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New cardiovascular indices based on nonlinear spectral analysis

of arterial blood pressure waveforms

Taous-Meriem Laleg, Claire Médigue, Yves Papelier,

Emmanuelle Crépeau, and Michel Sorine ∗

Abstract

A new method for analyzing arterial blood pressure is presented in this article. The technique

is based on the scattering transform and consists in solving the spectral problem associated to a

one-dimensional Schrödinger operator with a potential depending linearly upon the pressure. This

potential is then expressed with the discrete spectrum which includes negative eigenvalues and corre-

sponds to the interacting components of an N-soliton. The approach is similar to a nonlinear Fourier

transform where the solitons play the role of sine and cosine components. The method provides new

cardiovascular indices that seem to have meaningful physiological information, especially about the

stroke volume and the ventricular contractility. We first show how to reconstruct the arterial blood

pressure waves and separate its systolic and diastolic phases using this approach. Then we analyse

the parameters computed from this technique in two physiological conditions, the head-up 60 degrees

tilt test and the isometric handgrip test, widely used for studying short term cardiovascular control.

Promising results are obtained.

1 Introduction

The analysis of mean values and beat-to-beat variability of cardiovascular (CV) time series has been

widely used as a non invasive approach to study the control of the autonomic nervous system (ANS) on

the CV function [2], [28]. CV time series usually give information in frequency and amplitude domains.

The frequency (or period) is given by the RR interval (between two R peaks on the ECG ) or the pulse

interval (PI) (between two systolic blood pressure peaks). The amplitude concerns systolic, diastolic and

mean pressures (noted SBP, DBP and MBP respectively). Standard measures of these parameters are

mean levels and global variability, spectral, temporal and time-frequency analysis [33].

Instead of the usual decomposition of the arterial blood pressure (ABP) waveform into a linear su-

perposition of harmonic waves (sine and cosine functions) [40], [46], in this article we propose to use
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nonlinear superpositions of particular travelling waves, the N-solitons-solutions of the Korteweg-de Vries

(KdV) equation where N travelling components are interacting. These N-solitons play the role here of

the harmonic-waves solutions of the linear wave equation. The concept of soliton refers in fact to a

solitary wave emerging unchanged in shape and speed from the collision with other solitary waves [38].

They fascinate scientists by their very interesting coherent-structure characteristics and are used in many

fields to model natural phenomena. Solitons are solutions of nonlinear dispersive equations like the KdV

equation arising in a variety of physical problems, for example to describe wave motion in shallow wa-

ter canals [39], [49]. The use of solitons to describe the ABP was already introduced in [48] and [35]

where a KdV equation and a Boussinesq equation were respectively proposed as a blood flow model.

Recently, in [9], [24] a reduced model of the ABP cycle was introduced. The latter consists of a sum of

a 2 or 3-soliton solution of a KdV equation, describing fast phenomena during the systolic phase and a

2-element windkessel model describing slow phenomena during the diastolic phase. We recall that the

systolic phase corresponds to the contraction of the heart, driving blood out of the left ventricle while the

diastolic phase corresponds to the period of relaxation of the heart.

The decomposition of the ABP signal into a nonlinear superposition of solitons introduced in this

article is based on an elegant mathematical transform: the scattering transform for a one-dimensional

Schrödinger equation [6], [12], [14]. The main idea in our utilization of this transform consists in inter-

preting the pressure as a potential able to attract or repulse "fluid particles" or equivalently to transmit

or reflect waves associated with them. This situation is modelled by a one-dimensional Schrödinger

operator with a potential depending linearly upon the pressure wave [25]. The discrete levels of energy

or speed of this system are given by the discrete spectrum of the Schrödinger operator. The associated

eigenstates describe some coherent structures that are present in the pressure waveform and expressed as

N solitons.

