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Eléctrica, Avenida IPN, No. 2508, Col. San Pedro Zacatenco, AP 14740, 07300
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1 Introduction

1.1 General overview

Since fifteen years non-linear flatness-based control (Fliess,
Lévine, Martin & Rouchon (1995, 1999)) has been quite
effective in many concrete and industrial applications (see
also Lamnabhi-Lagarrigue & Rouchon (2002b); Rudolph
(2003); Sira-Ramı́rez & Agrawal (2004)). On the other
hand, most of the problems pertaining to non-linear state
estimation, and to related topics, like

• parametric estimation,

• fault diagnosis and fault tolerant control,

• perturbation attenuation,

remain largely open in spite of a huge literature1. This
paper aims at providing simple and effective design
methods for such questions. This is made possible by the
following facts:

According to the definition given by Diop & Fliess
(1991a,b), a non-linear input-output system is observable
if, and only if, any system variable, a state variable for
instance, is a differential function of the control and
output variables, i.e., a function of those variables and
their derivatives up to some finite order. This definition
is easily generalized to parametric identifiability and
fault isolability. We will say more generally that an
unknown quantity may be determined if, and only if, it
is expressible as a differential function of the control and
output variables.

It follows from this conceptually simple and natural view-
point that non-linear estimation boils down to numerical
differentiation, i.e., to the derivatives estimations of noisy
time signals2. This classic ill-posed mathematical prob-
lem has been already attacked by numerous means3. We
follow here another thread, which started in Fliess & Sira-
Ramı́rez (2004b) and Fliess, Join, Mboup & Sira-Ramı́rez
(2004, 2005): derivatives estimates are obtained via inte-
grations. This is the explanation of the quite provocative

1See, e.g., the surveys and encyclopedia edited by Aström, Blanke,
Isidori, Schaufelberger & Sanz (2001); Lamnabhi-Lagarrigue & Rou-
chon (2002a,b); Levine (1996); Menini, Zaccarian & Abdallah (2006);
Nijmeijer & Fossen (1999); Zinober & Owens (2002), and the refer-
ences therein.

2The origin of flatness-based control may also be traced back to
a fresh look at controllability (Fliess (2000)).

3For some recent references in the control literature, see, e.g.,
Braci & Diop (2001); Busvelle & Gauthier (2003); Chitour (2002);
Dabroom & Khalil (1999); Diop, Fromion & Grizzle (2001); Diop,
Grizzle & Chaplais (2000); Diop, Grizzle, Moraal & Stefanopoulou
(1994); Duncan, Madl & Pasik-Duncan (1996); Ibrir (2003, 2004);
Ibrir & Diop (2004); Kelly, Ortega, Ailon & Loria (1994); Levant
(1998, 2003); Su, Zheng, Mueller & Duan (2006). The literature on
numerical differentiation might be even larger in signal processing
and in other fields of engineering and applied mathematics.
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title of this paper4 where non-linear asymptotic estimators
are replaced by differentiators, which are easy to imple-
ment5.

Remark 1.1. This approach to non-linear estimation
should be regarded as an extension of techniques for linear
closed-loop parametric estimation (Fliess & Sira-Ramı́rez
(2003, 2007)). Those techniques gave as a byproduct lin-
ear closed-loop fault diagnosis (Fliess, Join & Sira-Ramı́rez
(2004)), and linear state reconstructors (Fliess & Sira-
Ramı́rez (2004a)), which offer a promising alternative to
linear asymptotic observers and to Kalman’s filtering.

1.2 Numerical differentiation: a short summary

of our approach

.
Let us start with the first degree polynomial time func-

tion p1(t) = a0 + a1t, t ≥ 0, a0, a1 ∈ R. Rewrite thanks to
classic operational calculus (see, e.g., Yosida (1984)) p1 as
P1 = a0

s + a1

s2 . Multiply both sides by s2:

s2P1 = a0s + a1 (1)

Take the derivative of both sides with respect to s, which
corresponds in the time domain to the multiplication by
−t:

s2 dP1

ds
+ 2sP1 = a0 (2)

The coefficients a0, a1 are obtained via the triangular sys-
tem of equations (1)-(2). We get rid of the time derivatives,
i.e., of sP1, s2P1, and s2 dP1

ds , by multiplying both sides of
Equations (1)-(2) by s−n, n ≥ 2. The corresponding iter-
ated time integrals are low pass filters which attenuate the
corrupting noises, which are viewed as highly fluctuating
phenomena (cf. Fliess (2006)). A quite short time window
is sufficient for obtaining accurate values of a0, a1.

The extension to polynomial functions of higher degree
is straightforward. For derivatives estimates up to some
finite order of a given smooth function f : [0, +∞) → R,
take a suitable truncated Taylor expansion around a given
time instant t0, and apply the previous computations. Re-
setting and utilizing sliding time windows permit to es-
timate derivatives of various orders at any sampled time
instant.

Remark 1.2. Note that our differentiators are not of
asymptotic nature, and do not require any statistical knowl-
edge of the corrupting noises. Those two fundamental fea-
tures remain therefore valid for our non-linear estimation6.
This is a change of paradigms when compared to most of
today’s approaches7.

4There are of course situations, for instance with a very strong
corrupting noise, where the present state of our techniques may be
insufficient. See also Remark 2.5.

5Other authors like Slotine (1991) had already noticed that
“good” numerical differentiators would greatly simplify control syn-
thesis.

6They are also valid for the linear estimation questions listed in
Remark 1.1.

