer (ADM), i.e. an electronic termination, at each of its two end-
points. If each request uses 1 of the capacity of a wavelength, g is said to be the grooming
factor. The problem is equivalent to assigning a wavelength to each request in such a way
that for any wavelength and any link of the network, there can be at most g requests using
this link on this wavelength. The aim is to minimize the total number of ADMs. In the
graph-theoretical approach that we use, the set of requests is modeled by a graph R, and
each vertex in the subgraph of R corresponding to a wavelength represents an ADM. The
problem, in the case where the communication network is a ring, can be formally stated as
follows:

RING TRAFFIC GROOMING
Input: A cycle C,, on n vertices (network), a graph R (set of requests) on vertices of C,,,
and a grooming factor g.
Output: Find for each edge r = {x,y} of R, a path P(r) in C,, between z and y, and a
partition of the edges of R into subgraphs R,, 1 < w < W, such that for each edge e in
E(C,,) and for all w, the number of paths P(r) using e, r being an edge of R, is at most g.
Objective: Minimize szzl [V(R)|-

The statement of PATH TRAFFIC GROOMING is analogous, replacing C,, by P,.
Example 1 Consider a ring on five nodes and the complete graph of F1G. [ as request

graph, and let g = 2. We exhibit two valid solutions of the problem, both using two subgraphs
(i.e. two wavelengths). The second solution is better because it uses 9 vertices instead of 10.

RR n° 6236
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Figure 1: Two valid partitions of K5 when g = 2, using different number of ADMs

1.2 Previous Work and our Contribution

The notion of traffic grooming was introduced in [GRS9]]| for the ring topology. Since then,
traffic grooming has been widely studied in the literature (c.f. [DR02, MLOT), [ZM03] for
some surveys). The problem has been proved to be NP-complete for ring networks and
general g [CM0O0]. Many heuristics have been done [DROT], but exact solutions have been
found only for certain values of g and for the uniform all-to-all traffic case in unidirectional
ring [BCO6], bidirectional ring [BCMS06|, and path topologies [BCO6]. On the other hand,
there was no result on the inapproximability of the problem for fixed g > 1. In [CL0O4] the
authors conjecture that TRAFFIC GROOMING is MAaX SNP-hard (or equivalently, APX-
hard, modulo PTAS-reductions) for any fixed value of the grooming factor. We answer
affirmatively to this question in Theorem [, providing the first hardness result for the RING
TRAFFIC GROOMING problem for fixed values of the grooming factor g.

Considering g as part of the input, in [HDRO6] it was proved that PATH TRAFFIC
GROOMING does not accept a constant-factor approximation unless P = NP. For fixed
values of g, PATH TRAFFIC GROOMING was proved to be in P for ¢ = 1 [BC06], but the
complexity for fixed g > 2 has been an open question for a while. Recently, it has been
proved in [SUZ07| that PATH TRAFFIC GROOMING for fixed g > 1 is NP-complete for
bounded number of wavelengths. Our method permits us to improve this result in Section Bl
by proving the APX-completeness of PATH TRAFFIC GROOMING for any fixed g > 1 and
unbounded number of wavelengths. In particular, this extends the NP-completeness result
of [SUZ07| to the case where the number of wavelengths is not bounded.

The main ingredient of our approach is the proof of the APX-completeness (given in
Section B)) of the problem of finding the maximum number of edge-disjoint triangles in a
graph with bounded degree B: MAXIMUM BOUNDED EDGE COVERING BY TRIANGLES
(MECT-B for short). The proof is obtained by L-reduction from MAXIMUM BOUNDED
COVERING BY 3-SETS, which was proved to be MAX SNP-complete in [Kan91]. A simple
modification of this technique permits us to prove the APX-completeness of finding the
maximum number of edge-disjoint odd cycles of given length in a graph. This later claim is

INRIA
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then used to extend our results to arbitrary values of g, see Section B, Bl and Appendix [AL
Bl