The scattering-based signal analysis (SBSA) method introduces a new spectral description of the

pressure waveform leading to new cardiovascular indices. This study aims to analyse these new param-

eters in two physiological conditions that are widely used for studying the short term control of the CV

system: the head-up 60 degrees tilt test, in 15 healthy subjects, and the isometric handgrip exercise, in

13 healthy subjects.

Among the SBSA parameters, some invariants of the scattering transform corresponding to energy

(as for the standard Fourier transform) and volume give us information on the ventricular contractility

and the stroke volume (SV). Moreover, the beat-to-beat relation between the first eigenvalue and the

heart period could be more reliable than the baroreflex slope for distinguishing two conditions.
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In the next section, we present the basis of the SBSA method. Section III compares real and recon-

structed pressures using the SBSA and shows how we can separate the fast and slow pressure components

related to the systolic and diastolic phases respectively. Section IV introduces the new cardiovascular in-

dices computed using the SBSA technique and presents the results of the analysis in two physiological

conditions: tilt and handgrip, including a discussion. Finally a conclusion summarizes the different

results.

2 A SCATTERING-BASED SIGNAL ANALYSIS METHOD

In this section, we introduce a new signal analysis method based on the scattering theory. We start

by briefly recalling the basis of the Direct and Inverse Scattering Transforms (DST & IST). Then, we

present the main idea in the SBSA technique. For more details about DST and IST the reader can refer

to the abundant literature and the references given.

2.1 Scattering transform for a Schrödinger equation

Let V be a given real function in the so-called Faddeev class L1
1(R) [1]:

L1
1(R) = {V ∈ L1(R),

∫ +∞

−∞
|V (x)|(1+ |x|)dx < ∞}. (1)

We consider the one dimensional Schrödinger operator H(V ) with a potential V :

H(V ) : ψ → H(V )ψ = −
∂ 2ψ

∂x2
+V ψ. (2)

The DST of V will be defined as a function of the solution of the spectral problem for H(V ) where λ and

ψ are respectively the eigenvalues and the associate eigenfunctions for some normalization:

H(V )ψ = λψ. (3)

The spectrum of H(V ) has two components: a continuous spectrum equal to (0,+∞) and a discrete

spectrum with negative eigenvalues [11], [12], [14].

For the positive eigenvalues denoted here λ = k2, there are eigenfunctions, called scattering solutions

of (3) consisting of linear combinations of exp(ikx) and exp(−ikx) as x → ±∞. Among them, we
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consider the Jost solutions from the left fl and from the right fr, normalized at ±∞:

H(V ) f j = k2 f j, k ∈ R\{0}, j = l,r, (4)

exp(−ikx) fl(k,x) = 1+o(1), x → +∞, (5)

exp(−ikx)
∂ fl(k,x)

∂x
= ik +o(1), x → +∞, (6)

exp(+ikx) fr(k,x) = 1+o(1), x →−∞, (7)

exp(+ikx)
∂ fr(k,x)

∂x
= −ik +o(1), x →−∞, (8)

We recall that, for each fixed x ∈ R the Jost solutions have analytic extensions in k to the upper-half

complex plane [1].

The transmission coefficient T and the reflection coefficients Rl and Rr from the left and from the

right respectively are defined through the relations:

fl(k,x) =
exp(ikx)

T (k)
+

Rl(k)exp(−ikx)

T (k)
+o(1), x →−∞, (9)

fr(k,x) =
exp(−ikx)

T (k)
+

Rr(k)exp(ikx)

T (k)
+o(1), x → +∞, (10)

These coefficients satisfy:

|T (k)|2 + |Rl(k)|
2 = |T (k)|2 + |Rr(k)|

2 = 1. (11)

On the other hand, for the negative eigenvalues of the discrete spectrum, equation (3) admits solutions

called bound states that belong to L2(R) in the x variable. When V belongs to the Faddeev class, the

bound states solutions of (3) decay exponentially as x → ±∞ and their number N is finite [1]. Let us

denote λn = −κ2
n with λ1 ≤ λ2 ≤ ... and ψn the N negative eigenvalues and L2-normalized bound states:

H(V )ψn = −κ2
n ψn,

∫ +∞

−∞
|ψn(x)|

2dx = 1, n = 1, · · · ,N. (12)

The eigenspaces being of dimension 1, the bound states and the Jost solutions are proportional:

ψn(x) = cln fl(iκn,x) = (−1)N−ncrn fr(iκn,x), (13)
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where cln and crn are called the bound-state norming constants and are defined by:

c jn := [
∫ +∞

−∞
| f j(iκn,x)|

2dx]−
1
2 , j = l,r. (14)

We now define the DST of V as the sets of scattering data from the left, Sl(V ) or from the right, Sr(V ):

S j(V ) := {R j, κn, c j̄n, n = 1, · · · ,N}, { j, j̄} = {l,r}. (15)

The potential can be uniquely reconstructed by using any one of these sets. The solution of this inverse

problem, called IST, is the object of many studies concerned with specific classes of potentials [1], [7],

[11], [15], [29]. Two transforms are then available, S and S −1 (in the sequel we choose j = r and drop

the subscripts r and l for simplicity).

In this study, we will use the special class of reflectionless potentials for which the left or right reflec-

tion coefficients are zero. Such potentials can be constructed as follows: let Πd be the projector zeroing

the R-component of S (V ), then S −1 ◦Πd ◦S (V ) is reflectionless for any V in the Faddeev class. There

are useful explicit representations of reflectionless potentials using only the discrete spectrum as in the

following theorem [14]:

Theorem: If V is reflectionless for H(V ), then:

V (x) = −4
N

∑
n=1

κnψ2
n (x), x ∈ R. (16)

V can be also written:

V (x) = −2
∂ 2(log(det(I +A)))

∂x2
, x ∈ R, (17)

where A is an N ×N matrix:

A(x) = [
cmcn

κm +κn

exp((κm +κn)x)], n,m = 1, · · · ,N. (18)

Note that in (17) and (18), the potential is entirely defined with 2N parameters namely κn and cn, n =

1, · · · ,N.

A very close relation between a soliton solution of a KdV equation and a reflectionless potentiel

of the Schrödinger operator was introduced in [14]. In fact these potentials remain reflectionless when

evolving in time and space according to a KdV equation. For t → +∞, N 1-solitons emerge, each one

being characterized by a pair (κn,cn) such that 4κ2
n gives the speed of the soliton and cn its position.
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Therefore each component −4κnψ2
n in the sum (16) refers to a single soliton.

2.2 A scattering based signal analysis method

We now present how to use IST in a seemingly new method to analyse pulse-like signals of the

Faddeev class.

The main idea in the SBSA approach is to interpret a positive signal y in the Faddeev class as a

quantum well by changing the sign, and to tune the depth of this well with a positive parameter χ in

order to approximate y by a coherent state yχ . For a deeper well the trapped energy will be higher and

the approximation better, as we will prove. The estimate is then obtained by filtering out the nonlinear

reflections:

yχ = −
1

χ
S

−1 ◦Πd ◦S (−χy). (19)

A convenient explicit formula is available, χyχ being a reflectionless potential:

yχ =
4

χ

Nχ

∑
n=1

κχ,nψ2
χ,n, (20)

where −κ2
χ ,n and ψχ,n, n = 1, · · · ,Nχ are the negative eigenvalues and the associated L2-normalized

eigenfunctions for H(−χy).

Then, we look for a value χ̂ for the parameter χ such that the signal y is well approximated by yχ̂ .

This is the decomposition of the signal y into the nonlinear superposition of solitons announced in [25].

It is well-known that the number of negative eigenvalues Nχ of H(−χy) is a nondecreasing function

of χ and there is an infinite unbounded sequence (χn) such that Nχn
= Nχn−1

+1 [25], [31]. Determining

the parameter χ̂ determines the number of negative eigenvalues and hence the number of solitons com-

ponents required for a satisfying approximation of the signal y. Fig. 1 summarizes the SBSA technique.