7See, e.g., Schweppe (1973); Jaulin, Kiefer, Didrit & Walter
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1.3 Analysis and organization of our paper

Our paper is organized as follows. Section 2 deals with the
differential algebraic setting for nonlinear systems, which
was introduced in Fliess (1989, 1990). When compared
to those expositions and to other ones like Fliess, Lévine,
Martin & Rouchon (1995); Delaleau (2002); Rudolph
(2003); Sira-Ramı́rez & Agrawal (2004), the novelty lies
in the two following points:

1. The definitions of observability and parametric iden-
tifiability are borrowed from Diop & Fliess (1991a,b).

2. We provide simple and natural definitions related to
non-linear diagnosis such as detectability, isolability,
parity equations, and residuals, which are straightfor-
ward extensions of the module-theoretic approach in
Fliess, Join & Sira-Ramı́rez (2004) for linear systems.

The main reason if not the only one for utilizing differential
algebra is the absolute necessity of considering derivatives
of arbitrary order of the system variables. Note that this
could have been also achieved with the differential geo-
metric language of infinite order prolongations (see, e.g.,
Fliess, Lévine, Martin & Rouchon (1997, 1999))8.

Section 3 details Subsection 1.2 on numerical differenti-
ation.

Illustrations are provided by several academic examples9

and their numerical simulations10 which we wrote in a such
a style that they are easy to grasp without understanding
the algebraic subtleties of Section 2:

1. Section 4 is adapting a paper by Fan & Arcak (2003)
on a non-linear observer. We only need for closing the
loop derivatives of the output signal. We neverthe-
less present also a state reconstructor of an important
physical variable.

2. Closed-loop parametric identification is achieved in
Section 5.

(2001), and the references therein, for other non-statistical ap-
proaches.

8The choice between the algebraic and geometric languages is a
delicate matter. The formalism of differential algebra is perhaps sup-
pler and more elegant, whereas infinite prolongations permit to take
advantage of the integration of partial differential equations. This
last point plays a crucial rôle in the theoretical study of flatness (see,
e.g., Chetverikov (2004); Martin & Rouchon (1994, 1995); van Nieuw-
stadt, Rathinam & Murray (1998); Pomet (1997); Sastry (1999), and
the references therein) but seems to be unimportant here. Differential
algebra on the other hand permitted to introduce quasi-static state
feedbacks (Delaleau & Pereira da Silva (1998a,b)), which are quite
helpful in feedback synthesis (see also Delaleau & Rudolph (1998);
Rudolph & Delaleau (1998)). The connection of differential algebra
with constructive and computer algebra might be useful in control
(see, e.g., Diop (1991, 1992); Glad (2006), and the references therein).

9These examples happen to be flat, although our estimation tech-
niques are not at all restricted to such systems. We could have ex-
amined as well uncontrolled systems and/or non-flat systems. The
control of non-flat systems, which is much more delicate (see, e.g.,
Fliess, Lévine, Martin & Rouchon (1995); Sira-Ramı́rez & Agrawal
(2004), and the references therein), is beyond the scope of this article.

10Any interested reader may ask C. Join for the corresponding
computer programs (Cedric.Join@cran.uhp-nancy.fr).

3. Section 6 deals with closed-loop fault diagnosis and
fault tolerant control.

4. Perturbation attenuation is presented in Section 7, via
linear and non-linear case-studies.

We end with a brief conclusion. First drafts of various
parts of this paper were presented in Fliess & Sira-Ramı́rez
(2004b); Fliess, Join & Sira-Ramı́rez (2005).

2 Differential algebra

Commutative algebra, which is mainly concerned with
the study of commutative rings and fields, provides the
right tools for understanding algebraic equations (see, e.g.,
Hartshorne (1977); Eisenbud (1995)). Differential alge-
bra, which was mainly founded by Ritt (1950) and Kolchin
(1973), extends to differential equations concepts and re-
sults from commutative algebra11.

2.1 Basic definitions

A differential ring R, or, more precisely, an ordinary dif-
ferential ring, (see, e.g., Kolchin (1973) and Chambert-
Loir (2005)) will be here a commutative ring12 which is
equipped with a single derivation d

dt : R → R such that,
for any a, b ∈ R,

• d
dt(a + b) = ȧ + ḃ,

• d
dt(ab) = ȧb + aḃ.

where da
dt = ȧ, dνa

dtν = a(ν), ν ≥ 0. A differential field, or,
more precisely, an ordinary differential field, is a differen-
tial ring which is a field. A constant of R is an element
c ∈ R such that ċ = 0. A (differential) ring (resp. field)
of constants is a differential ring (resp. field) which only
contains constants. The set of all constant elements of R
is a subring (resp. subfield), which is called the subring
(resp.subfield) of constants.

A differential ring (resp. field) extension is given by two
differential rings (resp. fields) R1, R2, such that R1 ⊆ R2,
and qthe derivation of R1 is the restriction to R1 of the
derivation of R2.
Notation Let S be a subset of R2. Write R1{S} (resp.
R1〈S〉) the differential subring (resp. subfield) of R2 gen-
erated by R1 and S.
Notation Let k be a differential field and X = {xι|ι ∈ I}
a set of differential indeterminates, i.e., of indeterminates
and their derivatives of any order. Write k{X} the differ-
ential ring of differential polynomials, i.e., of polynomials

belonging to k[x
(νι)
ι |ι ∈ I; νι ≥ 0]. Any differential poly-

nomial is of the form
∑

finite
c
∏

finite
(x

(µι)
ι )αµι , c ∈ k.

Notation If R1 and R2 are differential fields, the corre-
sponding field extension is often written R2/R1.