The design of approximation algorithms for TRAFFIC GROOMING is the topic of the
second part of this paper. We present the results for the ring topology, but the same
algorithm works also for the path topology. As we show in Section B it is trivial to obtain
a O(y/g)-approximation with running time polynomial in g and n. For g = 1, the best
algorithm in rings achieves an approximation ratio of 10/7 [EL04]. For general g, the
best approximation algorithm [EMSZ05] achieves an approximation factor of O(log g), but
the problem is that the running time is exponential in ¢ (that is, n9). Since in practical
applications SONET WDM rings are widely used as backbone optical networks [MLOI]
DR02], the grooming factor is usually greater than the size of the network, i.e. ¢ > n. For
those networks, the running time of this algorithm becomes exponential in n. Thus, it turns
out to be important to find good approximation algorithms with running time polynomial
in both n and g. In Section Bl we provide such an approximation algorithm, considering ¢
as part of the input. Our algorithm finds a solution of RING TRAFFIC GROOMING that
approximates the optimal value within a factor O(n'/3log® n) for any g > 1. To the best
of our knowledge, this is the first polynomial-time approximation algorithm for the RING
TRAFFIC GROOMING problem with an approximation ratio which does not depend on g.
Although the performance of this algorithm seems not to be very good at first sight, in
fact we conjecture that for the general instance of the problem it is not possible to get rid
of a factor n°, for some constant § > 0. Finally, we show that the general scheme of the
algorithm yields a (’)(log2 n)-approximation if the request graph excludes a fixed graph as
minor, for example if R is planar or of bounded genus. The main theoretical contribution of
the second part of this paper is to relate the TRAFFIC GROOMING problem to the DENSE
k-SUBGRAPH problem [FPKOI]. We conclude by proposing some further research directions
to better understand the complexity of TRAFFIC GROOMING.

2 APX-completeness of MECT-B

In complexity theory, the class APX (Approximable) stands for all NP-hard optimization
problems that can be approximated within a constant factor. The subclass PTAS (Poly-
nomial Time Approximation Scheme) contains the problems that can be approximated in
polynomial time within a ratio 1 + ¢ for all constants £ > 0. Intuitively, these problems
are the easiest ones among all NP-complete problems. Since, assuming P # NP, there is
a strict inclusion of PTAS into APX (for instance, VERTEX COVER € APX \ PTAS), an
APX-hardness result for a problem implies the non-existence of PTAS. MECT-B has been
proved to be NP-complete [Hol&1], and the APX-hardness when requiring node-disjoint tri-
angles was proved in [Kan91]. The proof of the APX-hardness of MECT-B that we provide
can be extended to obtain the APX-completeness of the problem of finding the maximum
number of edge-disjoint cycles of length 2¢g 4 1 for any fixed g > 1, as sketched in Appendix
[Al For convenience, we prove the MAX SNP-hardness of MECT-B, which is known to be
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the same as the APX-hardness modulo PTAS-reductions. MECT-B is trivially in APX,
since a simple greedy algorithm provides a 3-approximation.

Theorem 1

(a) MECT-B, B > 10 is MAX SNP-complete. Furthermore, the problem remains MAX
SNP-complete in tripartite graphs.

(b) More generally, given a (29 + 1)-partite graph G of girth 2g + 1, consisting of (29 + 1)
parts Ao, ..., Asg such that the only edges are between A; and A;11 (mod 2g+1), i =
0,...,2g, and such that all the graphs induced by V(G)\ A; in G, for alli =0,...,2g,
form a forest, the problem of finding the mazimum number of edge disjoint Cogy1’s in
G is APX-complete.

Proof: We give here the proof of part (a), the proof of part (b) is given in Appendix [Al

L-reduction from Max 3SC-Bll and I-reduction to INpEP. SET-BE:

We define h : MECT-B — INDEP. SET - (3/2(B-2)) as follows: given a graph G as
instance I of MECT-B, we define the following instance h(I) of INDEP. SET - (3/2(B-2)):
the graph h(G) contains a node vy for every triangle T' in G. There is an edge {vr,,vr, }
in h(G) iff Ty and T share an edge in G. Given a solution A of h(I), we define a solution
Sr(A) of I by taking the triangles corresponding to nodes in A. It is easily verified that
(h, Sp) is an L-reduction.