2.3 SBSA and the invariants of KdV

The scattering transform has an infinite number of invariants which are related to the KdV conserved

quantities [14], [32]. Let us denote these invariants Im(V ), m = 0,1,2, · · · . They are of the form (we take

−V as argument having (19) in mind):

Im(−V ) = (−1)m+1 2m+1

22m+2

∫ +∞

−∞
Pm(V,

∂V

∂x
,
∂ 2V

∂x2
, · · ·)dx, (21)
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Figure 1: Signals analysis with the SBSA method

where Pm, m = 0,1,2, · · · are known polynomials in V and its successive derivatives with respect to x ∈R

[6].

A general formula relating Im(−Vχ), with Vχ =−χy, to the scattering data of H(Vχ) can be deduced;

see for example [6], [16], [32]:

Im(χy)=
Nχ

∑
n=1

κ2m+1
χ,n +

2m+1

2π

∫ +∞

−∞
(−k2)m ln(|Tχ(k)|)dk, (22)

m = 0,1,2, · · · .

We introduce the Riesz means of the negative eigenvalues λn of H(V ) such that λn ≤ λ ≤ 0:

Sγ,λ (−V ) = ∑
λn≤λ

|λn|
γ
, γ ≥ 0. (23)

Remark that S0,λ (V ) is the number of eigenvalues of H(V ) smaller than λ .

For an Nχ -soliton, for instance −χyχ of the previous subsection, the invariants only depend on the
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discrete spectrum and they are related to the Riesz means as follows:

Im(χyχ) = Sγ,0(χyχ), γ = m+
1

2
, m = 0,1,2, · · · (24)

A "sum rule" is then verified by the invariants of χy and χyχ :

Im(χy) = Im(χyχ)+
2m+1

2π

∫ +∞

−∞
(−k2)m ln(|Tχ(k)|)dk, (25)

m = 0,1,2, · · · .

In this article we are only interested in the two first invariants (m = 0 and m = 1) corresponding to

the conservation of mass and momentum for the KdV flows. Here it is sufficient to see them as invariants

of the DST, in the same manner energy is invariant for the Fourier transform (Plancherel’s theorem). We

will show later in the application of the SBSA to the ABP that these two invariants are related to some

important cardiovascular parameters.

So, for m = 0, P0(Vχ , · · ·) = Vχ , we get with (21) and (25):

∫ +∞

−∞
ydx =

∫ +∞

−∞
yχdx+

2

πχ

∫ +∞

−∞
ln(|Tχ(k)|)dk. (26)

For m = 1, P1(Vχ , · · ·) = V 2
χ , we have with (21) and (25):

∫ +∞

−∞
y2dx =

∫ +∞

−∞
y2

χdx−
8

πχ2

∫ +∞

−∞
k2 ln(|Tχ(k)|)dk. (27)

Equation (27) is known as the Buslaev-Faddeed-Zakharov trace formula.

Proposition: Let y : R → R be a continuous non-negative function with a compact support, then we

have the convergence of the estimates of the first two invariants:

lim
χ→+∞

Im(yχ) = Im(y), m = 0,1. (28)

Proof: We can apply the results on the Lieb-Thirring semiclassical limit of the Riesz means [4], [20],

[21], [26]:

lim
χ→+∞

Sγ,0(χy)

χ
1
2
+γ

= Lcl
γ

∫

R

y(x)
1
2
+γdx, γ ≥

1

2
, (29)
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where Lcl
γ is the so-called Lieb-Thirring constant given by:

Lcl
γ ≡ (4π)−

1
2

Γ(γ +1)

Γ(γ +
3

2
)
. (30)

We notice that for γ =
1

2
:

lim
χ→+∞

S 1
2
,0(χy)

χ
= Lcl

1
2

∫

R

y(x)dx, Lcl
1
2

=
1

4
. (31)

So, we deduce the convergence of the first invariant estimate.