11Algebraic equations are differential equations of order 0.
12See, e.g., Atiyah & Macdonald (1969); Chambert-Loir (2005) for

basic notions in commutative algebra.
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A differential ideal I of R is an ideal which is also a
differential subring. It is said to be prime if, and only if, I

is prime in the usual sense.

2.2 Field extensions

All fields are assumed to be of characteristic zero. Assume
also that the differential field extension K/k is finitely gen-
erated, i.e., there exists a finite subset S ⊂ K such that
K = k〈S〉. An element a of K is said to be differentially
algebraic over k if, and only if, it satisfies an algebraic dif-
ferential equation with coefficients in k: there exists a non-
zero polynomial P over k, in several indeterminates, such
that P (a, ȧ, . . . , a(ν)) = 0. It is said to be differentially
transcendental over k if, and only if, it is not differentially
algebraic. The extension K/k is said to be differentially
algebraic if, and only if, any element of K is differentially
algebraic over k. An extension which is not differentially
algebraic is said to be differentially transcendental.

The following result is playing an important rôle:

Proposition 2.1. The extension K/k is differentially al-
gebraic if, and only if, its transcendence degree is finite.

A set {ξι | ι ∈ I} of elements in K is said to be dif-
ferentially algebraically independent over k if, and only if,

the set {ξ(ν)
ι | ι ∈ I, ν ≥ 0} of derivatives of any order is

algebraically independent over k. If a set is not differen-
tially algebraically independent over k, it is differentially
algebraically dependent over k. An independent set which
is maximal with respect to inclusion is called a differential
transcendence basis. The cardinalities, i.e., the numbers of
elements, of two such bases are equal. This cardinality is
the differential transcendence degree of the extension K/k;
it is written diff tr deg (K/k). Note that this degree is 0
if, and only if, K/k is differentially algebraic.

2.3 Kähler differentials

Kähler differentials (see, e.g., Hartshorne (1977); Eisenbud
(1995)) provide a kind of analogue of infinitesimal calcu-
lus in commutative algebra. They have been extended to
differential algebra by Johnson (1969). Consider again the
extension K/k. Denote by

• K[ d
dt ] the set of linear differential operators

∑

finite aα
dα

dtα , aα ∈ K, which is a left and right princi-
pal ideal ring (see, e.g., McConnell & Robson (2000));

• ΩK/k the left K[ d
dt ]-module of Kähler differentials of

the extension K/k;

• dK/kx ∈ ΩK/k the (Kähler) differential of x ∈ K.

Proposition 2.2. The next two properties are equivalent:

1. The set {xι | ι ∈ I} ⊂ K is differentially algebraically
dependent (resp. independent) over k.

2. The set {dK/kxι | ι ∈ I} is K[ d
dt ]-linearly dependent

(resp. independent).

The next corollary is a direct consequence from Proposi-
tions 2.1 and 2.2.

Corollary 2.1. The module ΩK/k satisfies the following
properties:

• The rank13 of ΩK/k is equal to the differential tran-
scendence degree of K/k.

• ΩK/k is torsion14 if, and only if, K/k is differentially
algebraic.

• dimK(ΩK/k) = tr deg(L/K). It is therefore finite if,
and only if, L/K is differentially algebraic.

• ΩK/k = {0} if, and only if, L/K is algebraic.

2.4 Nonlinear systems

2.4.1 Generalities

Let k be a given differential ground field. A (nonlinear)
(input-output) system is a finitely generated differential ex-
tension K/k. Set K = k〈S,W, π〉 where

1. S is a finite set of system variables, which contains the
sets u = (u1, . . . , um) and y = (y1, . . . , yp) of control
and output variables,

2. W = {w1, . . . ,wq} denotes the fault variables,

3. π = (π1, . . . , πr) denotes the perturbation, or distur-
bance, variables.

They satisfy the following properties:

• The control, fault and perturbation variables do not
“interact”, i.e., the differential extensions k〈u〉/k,
k〈W〉/k and k〈π〉/k are linearly disjoint15.

• The control (resp. fault) variables are assumed to be
independent, i.e., u (resp. W) is a differential tran-
scendence basis of k〈u〉/k (resp. k〈W〉/k).

• The extension K/k〈u,W, π〉 is differentially alge-
braic.

• Assume that the differential ideal (π) ⊂ k{S, π,W}
generated by π is prime16. Write

k{Snom,Wnom} = k{S, π,W}/(π)

the quotient differential ring, where the nominal sys-
tem and fault variables Snom, Wnom are the canon-
ical images of S, W. To those nominal vari-
ables corresponds the nominal system17 Knom/k,

13See, e.g., McConnell & Robson (2000).
14See, e.g., McConnell & Robson (2000).
15See, e.g., Eisenbud (1995).
16Any reader with a good algebraic background will notice a

connection with the notion of differential specialization (see, e.g.,
Kolchin (1973)).

17Let us explain those algebraic manipulations in plain words. Ig-
noring the perturbation variables in the original system yields the
nominal system.
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where Knom = k〈Snom,Wnom〉 is the quotient
field of k{Snom,Wnom}, which is an integral do-
main, i.e., without zero divisors. The extension
Knom/k〈unom,Wnom〉 is differentially algebraic.

• Assume as above that the differential ideal (Wnom) ⊂
k{Snom,Wnom} generated by Wnom is prime. Write

k{Spure} = k{Snom,Wnom}/(Wnom)

where the pure system variables Spure are the canon-
ical images of Snom. To those pure variables corre-
sponds the pure system18 Kpure/k, where Kpure =
k〈Spure〉 is the quotient field of k{Spure}. The exten-
sion Kpure/k〈upure〉 is differentially algebraic.