Now, we define f : Max 3SC-B — MECT-(3B+1) in the following way: suppose that
we are given as instance I, a collection C' of 3-element subsets of a set X such that every
element of X belongs to at most B members of C. The problem for I consists in finding
the maximal number OPT(I) of disjoint subsets in C. We construct an instance f(I) of
MECT-(3B+1), i.e. we construct a graph G = (V, E) in which we ask for the maximum
number OPT(f(I)) of edge-disjoint triangles. Let C = {c1,...,¢}, with |¢;| = 3. The
local replacement f substitutes for each element ¢; = {z,y, 2z} € C, the graph G; = (V;, E;)
depicted in FIG.

To avoid confusion, note by ¢ any element in ¢;, i.e. t € {z,y,z}. Note that, for each
element ¢, the nodes t[0] and ¢[1], and the edge ¢[0]¢[1] (corresponding to the thick edges
in F1G. B) appear only once in G, regardless of the number of occurrences of t. On the
other hand, we add 9 new vertices a;[j], 1 < j < 9 for each subset ¢;, 1 < i < |C|. More
precisely, G = (V, E) = U9l G, where V =, o {t[0],¢[1]} U U/} {ailj] : 1 < j < 9} and
E=UZ E.

Now, given a solution A of f(I) of cost (or equivalently, size) ¢z, we modify in polynomial
time this solution to another equal or better solution A’ in the following way: in each G;,
if the three triangles covering the edges z[0]x[1], y[0]y[1], and z[0]z[1] (numbered 1,7,13 in

IMaximmum Bounpep COVERING BY 3-SETs: Given a collection of 3-subsets of a given set, each element
appearing in at most B subsets, find the maximum number of disjoint subsets.

2MaxiMmuM BOUNDED INDEPENDENT SET: Given a graph of maximum degree < B, find a maximum
independent set.

INRIA
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Figure 2: Gadget used in the reduction of the proof of Theorem [l

F1c. B) belong to A, we choose the seven odd triangles of G; to belong to A’. If not, we take
the six even triangles. Let ¢, > cs be the cost of A’. Then, we define a solution S¢(A) of I
by choosing the subset ¢; to be in S¢(A) if and only if A’ contains exactly 7 triangles in G;.
We claim that the pair (f, Sf) is an L-reduction: in each G; there are 13 different triangles,
numbered from 1 to 13 in FIG. The only way to choose 7 edge-disjoint triangles in G;
is by taking all the odd triangles, and thus by covering the three edges z[0]z[1], y[0]y[1],
and z[0]z[1]. All other choices of triangles yield at most 6 edge-disjoint triangles. The key
observation is that we are able to choose 7 triangles exactly OPT(I) times. Indeed, each
time we choose 7 triangles we cover the edges corresponding to 3 elements of ¢;, and since
the number of disjoint ¢;’s in C' is OPT(I), this can be done exactly OPT(I) times. On the

other hand, one can easily see that OPT'(I) > %. Hence:
OPT(f(I)) = 7-OPT(I)+6(|C|— OPT(I)) < OPT(I)+18B-OPT(I) = (18B+1)OPT(I)

To conclude, note that if the solution Sy(A) of I has cost ¢1, we have OPT(I) — ¢ <
OPT(f(I)) — c2. To see this, we observe that OPT(f(I)) = 6r + OPT(I), and also ¢, =
6r + c1, and so OPT(f(I)) — OPT(I) =c1 — ¢y < ¢1 — ca.
Both (f, Sf) and (h, Sy,) are L-reductions and MAX 3SC-B, B > 3 and INDEP. SET-B,
B > 5 are MAX SNP-complete [Kan91]. Thus, MECT-B, B > 10 is MAX SNP-complete.
To prove the last claim, note that the graph G = (V, E) used in the proof is a tripartite
graph. Indeed, it is easy to check that the three vertex sets that define the tripartition are:

|X| te] IC|
Vo = U t[O] U U{ai[2]7@i[5]}7 Vi = U{&i[l]vai[4]7@i[7]7&i[8]7ai[9]}7 and
|X] |C|
Vo= Ut[l] U (J{a[3], aif6]}.