For γ =
3

2
we have an analog of the Plancherel identity for the Fourier transform:

lim
χ→+∞

S 3
2
,0(χy)

χ2
= Lcl

3
2

∫

R

y(x)2dx, Lcl
3
2

=
3

16
. (32)

Therefore, we get the convergence of the second invariant.

3 Application of the SBSA to the ABP waves

3.1 ABP reconstruction

In the previous subsection, we presented a new signal analysis method based on the scattering trans-

form. Now, we propose to use this method for ABP analysis. For convenience we replace the space

variable x by the time variable t.

We note the ABP signal P(t) and the estimated pressure with the SBSA technique P̂(t) such that:

P̂(t) =
4

χ

Nχ

∑
n=1

κχ ,nψ2
χ,n(t), (33)

where −κ2
χ ,n and ψχ,n, n = 1, · · · ,Nχ are the Nχ negative eigenvalues and associated L2−normalized

eigenfunctions of H(−χP). We recall that each component 4κχ,nψ2
χ,n in (33) refers to a single soliton

[14], [25].

In Fig. 2 and Fig. 3, measured and reconstructed pressures at the aorta and at the finger levels are

presented respectively. Only 5 to 10 components are sufficient for a good reconstruction of the ABP

waveform.
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Figure 2: Measured and reconstructed pressure at the aorta
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Figure 3: Measured and reconstructed pressure at the finger

3.2 Separation of the systolic and diastolic phases

Following the work done in [9], [24], we propose here using the SBSA technique to separate the

pressure into fast and slow parts corresponding respectively to the systolic and diastolic phases. Indeed

a reduced model of ABP has been proposed in [9], [24]. The latter consists of a sum of two terms: a 2 or

3-soliton solution of a KdV equation describing fast phenomena which predominate during the systolic

phase and a 2-element windkessel model describing slow phenomena during the diastolic phase. As

noticed in the previous section, the SBSA technique decomposes the ABP signal into a sum of solitons,

each one characterized by its velocity given by the discrete eigenvalues −κ2
χ ,n. So the largest κ2

χ,n,

n = 1, · · · ,Ns describe fast phenomena while the smallest ones describe slow phenomena. Referring to

[9], [24], we take Ns = 2 or 3. We note P̂s and P̂d the estimated systolic and diastolic pressures respectively
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Figure 4: P̂s and fast systolic phenomena

such that:

P̂s(t) =
4

χ

Ns

∑
n=1

κχ,nψ2
χ ,n, P̂d(t) =

4

χ

Nχ

∑
n=Ns+1

κχ,nψ2
χ ,n. (34)

We compute the first two invariants of these partial pressures with the Riesz means for the chosen cut-off

speed λ :

INV1(λ ) =
4

χ
S 1

2
,λ (χP), INV2(λ ) =

16

3χ2
S 3

2
,λ (χP), (35)

We can now define the proposed invariants for the whole beat and for the systolic and diastolic phases

(INVj, INV S j, INV D j, j = 1,2 respectively):























INVj = INVj(0),

INV S j = INVj(λs), j = 1,2,

INV D j = INVj(0)− INV S j(λs),

(36)

where λs = λχ ,2 or λχ,3.

In Fig. 4 and Fig. 5, we represent the measured pressure and the estimated systolic and diastolic parts

respectively. We remark that P̂s and P̂d are respectively localized during the systole and the diastole, as

expected.
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Figure 5: P̂d and slow diastolic phenomena