Remark 2.1. We make moreover the following
natural assumptions: diff tr deg (k〈upure〉/k) =
diff tr deg (k〈unom〉/k) = diff tr deg (k〈u〉/k) = m,
diff tr deg (k〈Wnom〉/k) = diff tr deg (k〈W〉/k) = q

Remark 2.2. Remember that differential algebra consid-
ers algebraic differential equations, i.e., differential equa-
tions which only contain polynomial functions of the vari-
ables and their derivatives up to some finite order. This is
of course not always the case in practice. In the example
of Section 4, for instance, appears the transcendental func-
tion sin θl. As already noted in Fliess, Lévine, Martin &
Rouchon (1995), we recover algebraic differential equations
by introducing tan θl

2 .

2.4.2 State-variable representation

We know, from proposition 2.1, that the transcendence
degree of the extension K/k〈u,W, π〉 is finite, say n. Let
x = (x1, . . . , xn) be a transcendence basis. Any derivative
ẋi, i = 1, . . . , n, and any output variable yj , j = 1, . . . , p,
are algebraically dependent over k〈u,W, π〉 on x:

Ai(ẋi, x) = 0 i = 1, . . . , n
Bj(yj , x) = 0 j = 1, . . . , p

(3)

where Ai ∈ k〈u,W, π〉[ẋi, x], Bj ∈ k〈u,W, π〉[yj , x],
i.e., the coefficients of the polynomials Ai, Bj depend on
the control, fault and perturbation variables and on their
derivatives up to some finite order.

Eq. (3) becomes for the nominal system

Anom
i (ẋnom

i , xnom) = 0 i = 1, . . . , nnom ≤ n
Bnom

j (ynom
j , xnom) = 0 j = 1, . . . , p

(4)

where Anom
i ∈ k〈unom,Wnom〉[ẋnom

i , xnom], Bnom
j ∈

k〈unom,Wnom〉[ynom
j , xnom], i.e., the coefficients of Anom

i

and Bnom
j depend on the nominal control and fault vari-

ables and their derivatives and no more on the perturba-
tion variables and their derivatives.

We get for the pure system

Apure
i (ẋpure

i , xpure) = 0 i = 1, . . . , npure ≤ nnom

Bpure
j (ypure

j , xpure) = 0 j = 1, . . . , p
(5)

18Ignoring as above the fault variables in the nominal system yields
the pure system.

where Apure
i ∈ k〈upure〉[ẋpure

i , xpure], Bpure
j ∈

k〈upure〉[ypure
j , xpure], i.e., the coefficients of Apure

i

and Bpure
j depend only on the pure control variables and

their derivatives.

Remark 2.3. Two main differences, which are confirmed
by concrete examples (see, e.g., Fliess & Hasler (1990);
Fliess, Lévine & Rouchon (1993)), can be made with the
usual state-variable representation

ẋ = F (x, u)
y = H(x)

1. The representations (3), (4), (5) are implicit.

2. The derivatives of the control variables in the equa-
tions of the dynamics cannot be in general removed
(see Delaleau & Respondek (1995)).

2.5 Variational system19

Call ΩK/k (resp. ΩKnom/k, ΩKpure/k) the variational, or
linearized, system (resp. nominal system, pure system) of
system K/k. Proposition 2.2 yields for pure systems

A







dKpure/kypure
1

...
dKpure/kypure

p






= B







dKpure/kupure
1

...
dKpure/kupure

m






(6)

where

• A ∈ K[ d
dt ]

p×p is of full rank,

• B ∈ K[ d
dt ]

p×m.

The pure transfer matrix20 is the matrix A−1B ∈
K(s)p×m, where K(s), s = d

dt , is the skew quotient field21

of K[ d
dt ].

2.6 Differential flatness22

The system K/k is said to be (differentially) flat if, and
only if, the pure system Kpure/k is (differentially) flat
(Fliess, Lévine, Martin & Rouchon (1995)): the algebraic
closure K̄pure of Kpure is equal to the algebraic closure
of a purely differentially transcendental extension of k.
It means in other words that there exists a finite subset
zpure = {zpure

1 , . . . , zpure
m } of K̄pure such that

• zpure
1 , . . . , zpure

m are differentially algebraically inde-
pendent over k,

• zpure
1 , . . . , zpure

m are algebraic over Kpure,

19See Fliess, Lévine, Martin & Rouchon (1995) for more details.
20See Fliess (1994) for more details on transfer matrices of time-

varying linear systems, and, more generally, Fliess, Join & Sira-
Ramı́rez (2004), Bourlès (2006) for the module-theoretic approach
to linear systems.

21See, e.g., McConnell & Robson (2000).
22For more details see Fliess, Lévine, Martin & Rouchon (1995);

Rudolph (2003); Sira-Ramı́rez & Agrawal (2004).
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• any pure system variable is algebraic over
k〈zpure

1 , . . . , zpure
m 〉.

zpure is a (pure) flat, or linearizing, output. For a flat
dynamics, it is known that the number m of its elements
is equal to the number of independent control variables.

2.7 Observability and identifiability

Take a system K/k with control u and output y.

2.7.1 Observability

According to Diop & Fliess (1991a,b) (see also Diop
(2002)), system K/k is said to be observable if, and only
if, the extension Kpure/k〈upure, ypure〉 is algebraic.