RR n° 6236
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3 APX-completeness of TRAFFIC GROOMING

In this section we prove the hardness results for RING TRAFFIC GROOMING and PATH
TRAFFIC GROOMING. First we prove that RING TRAFFIC GROOMING belongs to APX
when g is fixed. The same result holds for PATH TRAFFIC GROOMING.

Let us define the density p of a graph G as its edges-to-vertices ratio: p(G) = %
To see that RING TRAFFIC GROOMING is in APX for any fixed ¢ > 1, we have to find
a constant-factor approximation algorithm. We use the fact that the best possible density
p* of any subgraph used in the partition of the request graph is O(,/g), given by (possibly
a subgraph of) a circulant graph [BCMS06|. We prove that the cost A of any solution
Ri,...,Rw is in the interval [@, 2|E(R)|]. This clearly implies that any solution has

cost at most 2p* = O(,/g) times the optimal cost. To see this, note that each edge of R
contributes at most twice to the cost, so A < 2|E(R)|. On the other hand, we have

w w w
- _ N\ BR) |E(R.)| _ |E(R)|
A_;W(R“)'_U; FiM sz_:l - p*

Thus, a O(,/g)-approximation is obtained just by taking any partition of the request graph.

Theorem 2 RING TRAFFIC GROOMING is APX-complete for all fired g > 1. Thus, it
does not accept a PTAS unless P = NP.

Proof: Sketch. We prove that RING TRAFFIC GROOMING is APX-complete even if we
suppose that the degree of the request graph is bounded by a constant B > 10. First, we
prove the result for ¢ = 1. We consider a set of requests R made of a tripartite graph with
the three partition classes placed consecutively on the ring, as shown in F1G. Ba. To simplify
the presentation, suppose that R can be partitioned into triangles. In any solution, the only
possible involved subgraphs are P, Ps, P, and K3. It is clear that the best we can do is
to groom the requests into triangles (since triangles have the highest density) obtaining an
optimal cost of |[E(R)|. From this we derive that |E(R)| is a lower bound for the number of
ADMs of any solution, and that each path used in a given solution adds an additional unity
of cost. For each solution S, the additional cost is at least 4/3 times the number of edges
covered by paths of S. This bound is tight if all the paths are P,’s. Thus, the number A of
ADMs used by S (i.e. the cost of S), satisfies A > (1—¢)|E(R)|+e3|E(R)| = (1+£)|E(R)|,
where ¢ is the percentage of edges of R not covered by triangles in S. By Theorem B, there
exists a constant £y such that we can find in polynomial time at most a fraction (1 —&¢) of
the triangles of R. This means that (1 + 5)OPT is the best solution we may obtain by a
polynomial-time algorithm, implying the non-existence of a PTAS.

For g > 1, we take a (2¢ + 1)-partite graph as the request graph, in such way that each
cycle makes at least g tours around the center of the ring. Now, we can reduce the grooming
problem to the problem of finding a maximum number of cycles of length 2g 4+ 1 in this
graph (as in the case g = 1). This later problem is also APX-complete, see Theorem [ and
Appendix [Al The details can be found in Appendix [Bl Hence, RING TRAFFIC GROOMING
is MAX SNP-complete for bounded number of requests per node B > 10. a

INRIA
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a) b)

Figure 3: Request graph used in the proof of APX-completeness of TRAFFIC GROOMING:
a) in the ring for g = 1; b) in the path for g = 2

Theorem 3 PATH TRAFFIC GROOMING is APX-complete for any fixed g > 2.