4 New spectral cardiovascular indices

4.1 The SBSA parameters and the ABP

The SBSA technique provides a new description of the ABP signal using the DST. As seen in the

previous section, the reconstruction of the signal by IST from its spectral data gives good results. In-

stead of reconstructing the original signal, it is possible to modify the spectrum leading to some kind of

filtering. This is illustrated by the separation of the systolic and diastolic phases, which can have interest-

ing clinical applications. Moreover, the SBSA method introduces new parameters that seem to contain

meaningful physiological information. The first two global invariants INV1 and INV2 are respectively,

by definition, the usual mean blood pressure (MBP) and the less usual, but easy to compute directly,

integral of the square of the pressure. The first systolic invariant INV S1 is a new index: it is related

to SV, here seen as the fast moving part of the volume (in the case of a single uniform elastic vessel,

it is possible to prove proportionality). Remark that if INV2 is easy to compute directly, the "fast part"

of this integral, the second systolic invariant INV S2 is a new less obvious index. It corresponds to the

momentum of SV and seems to give information about ventricular contractility. SV and contractility

are in fact parameters of great interest that are difficult to measure routinely, as they require invasive or

sophisticated techniques. For instance SV can be estimated by invasive nuclear ventriculography [47],

2D echocardiography [23], radionuclide monitoring [43], impedance cardiography [8], [10]. Only one

evaluation of SV from ABP has been proposed [19]. Ventricular contractility is assessed by the mean of

the tissue doppler echocardiography [17], [18].

On the other hand, the eigenvalues computed with the SBSA technique are strongly dependent upon
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Figure 6: (a) First eigenvalue time series of a healthy subjects under 0.25Hz paced-breathing during 29

beats. The signal exhibits a beat-to-beat variability that is twice as fast as the breathing rate. (b) A zoom

on a few beats shows morphological changes in the blood pressure signal.

the ABP waveform. Indeed, when the pressure waveform changes, the optimal value of the parameter χ

and the eigenvalues also change. This fact is illustrated in Fig. 6. Therefore, the eigenvalues could be

used to assess the baroreflex sensitivity (BRS) in a certain way. In fact, the BRS expresses the variation

of the heart beat interval in response to each arterial pressure variation. The BRS concept was first based

on drug-induced responses of ABP and heart period [37]. Then various time [27], [34], [36] and spectral

[5], [28], [34], domain methods [27] were compared.

In this section we analyse the SBSA parameters in two physiological protocols, devoted to the assess-

ment of the ANS control of the CV system. We restrict the study to the modulus of the first two negative

eigenvalues |λχ,1| = |λ1|, |λχ,2| = |λ2| and the first two invariants (global, systolic and diastolic). We

include in the analysis some classical parameters which are PI, SBP and DBP.

4.2 Head-up 60 degrees tilt-test

The head-up tilt test is mainly used for vasovagal syncopes diagnosis, characterized by an autonomic

dysfunction. It consists in the orthostatic transition from the supine to the standing positions. This leads

to a redistribution of the venous blood volume, from the intrathoracic region towards the venous volume

13



Table 1: ABP parameters during tilt protocol in 15 healthy subjects
ABP parameters supine standing probability

Direct

PI 918±33 778±21 ***

SBP 121±4 127±3 NS

DBP 68±4 80±3 **

Eigenvalues

First 1515±131 1965±137 ***

Second 1205±86 1612±92 ***

First invariants

Global 77±6 71±4 NS

Systolic 21±1 19±1 **

Diastolic 56±4 51±3 NS

Second invariants

Global 7041±975 6833±711 NS

Systolic 2705±328 2566±247 NS

Diastolic 4336±648 4276±465 NS

Data are expressed as means and SEM; **: P ≤ .01; ***: P ≤ .001

in the leg and lower abdominal veins. This leads to a decrease in SV and PI and an increase in SBP [10],

[41], [42], [44].

A group of 15 healthy subjects under 0.25Hz paced breathing, already studied [3], was considered.

The table was rotated to an upright position at 60 degrees. The continuous ABP was measured at the

finger using a Finapres device [45]. The two positions, supine and standing, were compared using the

Wilcoxon non parametric paired test.

Fig. 7 shows the time series of PI, SBP, INV S1 and |λ1| in the supine and standing positions. Mean

levels of the ABP parameters are presented in Table 1. We notice that significant differences between the

supine and standing positions appear for PI, DBP, |λ1|, |λ2| and INV S1 while for the other parameters

the differences are not significant.