Remark 2.4. This new definition23 of observability is
“roughly” equivalent (see Diop & Fliess (1991a,b) for de-
tails24) to its usual differential geometric counterpart due
to Hermann & Krener (1977) (see also Conte, Moog &
Perdon (1999); Gauthier & Kupka (2001); Isidori (1995);
Nijmeijer & van der Schaft (1990); Sontag (1998)).

2.7.2 Identifiable parameters25

Set k = k0〈Θ〉, where k0 is a differential field and
Θ = {θ1, . . . , θr} a finite set of unknown parameters,
which might not be constant. According to Diop & Fliess
(1991a,b), a parameter θι, ι = 1, . . . , r, is said to be alge-
braically (resp. rationally) identifiable if, and only if, it is
algebraic over (resp. belongs to) k0〈u, y〉:

• θι is rationally identifiable if, and only if, it is equal to
a differential rational function over k0 of the variables
u, y, i.e., to a rational function of u, y and their
derivatives up to some finite order, with coefficients
in k0;

• θι is algebraically identifiable if, and only if, it satisfies
an algebraic equation with coefficients in k0〈u, y〉.

2.7.3 Determinable variables

More generally, a variable Υ ∈ K is said to be rationally
(resp. algebraically) determinable if, and only if, Υpure be-
longs to (resp. is algebraic over) k〈upure, ypure〉. A system
variable χ is then said to be rationally (resp. algebraically)
observable if, and only if, χpure belongs to (resp. is alge-
braic over) k〈upure, ypure〉.

23See Fliess & Rudolph (1997) for a definition via infinite prolon-
gations.

24The differential algebraic and the differential geometric languages
are not equivalent. We cannot therefore hope for a “one-to-one bi-
jection” between definitions and results which are expressed in those
two settings.

25Differential algebra has already been employed for parametric
identifiability and identification but in a different context by several
authors (see, e.g., Ljung & Glad (1994); Ollivier (1990); Saccomani,
Audoly & D’Angio (2003)).

Remark 2.5. In the case of algebraic determinability,
the corresponding algebraic equation might possess several
roots which are not easily discriminated (see, e.g., Li, Chi-
asson, Bodson & Tolbert (2006) for a concrete example).

Remark 2.6. See Sedoglavic (2002) and Ollivier & Se-
doglavic (2002) for efficient algorithms in order to test ob-
servability and identifiability. Those algorithms may cer-
tainly be extended to determinable variables and to various
questions related to fault diagnosis in Section 2.8.

2.8 Fundamental properties of fault variables26

2.8.1 Detectability

The fault variable wι, ι = 1, . . . , q, is said to be detectable
if, and only if, the field extension Knom/k〈unom,Wnom

ι 〉,
where Wnom

ι = Wnom\{wnom
ι }, is differentially transcen-

dental. It means that wι is indeed “influencing” the out-
put. When considering the variational nominal system,
formula (6) yields







dKnom/kynom
1

...
dKnom/kynom

p






= Tu







dKnom/kunom
1

...
dKnom/kunom

m







+TW







dKnom/kw
nom
1

...
dKnom/kw

nom
q







where Tu ∈ K(s)p×m, TW ∈ K(s)p×q. Call TW the fault
transfer matrix. The next result is clear:

Proposition 2.3. The fault variable wι is detectable if,
and only if, the ιth column of the fault transfer matrix TW

is non-zero.

2.8.2 Isolability, parity equations and residuals

A subset W′ = (wι1 , . . . ,wιq′
) of the set W of fault vari-

ables is said to be

• Differentially algebraically isolable if, and only if, the
extension k〈unom, ynom,W′nom〉/k〈unom, ynom〉 is dif-
ferentially algebraic. It means that any component of
W′nom satisfies a parity differential equation, i.e., an
algebraic differential equations where the coefficients
belong to k〈unom, ynom〉.

• Algebraically isolable if, and only if, the extension
k〈unom, ynom,W′nom〉/k〈unom, ynom〉 is algebraic. It

26See, e.g., Chen & Patton (1999); Blanke, Kinnaert, Lunze &
Staroswiecki (2003); Gertler (1998); Vachtsevanos, Lewis, Roemer,
Hess & Wu (2006) for introductions to this perhaps less well known
subject. The definitions and properties below are clear-cut extensions
of their linear counterparts in Fliess, Join & Sira-Ramı́rez (2004).
Some of them might also be seen as a direct consequence of Sec-
tion 2.7.3. Differential algebra has already been employed but in
a different context by several authors (see, e.g., Martinez-Guerra &
Diop (2004); Mart̀ınez-Guerra, González-Galan, Luviano-Juárez &
Cruz-Victoria (2007); Staroswiecki & Comtet-Varga (2001); Zhang,
Basseville & Benveniste (1998)).
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means that the parity differential equation is of or-
der 0, i.e., it is an algebraic equation with coefficients
k〈unom, ynom〉.

• Rationally isolable if, and only if, W′nom belongs to
k〈unom, ynom〉. It means that the parity equation is
a linear algebraic equation, i.e., any component of
W′nom may be expressed as a rational function over k
in the variables unom, ynom and their derivatives up
to some finite order.

The next property is obvious:

Proposition 2.4. Rational isolability ⇒ algebraic isola-
bility ⇒ differentially algebraic isolability.

When we will say for short that fault variables are
isolable, it will mean that they are differentially alge-
braically isolable.

Proposition 2.5. Assume that the fault variables belong-
ing to W

′ are isolable. Then card(W′) ≤ card(y).

Proof. The differential transcendence degree of the exten-
sion k〈unom, ynom,W′nom〉/k (resp. k〈unom, ynom〉/k) is
equal to card(u) + card(W ′) (resp. is less than or equal
to card(u) + card(y)). The equality of those two degrees
implies our result thanks to the Remark 2.1.