Proof: Again, the result holds even for bounded number B of requests per node, B > 10. We
prove the result for ¢ = 2, proceeding for g > 2 as in the proof of Theorem 2l Consider a set
of requests R made of a tripartite graph with the three partition classes placed consecutively
on the path one after another, as shown in FiG. Bb. Since each triangle induces load 2,
minimizing the number of ADMs corresponds to finding the maximum number of edge-
disjoint triangles. Therefore, it does not accept a PTAS unless P = NP. O

4 Approximating Ring Traffic Grooming

We are now interested in finding good approximation algorithms considering g as part of
the input. As we saw in Section Bl obtaining a O(,/g)-approximation is trivial. Since
in practical applications SONET WDM rings are widely used as backbone optical networks
[MLOT), [DRO2], the grooming factor is usually greater than the size of the network, i.e. g > n.
Thus, it turns out to be important to find approximation algorithms with an approximation
ratio not depending on g. A general approximation algorithm with this property is the main
result of this section. It provides in the worst case a O(n'/3 log? n)-approximation. We de-
scribe it for the ring, but exactly the same arguments provide an algorithm for the path. The
main idea is to greedily find subgraphs with high density using approximation algorithms
for the DENSE k-SUBGRAPH problem, which is defined as follows: given a graph G and an
integer k, find an induced subgraph H C G on k vertices with the highest density among all
subgraphs on k vertices. In [FPKO1] the authors provide a polynomial-time algorithm with
approximation ratio 2n'/3. To simplify the presentation, suppose that n = 2¢ for some ¢t > 0:

RR n° 6236
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Algorithm A:

Step 1) Divide the request set into logn classes, such that in each class C; the length of the

Step 2)

requests lies in the interval [2¢,2¢71), i = 0,...,logn — 1. For each class C;, the ring
can be divided into intervals of length 2 such that the only requests are between
consecutive intervals. In this way we obtain 3 subproblems for each class: each one
consists in finding an optimal solution in a bipartite graph of size 2-2*. More precisely,

each subproblem can be formulated as:

BIPARTITE TRAFFIC GROOMING

Input: A bipartite graph R, and a grooming factor g.

Output: Partition of the edges of R into subgraphs R, with at most g edges,
1<w<W.

Objective: Minimize szzl [V(RL)|-

Solve all these BIPARTITE TRAFFIC GROOMING subproblems independently, and out-
put the union of all solutions.

To solve each BIPARTITE TRAFFIC GROOMING subproblem in a bipartite graph R,
proceed greedily (until all edges are covered) by finding at step ¢ a subgraph R; of
G\ (R1U---UR;_1) with at most g edges in the following way:

For each k = 2,...,2¢ find a subgraph By, of R\ (R; U---UR;_1) using the algorithm
of [EPK0T] for the DENSE k-SUBGRAPH problem.

o If for some k*, |E(By-)| > g, and |E(B;)| < g for all i < k*, remove |E(B;)| — g
arbitrary edges of By~ and replace B; with this new graph. Stop the search at
k*, and output the densest graph among Bs, ..., By«_1, B«

o If not, output the densest subgraph among By, ..., Bag.

Let OPT be the optimal solution of RING TRAFFIC GROOMING, and let OPT} be the
cost of the solution obtained by solving optimally all the subproblems generated by Step 1
of Algorithm A. We prove a lemma before stating the theorem.

Lemma 1 Let 3 be a given number. Suppose that we can find in any bipartite graph R on
at most n vertices, a subgraph with at most g edges which has density at least 1/ times the
density of the densest subgraph with at most g edges. Then in the greedy procedure of Step
2 of Algorithm A we obtain a solution of cost OPTy such that OPT; < O(logn) -3 -OPTy.