The decrease in the INV S1 confirms the fact that SV remains decreased after the tilt test while SBP

and MBP recover their prior values (before the tilt). INV S2 gives information about ventricular contrac-

tility between supine and standing. However, in this case, the absence of a significant change between

the two positions may not lead only to the hypothesis of a stability of contractility. Indeed, the decrease

in SV naturally leads to a decrease in contractility according to the Frank-Starling effect. Thus, this

apparent stability could, on contrary, be the result of an increased contractility, coupled with the cardiac

acceleration, to maintain a constant blood flow.

The ABP analysis during the transition from the supine to the standing positions was possible for only

nine subjects. For these, we assessed the linear relation between PI of the beat n+1 and |λ1| computed for

the beat n. In Fig. 8, we remark that as PI decreases, |λ1| increases and that the linear correlation between

PI and |λ1| is stronger around the transition than in supine position. Table 2 shows that the correlation
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Figure 7: Time series of ABP parameters in a healthy subject under 0.25Hz paced breathing, in supine

(a) and standing (b) positions after a 60 degrees tilt test. PI and INV S1 are reduced whereas |λ1| is

increased in the standing position, more than two minutes after the tilt test. SBP has the same level in

both positions.

coefficient (R2) and the slope, compared by a one way repeated measures analysis of variance, were

significantly stronger around the transition than in supine or standing positions. Moreover, a comparison

with usual BRS indices, SBP and pulse pressure (PP), shows that |λ1| has the strongest correlation with

PI (Table 3). It is not surprising that |λ1| is more informative about the relation between the heart period

and the ABP because it reflects the arterial waveform and not only one (SBP) or two (PP) samples of this

waveform.

4.3 Isometric handgrip exercise

The isometric handgrip exercise is mainly used for the evaluation of a non appropriate ANS behavior,

that mimics real situations of professional disease exposure, with arterial hypertension. Indeed, the ANS

acts in the same way as in a dynamic exercise usually characterized by an increase in muscle oxygen

needs. The isometric exercise is a form of exercise involving the static contraction of a muscle without
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Table 2: Beat-to-beat BRS during tilt protocol

supine tilt standing probability

R2 .335± .102 .611± .074 .421± .079 ***

slope −.105± .03 −.177± .03 −.106± .015 **

R2 and slope of the linear regression between |λ1(n)| and PI(n + 1), over about 60 beats, in 9 healthy subjects. Data are

expressed as means and SEM; ** p ≤ .01; *** p ≤ .001, at repeated measures analysis of variance. Slope and R2 are the

strongest during tilt.

600
0 2500

1500

PI
 (

n+
1)

 m
s

First eigenvalue (n)

supine

tilt

Figure 8: Beat-to-beat BRS, represented as the relation between |λ1(n)| and PI(n+1). Slope and corre-

lation are stronger during tilt.

any visible movement in the angle of the joints [13].

A group of 13 healthy subjects was considered. The continuous ABP was measured at the finger with

a Finapres device [45]. The two conditions: at rest and during the handgrip test, were compared using

the Wilcoxon non parametric paired test.

In Fig. 9, the time series of PI, SBP, INV S2 and |λ1| are presented at rest and during the handgrip test.

Table 4 illustrates the mean levels of the ABP parameters. We notice that while all the first invariants do

not change significantly, the second invariants are sensitively increased during handgrip.