3 Derivatives of a noisy signal

3.1 Polynomial time signals

Consider the real-valued polynomial function xN (t) =
∑N

ν=0 x(ν)(0) tν

ν! ∈ R[t], t ≥ 0, of degree N . Rewrite it
in the well known notations of operational calculus:

XN(s) =
N
∑

ν=0

x(ν)(0)

sν+1

We know utilize d
ds , which is sometimes called the algebraic

derivative (cf. Mikusinski (1983); Mikusinski & Boehme
(1987)). Multiply both sides by dα

dsα sN+1, α = 0, 1, . . . , N .

The quantities x(ν)(0), ν = 0, 1, . . . , N are given by the
triangular system of linear equations27:

dαsN+1XN

dsα
=

dα

dsα

(

N
∑

ν=0

x(ν)(0)sN−ν

)

(7)

The time derivatives, i.e., sµ dιXN

dsι , µ = 1, . . . , N , 0 ≤ ι ≤
N , are removed by multiplying both sides of Eq. (7) by
s−N̄ , N̄ > N .

Remark 3.1. Remember (cf. Mikusinski (1983); Mikusin-
ski & Boehme (1987); Yosida (1984)) that d

ds corresponds
in the time domain to the multiplication by −t.

27Following Fliess & Sira-Ramı́rez (2003, 2007), those quantities
are said to be linearly identifiable.

3.2 Analytic time signals

Consider a real-valued analytic time function defined by
the convergent power series x(t) =

∑∞

ν=0 x(ν)(0) tν

ν! , where
0 ≤ t < ρ. Introduce its truncated Taylor expansion

x(t) =

N
∑

ν=0

x(ν)(0)
tν

ν!
+ O(tN+1) (8)

Approximate x(t) in the interval (0, ε), 0 < ε ≤ ρ, by its

truncated Taylor expansion xN (t) =
∑N

ν=0 x(ν)(0) tν

ν! of or-
der N . Introduce the operational analogue of x(t), i.e.,

X(s) =
∑

ν≥0
x(ν)(0)
sν+1 , which is an operationally conver-

gent series in the sense of Mikusinski (1983); Mikusinski &
Boehme (1987). Denote by [x(ν)(0)]eN

(t), 0 ≤ ν ≤ N , the
numerical estimate of x(ν)(0), which is obtained by replac-
ing XN (s) by X(s) in Eq. (7). The next result, which is
elementary from an analytic standpoint, provides a math-
ematical justification for the computer implementations:

Proposition 3.1. For 0 < t < ε,

lim
t↓0

[x(ν)(0)]eN
(t) = lim

N→+∞
[x(ν)(0)]eN

(t) = x(ν)(0) (9)

Proof. Following (8) replace xN (t) by x(t) = xN (t) +
O(tN+1). The quantity O(tN+1) becomes negligible if t ↓ 0
or N → +∞.

Remark 3.2. See Mboup, Join & Fliess (2007)) for fun-
damental theoretical developments. See also Nöthen (2007)
for most fruitful comparisons and discussions.

3.3 Noisy signals

Assume that our signals are corrupted by additive noises.
Those noises are viewed here as highly fluctuating, or os-
cillatory, phenomena. They may be therefore attenuated
by low-pass filters, like iterated time integrals. Remember
that those iterated time integrals do occur in Eq. (7) after
multiplying both sides by s−N̄ , for N̄ > 0 large enough.

Remark 3.3. The estimated value of x(0), which is ob-
tained along those lines, should be viewed as a denoising of
the corresponding signal.

Remark 3.4. See Fliess (2006) for a precise mathemat-
ical foundation, which is based on nonstandard analysis.
A highly fluctuating function of zero mean is then defined
by the following property: its integral over a finite time
interval is infinitesimal, i.e., “very small”. Let us em-
phasize that this approach28, which has been confirmed by
numerous computer simulations and several laboratory ex-
periments in control and in signal processing29, is inde-
pendent of any probabilistic setting. No knowledge of the
statistical properties of the noises is required.

28This approach applies as well to multiplicative noises (see Fliess
(2006)). The assumption on the noises being only additive is there-
fore unnecessary.

29For numerical simulations in signal processing, see Fliess, Join,
Mboup & Sira-Ramı́rez (2004, 2005); Fliess, Join, Mboup & Se-
doglavic (2005). Some of them are dealing with multiplicative noises.
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Figure 1: A single link flexible joint manipulator

4 Feedback and state reconstructor

4.1 System description

Consider with Fan & Arcak (2003) the mechanical system,
depicted in Figure 1. It consists of a DC-motor joined to
an inverted pendulum through a torsional spring:

Jmθ̈m(t) = κ
(

θl(t) − θm(t)
)

− Bθ̇m(t) + Kτu(t)

Jlθ̈l(t) = −κ
(

θl(t) − θm(t)
)

− mgh sin(θl(t))
y(t) = θl(t)

(10)

where

• θm and θl represent respectively the angular deviation
of the motor shaft and the angular position of the
inverted pendulum,

• Jm, Jl, h, m, κ, B, Kτ and g are physical parameters
which are assumed to be constant and known.

System (10), which is linearizable by static state feedback,
is flat; y = θl is a flat output.