Proof: Let m be the number of edges of the request graph R, and let Ry, Rs, ..., R, be the
subgraphs generated in order by the above algorithm which cover all the edges, i.e. R; is

INRIA
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chosen first, Ry is chosen second, and so on. We will prove

> V(Ry)| < log(m) - - OPTy

To prove this, we first enumerate the edges of R in order of appearance in R;’s: all the
edges in Ry will be enumerated eq,... ey (g1 = |E(R1)| < g), all the edges in R, will be
enumerated eg, 41,...,€4,44, (92 = |[E(R2)| < g), and so on. Let p; be the density of the
subgraph R;, i.e. p; = 1B(R)| and ¥ =3 |V(R;)| the total cost of the solution. For every
edge e; € R;, we define c(e]) . We claim that  c(e;) = X. To prove this equality just
mmm&w)M)%@ﬂﬂﬂm@&@#{ﬂ@ﬁiM%
define R] to be the union of R;, Rit1,. .., R.. We define p) to be the density of the densest
subgraph of R, containing at most g edges. Let us take an optimal solution for R}, i.e. a
decomposition of R} into subgraphs Ai, ..., Ay such that >;_, [V(A)| is minimum. Let
Pi,- -+, Ps be the density of these subgraphs. We have:

o Vk <s, P, =dens(Ag) < pl: because each Ay, is a subgraph of R, containing at most
g edges, and p/ is the density of the densest subgraph with at most g edges in R).

e pi < fBp;: because we suppose that we can find an approximation of p} up to a factor

1/.

This implies in particular that

1
Pk ﬂpz

|E(A)|  |E(R})]
2V Z Z Boi  Bpi

k k

But an optimal solution for R provides a solution for R} of cost at least the optimal solution
for R}, i.e. >, |V(Ar)| < OPT,. Using this in the above inequality we get i < %,
and so for an edge e; € R; we have

B-OPT, < 8- OPTy
|E(R))| —m—j+1’

clej) = < and this proves

EZZC(BJ‘) SB'(Zm_;jH)'OPTl < B-log(m) - OPTy <283 -log(n) - OPTy
J J

O

Theorem 4 Algorithm A is a polynomial-time approrimation algorithm that approximates
RING TRAFFIC GROOMING within a factor O(n'/?log®n) for any g > 1.

RR n° 6236
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Proof: Algorithm A returns a valid solution of RING TRAFFIC GROOMING, because each
request is contained in some bipartite graph, and no request is counted twice. The running
time is polynomial in both n and g, because we run at most 2g — 1 times the algorithm
of [FPK0OT] for each subproblem, and there are n(Zf;é %) — 1 = 2n — 3 subproblems. We
prove now the approximation guarantee:

e We claim that OPT; < 2logn - OPT'. Indeed, let ¢; be the optimal cost of the subset
of requests of length in the interval [2¢,2¢+1) i =0, ... log(n) — 1. It is clear that ¢; <
OPT for each i , and thus 314" "' ¢; < logn - OPT. Finally, OPT; < 236" ',
because each vertex is taken into account in two subproblems.

e The greedy procedure described in Step 2 of Algorithm A outputs a graph whose
1

density is at least 5—375 times the highest density (with at most g edges) of the updated
request graph. To see that, note that the optimal density is achieved by a subgraph
on at most 2g vertices (it would be the case of ¢ disjoint edges). Then, for each value
of k, the algorithm of [FPK(T] finds a 2n'/3-approximation of the maximum number
of edges of an induced subgraph on & verticedd. Thus, if we take the densest subgraph
among Bs, ..., By, (removing edges if necessary) we also obtain a 2n'/3-approximation
of the highest density of a subgraph with at most g edges. Let pi be the density of By
before removing edges. The explicit formula of the highest density p that we output

in Step 2 of Algorithm A is:

— - 2)
e O

Looking at the formula we understand why we stop at £ = k* in the algorithm. In
other words, we have proved that we can use § = 2n'/3 in Lemma [l

e By combining the remarks above and Lemma [l we obtain that the cost A returned by
Algorithm A satisfies A < 2n'/3 . OPT, < 4n'/3logn - OPT, < 8n'/3log*n - OPT.

O

We can improve the approximation ratio of the algorithm if all the requests have short
length compared to the length of the ring. This situation is usual in practical applications
since nodes may want to communicate only with their nearest neighbors. Let f(n) be any
function of n. If all the requests have length at most f(n), then the above algorithm provides
an approximation ratio of O(f(n)'/3log®n). Indeed, in Step 2 of Algorithm A, we have to
find dense subgraphs in bipartite graphs of size at most 2f(n), hence the factor 2n'/3 can
be replaced with 2(2f(n))"/3.