The voluntary central command, involved in the handgrip, synchronously activates the motor and CV

Table 3: Three indices of beat-to-beat BRS during tilt

R2 tilt

|λ1| .611± .074

SBP .351± .091

PP .415± .069

Mean of R2 of the linear regression between ABP parameters (|λ1|, SBP, PP) and PI, over about 60 beats, in 9 healthy subjects

of the tilt test. Data are expressed as means and SEM. |λ1| is the most strongly correlated with PI.
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Figure 9: Time series of ABP parameters in a healthy subject under spontaneous breathing, at rest (a) and

during the handgrip test (b). PI is reduced whereas SBP, INV S2 and |λ1| are strongly increased during

handgrip.

systems, leading first to an increase in the heart rate, followed by an increase in the ABP. This mechanism

can be considered as a feed-forward, opening the baroreflex loop [22], [30]. As expected, PI decreases

and SBP increases (Table 4). From INV S1, we deduce that SV does not change while INV S2 gives us

information about the increasing contractility, as if the heart tries to eject the same quantity of blood

during a smaller period. Such a result evokes the treppe effect (or frequency-force relation), where an

increase in heart rate indirectly induces an increase in contractility.

As in the case of the tilt test, we study the relationship between PI and |λ1|. Fig. 10 illustrates the

relation between PI of the beat n + 1 and |λ1| computed for the beat n at rest and during the handgrip

test. The strong linear correlation between PI and |λ1| is the same at rest and during the handgrip, but

the slope is significantly lower during the handgrip (Table 5), as a reflection of the lesser efficiency of

the baroreflex loop, opened by the central command. Moreover, a comparison with usual BRS indices,

SBP and PP, during the transition, shows that |λ1| has the strongest correlation with PI (Table 6). This

result, as obvious as in the case of the tilt test leads us to consider |λ1| as a promising index of the relation

between the heart period and ABP, so called BRS.

5 Conclusion

This article deals with a new ABP analysis method based on scattering theory. This SBSA method

can be thought of as a nonlinear Fourier analysis for pulse-like signals. It allows analysis and precise
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Table 4: ABP parameters during handgrip protocol in 13 healthy subjects
ABP parameters rest handgrip probability

Direct

PI 953±59 748±42 ***

SBP 148±5 183±5 ***

DBP 83±3 104±4 ***

Eigenvalues

First 1439±160 2325±249 **

Second 1186±125 1872±180 ***

First invariants

Global 96±6 95±6 NS

Systolic 26±1 26±1 NS

Diastolic 70±4 69±4 NS

Second invariants

Global 10239±866 12886±1192 **

Systolic 3956±344 5013±470 **

Diastolic 6283±526 7872±727 **

Data are expressed as means and SEM; ** p ≤ .01; *** p ≤ .001.

Table 5: Beat-to-beat BRS during handgrip protocol

rest handgrip probability

R2 .647± .054 .609± .050 NS

slope −.302± .071 −.132± .024 **

R2 and slope of the linear regression between |λ1(n)| and PI(n + 1), over about 40 beats, in 13 healthy subjects. Data are

expressed as means and SEM; ** p ≤ .01; *** p ≤ .001, at paired test. Slope is reduced during handgrip whereas R2 is not

significantly different.

reconstruction as is shown by the very good agreement between real and estimated pressures. We have

also presented an application to a filtering problem consisting in separating the systolic and diastolic

phases. Then, we have introduced new cardiovascular indices computed with the SBSA method that yield

relevant physiological information. These parameters include the first two systolic invariants which give

information on the stroke volume and the ventricular contractility, that are difficult to measure routinely.

Another interesting parameter is the first eigenvalue which reflects the BRS, with a better correlation to

the heart period than SBP, usually considered. The results obtained from the analysis of two widely used

physiological conditions are promising.

Table 6: Three indices of beat-to-beat BRS during handgrip protocol

R2 rest handgrip

|λ1| .647± .054 .609± .050

SBP .166± .055 .261± .060

PP .375± .078 .284± .060

Mean R2 of the linear regression between ABP parameters (|λ1|, SBP, PP) and PI, over about 40 beats, in the 13 healthy subjects

of the handgrip test. Data are expressed as means and SEM. |λ1| is the most strongly correlated with PI.
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Figure 10: Beat-to-beat BRS, represented as the relation between |λ1(n)| and PI(n + 1). Slope is lower

during handgrip.
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