4.2 Control design

Tracking of a given smooth reference trajectory y∗(t) =
θ∗l (t) is achieved via the linearizing feedback controller

u(t) = 1
Kτ

(

Jm

κ

[

Jlv(t) + κÿe(t)

+mgh(ÿe(t) cos(ye(t)) − (ẏe(t))
2 sin(ye(t)))

]

+Jlÿe(t) + mgh sin(ye(t))
B
κ

[

Jly
(3)
e (t) + κẏe(t) + mghẏe(t) cos(ye(t)

]

)

(11)
where

v(t) = y∗(4)(t) − γ4(y
(3)
e (t) − y∗(3)(t))

−γ3(ÿe(t) − ÿ∗(t)) − γ2(ẏe(t) − ẏ∗(t))
−γ1(ye(t) − y∗(t))

(12)

The subscript “e”denotes the estimated value. The de-
sign parameters γ1, ..., γ4 are chosen so that the resulting
characteristic polynomial is Hurwitz.

Remark 4.1. Feedback laws like (11)-(12) depend, as
usual in flatness-based control (see, e.g., Fliess, Lévine,
Martin & Rouchon (1995, 1999); Sira-Ramı́rez & Agrawal
(2004)), on the derivatives of the flat output and not on
the state variables.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Time (s)

Figure 2: Output (–) and reference trajectory (- -)

4.3 A state reconstructor30

We might nevertheless be interested in obtaining an esti-
mate [θm]e(t) of the unmeasured state θm(t):

[θm]e(t) =
1

κ

(

Jlÿe(t) + mgh sin(ye(t))
)

+ ye(t) (13)

4.4 Numerical simulations

The physical parameters have the same numerical values
as in Fan & Arcak (2003): Jm = 3.7 × 10−3 kgm2, Jl =
9.3 × 10−3 kgm2, h = 1.5 × 10−1 m, m = 0.21 kg, B =
4.6 × 10−2 m, Kτ = 8 × 10−2 NmV−1. The numerical
simulations are presented in Figures 2 - 9. Robustness has
been tested with an additive white Gaussian noise N(0;
0.01) on the output y. Note that the off-line estimations
of ÿ and θm, where a “small” delay is allowed, are better
than the on-line estimation of ÿ.

5 Parametric identification

5.1 A rigid body

Consider the fully actuated rigid body, depicted in Figure
10, which is given by the Euler equations

I1ẇ1(t) = (I2 − I3)w2(t)w3(t) + u1(t)
I2ẇ2(t) = (I3 − I1)w3(t)w1(t) + u2(t)
I3ẇ3(t) = (I1 − I2)w1(t)w2(t) + u3(t)

(14)

where w1, w2, w3 are the measured angular velocities, u1,
u2, u3 the applied control input torques, I1, I2, I3 the con-
stant moments of inertia, which are poorly known. Sys-
tem (14) is stabilized around the origin, for suitably cho-
sen design parameters λ1ι, λ0ι, ι = 1, 2, 3, by the feedback

30See Sira-Ramı́rez & Fliess (2006) and Reger, Mai & Sira-Ramı́rez
(2006) for other interesting examples of state reconstructors which
are applied to chaotically encrypted messages.
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Figure 5: y: (- -); on-line noise attenuation ye (–)
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Figure 6: ÿ (- -); on-line estimation ÿe (–)
,
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Figure 7: θm (- -); on-line estimation [θm]e (–)
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Figure 8: ÿ (- -); off-line estimation ÿe (–)
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Figure 9: θm (- -); off-line estimation [θm]e (–)
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Figure 3: Control

controller, which is an obvious extension of the familiar

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

Time (s)

Figure 4: Output noise

proportional-integral (PI) regulators,

u1(t) = −(I2 − I3)w2(t)w3(t)

+I1

(

− λ11w1(t) − λ01

∫ t

0
w1(σ)dσ

)

u2(t) = −(I3 − I1)w3(t)w1(t)

+I2

(

− λ12w2(t) − λ02

∫ t

0 w2(σ)dσ
)

u3(t) = −(I1 − I2)w1(t)w2(t)

+I3

(

− λ13w3(t) − λ03

∫ t

0 w3(σ)dσ
)

(15)
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Figure 10: Rigid body

5.2 Identification of the moments of inertia

Write Eq. (14) in the following matrix form:





ẇ1 −w2w3 w2w2

w1w3 ẇ2 −w1w3

−w1w2 w1w2 ẇ3



×




I1

I2

I3



 =





u1

u2

u3





It yields estimates [I1]e, [I2]e, [I3]e of I1, I2, I3 when we
replace w1, w2, w3, ẇ1, ẇ2, ẇ3 by their estimates31. The
control law (15) becomes

u1(t) = −([I2]e − [I3]e)[w2]e(t)[w3]e(t)

+[I1]e
(

− λ11[w1]e(t) − λ01

∫

t

0
[w1]e(σ)dσ

)

u2(t) = −([I3]e − [I1]e)[w3]e(t)[w1]e(t)

+[I2]e
(

− λ12[w2]e(t) − λ02

∫

t

0
[w2]e(σ)dσ

)

u3(t) = −([I1]e − [I2]e)[w1]e(t)[w2]e(t)

+[I3]e
(

− λ13[w3]e(t) − λ03

∫

t

0
[w3]e(σ)dσ

)

(16)

5.3 Numerical simulations

The output measurements are corrupted by an additive
Gaussian white noise N(0; 0.005). Figure 11 shows an ex-
cellent on-line estimation of the three moments of inertia.
Set for the design parameters in the controllers (15) and
(16) λ1ι = 2ξ̟, λ0ι = ̟2, ι = 1, 2, 3, where ξ = 0.707,
̟ = 0.5. The stabilization with the above estimated val-
ues in Figure 12 is quite better than in Figure 13 where
the following false values where utilized: I1 = 0.2, I2 = 0.1
and I3 = 0.1.