Remark that all the instances of DENSE k-SUBGRAPH problem in our algorithm are
bipartite. Using the results of [ST05], it is possible to obtain a better approximation ratio
when the request graph is bipartite and satisfies some uniform density conditions. We omit
the proof due to lack of space.

31n fact, the improved approximation ratio of the DENSE k-SUBGRAPH problem is O(n?) for some constant
§ < 1/3 |[EPK0OI). Obviously, the same applies to our algorithm, replacing the exponent 1/3 with § < 1/3.

INRIA
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Corollary 1 If the request graph R is such that in any large enough subgraph H C R,
a densest subgraph (A U B, E) satisfies |A|,|B| = O(\/g) and |E| = Q(g), then for any
constant ¢ > O there exists a polynomial-time algorithm for RING TRAFFIC GROOMING
with approzimation ratio O(n®log” n).

To end this section, note that the results of [DHKO5| show that the density can be ap-
proximated within a constant factor two in the class of graphs excluding a fixed graph H
as minor. Thus, if the request graph R is H-minor free (for instance if R is planar, or of
bounded genus,...), our algorithm achieves an approximation factor of (’)(log2 n).

5 Conclusions and Further Research

This article deals with hardness and approximability of the TRAFFIC GROOMING problem,
a central problem in WDM optical networks. The contribution of this work can be divided
in two main parts: On the one hand, we state the first hardness results for RING TRAFFIC
GROOMING and PATH TRAFFIC GROOMING for fixed values of g. More precisely, we prove
that RING TRAFFIC GROOMING is APX-complete for fixed ¢ > 1, and that PATH TRAFFIC
GROOMING is APX-complete for fixed g > 2. In other works, we rule out the existence of
a PTAS for fixed values of g. To prove this results we reduce RING TRAFFIC GROOMING
for g = 1 to the problem of finding the maximum number of edge-disjoint triangles in a
graph of degree bounded by B (MECT-B for short). We prove that MECT-B is APX-
complete, and we generalize this reduction for PATH TRAFFIC GROOMING and for all values
of g > 1. On the other hand, we provide the first polynomial-time approximation algorithm
for RING and PATH TRAFFIC GROOMING with an approximation ratio not depending on g,
considering g as part of the input.

There remains still a lot of work to be done. It is a challenging open problem to close
the complexity gap of TRAFFIC GROOMING, that is, to provide an approximation algorithm
with an approximation ratio matching the corresponding inapproximability result. We are
convinced that the inherent difficulty of the problem resides in finding dense subgraphs
with bounded number of edges. This problem is strongly related to the problem of finding
the densest subgraph with bounded number of vertices, which has been recently proved to
have, essentially, the same difficulty as the DENSE k-SUBGRAPH problem [And07|. The non-
existence of a PTAS for the DENSE k-SUBGRAPH problem has been proved in [Kho04] involv-
ing very technical proofs, and this is the best existing hardness result. A long-standing con-
jecture claims that there exists some constant € > 0 such that finding a n®-approximation for
DENSE k-SUBGRAPH is NP-hard [FPKOT]. As we proved in Section B an a-approximation
for DENSE k-SUBGRAPH yields a O(a log® n)-approximation for RING TRAFFIC GROOMING.
We suspect that a similar result in the other direction should also exist. Because of this, we
conjecture the following

Conjecture 1 There exists some constant § > 0, such that RING TRAFFIC GROOMING,

when g is part of the input, is hard to approzimate within a factor n’.
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A Sketch of the proof of the APX-completeness of find-
ing the maximum number of odd cycles

We provide here the proof of the fact that finding the maximum number of Cs44:’s in a
graph G is also APX-complete for any fixed g > 1. In fact, we need and prove a stronger
result (part (b) of Theorem [I):

Theorem 5 Given a (29 + 1)-partite graph G of girth 2g + 1, consisting of (29 + 1) parts
Ay, ..., Asg such that the only edges are between A; and A;y1 (mod 2g+1),i=0,...,2g,
and such that all the graphs induced by V(G)\ A; in G, for all i = 0,...,2g, form a forest,
the problem of finding the mazimum number of edge disjoint Cog11’s in G is APX-complete.

Proof: First, note that a greedy algorithm provides a constant factor approximation with
factor 2g + 1. Now, consider the gadget of the proof of Theorem [ (see FiG. B). We modify
this gadget in such a way that the same proof holds for C541’s instead of C3’s (triangles),
and such that all the conditions of Theorem [ are verified. Given g > 1, we add a chain
of 4¢g + 1 triangles between any two pair of triangles corresponding to thick edges (that is,
between the edges corresponding to elements of X). Then we add g — 1 inner points to all
the edges going from up to down in the triangles. An example if shown in FiG. E

algl  a[3dg a2(2g)g+gl al2A2g+gtdl a[2(2g+2)g+gl al4(20)g+dl  a[4(29)g+3q]

add g-1
inner points

X[0Q] X[1] al4d af22g9d  Y[Q] Y[1] al2(2g+3)d] af42gd  z[Q] Z[1]

Figure 4: Adding g — 1 inner points to prove the AP X-completeness of finding edge-disjoint
ng+1 ’s

It is easily seen that the graph built in this way is (2¢ + 1)-partite. Indeed, it admits a
partition into (2¢ + 1) parts, numbered 0, . . ., 2g, which consist of enumerating the vertices
cyclically. Let Ao,..., Az, be the different parts. In such a (2g + 1)-partition, for any
element ¢ € X, the vertex ¢[0] belongs to Ao, and the vertex ¢[1] belongs to As,. We need
this property to ensure the consistency of our gadget when an element appears in more that
one subset. Note that the graph induced by V(G) \ 4; in G, for all i = 0,...,2g, form a
forest. At this point, one can rewrite the proof of Theorem [l to obtain the result, just by
changing the multiplicative constants. O
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B Sketch of the proof of the APX-completeness of RING
TRAFFIC GROOMING for g > 1

We generalize the proof of the case ¢ = 1. Let G be a graph satisfying the conditions of
Theorem Bt G is a (2g + 1)-partite graph, consisting of 29 + 1 parts Ao, ..., Aa, such that
the only edges are between A; and A;1 (mod 2g + 1), i = 0,...,2g, and such that the
graph induced between two consecutive parts of G forms a forest (or more generally a graph
of girth at least g+ 1). Again, in order to simplify the presentation suppose that this graph
can be partitioned into Cg41’s.

Now, let cy,...,coq be a permutation of the vertices of the cycle Ca4y1, such that the
polygon (co, ..., cay) makes g tours around the center (for g = 1 take the triangle. For g
arbitrary, let ¢; = exp(24%)). Now replace each vertex ¢; with an interval consisting of

2g+1
vertices of A;. In this cyclic representation of the graph G, each cycle makes at least g

tours around the origin. To see this, recall that the only possible edges are between A; and
Aiy1 (mod 2g+1),i=0,...,2g, and also the graph induced between two consecutive parts
forms a forest. This implies that every cycle should intersect each A; at least once, and so
this cycle makes at least g tours around the origin, as the original cycle {co, ..., co4} does
so. Each cycle used in the solution should be of length exactly 2g + 1, there is no cycle of
smaller length, and longer cycles use each edge more than g times, as they make more than
g tours around the origin. Then the problem is reduced to finding edge-disjoint cycles of
length 2¢ + 1, which is also MAX SNP-hard by Theorem Bl

The proof of Theorem [ can now be reproduced to obtain the same result for any g,

replacing the factor % for ¢ = 1 (because the path with highest density in any solution for
2g+2
2§+1
any solution for general g is a Pagy2).

g =11is a Py) with a factor for a general g (because the path with highest density in
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