6 Fault diagnosis and accommodation

6.1 A two tank system32

Consider the cascade arrangement of two identical tank
systems, shown in Figure 14, which is a popular example

31See Remark 3.3.
32See Mai, Join & Reger (2007) for another example.

0 2 4 6 8 10 12 14 16 18 20
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Figure 13: Feedback stabilization without parametric esti-
mation

in fault diagnosis (see, e.g., Blanke, Kinnaert, Lunze &
Staroswiecki (2003)).

x1

y = x2

u

Figure 14: A two tank system

Its mathematical description is given by

ẋ1(t) = − c

A

√

x1(t) +
1

A
u(t) (1 − w(t))

+̟(t) (17)

ẋ2(t) =
c

A

√

x1(t) −
c

A

√

x2(t)

y(t) = x2(t)

where:

• The constant c and the area A of the tank’s bottom
are known parameters.
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Figure 11: Zoom on the parametric estimation (–) and real values (- -)
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Figure 12: Feedback stabilization with parametric estimation
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• The perturbation ̟(t) is constant but unknown,

• The actuator failure w(t), 0 ≤ w(t) ≤ 1, is constant
but unknown. It starts at some unknown time tI >> 0
which is not “small”.

• Only the output y = x2 is available for measurement.

The corresponding pure system, where we are ignoring the
fault and perturbation variables (cf. Section 2.4.1),

ẋpure
1 = − c

A

√

xpure
1 + 1

Aupure

ẋpure
2 = c

A

√

xpure
1 − c

A

√

xpure
2

ypure = xpure
2

is flat. Its flat output is ypure = xpure
2 . The state variable

xpure
1 and control variable upure are given by

xpure
1 =

(A

c
ẏpure +

√
ypure

)2
(18)

upure = 2A
(A

c
ẏpure +

√
ypure

)(A

c
ÿpure +

ẏpure

2
√

ypure

)

+c
(A

c
ẏpure +

√
ypure

)

(19)

6.2 Fault tolerant tracking controller

It is desired that the output y tracks a given smooth refer-
ence trajectory y∗(t). Rewrite Formulae (18)-(19) by tak-
ing into account the perturbation variable ̟(t) and the
actuator failure w(t):

x1(t) =
(A

c
ẏ(t) +

√

y(t)
)2

(20)

u(t) =
1

(

1 − w(t)
)

(

− A̟

+2A
(A

c
ẏ(t) +

√

y(t)
)

×

(
A

c
ÿ(t) +

ẏ(t)

2
√

y(t)

)

+c
(A

c
ẏ(t) +

√

y(t)
)

)

With reliable on-line estimates ŵ(t) and ˆ̟ (t) of the fail-
ure signal w(t) and of the perturbation ̟(t), we design a
failure accommodating linearizing feedback controller. It
incorporates a classical robustifying integral action:

u(t) =
1

(

1 − ŵ(t)
)

(

− A ˆ̟ (t)

+2A
(A

c
ẏe(t) +

√

ye(t)
)(A

c
v(t) +

ẏe(t)

2
√

ye(t)

)

+c
(A

c
ẏe(t) +

√

ye(t)
)

)

v(t) = ÿ∗(t) − G ⋆ (ye(t) − y∗(t))

This is a generalized proportional integral (GPI) controller
(cf. Fliess, Marquez, Delaleau & Sira-Ramírez (2002))
where

• ⋆ denotes the convolution product,

• the transfer function of G is

λ2s
2 + λ1s + λ0

s(s + λ3)

where λ0, λ1, λ2, λ3 ∈ R,

• ye(t) is the on-line denoised estimate of y(t) (cf. Re-
mark 3.3),

• ẏe(t) is the on-line estimated value of ẏ(t).

6.3 Perturbation and fault estimation

The estimation of the constant perturbation ̟ is readily
accomplished from Eq. (17) before the occurrence of the
failure w, which starts at time tI >> 0:

ẋ1(t) = − c

A

√

x1(t) +
1

A
u(t) + ̟ if 0 < t < tI

Multiplying both sides by t and integrating by parts
yields33

ˆ̟ =

{

arbitrary 0 < t < ǫ

2
tx̂1(t)−

∫

t
0

[

x̂1(σ)−σ( c
A

√
x̂1(σ)− 1

A
u(σ))

]

dσ

t2 ǫ < t < tI

where ǫ > 0 is “very small”. The estimated value x̂1(t)
of x1(t), which is obtained from Formula (20), needs as in
Section 6.2 the on-line estimation ye(t) and ẏe(t).

The estimated value ŵ of w, which is detectable and
algebraically isolable (cf. Section 2.8.2), follows from

ŵ = 1 − 1

u(t)

(

2A
(A

c
ẏe(t) +

√

ye(t)
)

×
(A

c
ÿe(t) +

ẏe(t)

2
√

ye(t)

)

+c
(A

c
ẏe(t) +

√

ye(t)
)

− A ˆ̟
)

6.4 Numerical simulations

Figure 15 shows the closed-loop performance of our tra-
jectory tracking controller. The simulation scenario is the
following:

• The actuator fault w = 0.7 occurs at time tI = 1.5s.

• We estimate before the unknown constant perturba-
tion ̟ = 0.2 and use it for estimating w.

• The fault tolerant control becomes effective at time
t = 2.5s.

Robustness is checked via an additive Gaussian white noise
N(0; 0.01). Comparison between Figures 16 and 15 con-
firms the efficiency of our fault accommodation.

33We are adapting here linear techniques stemming from Fliess &
Sira-Ramı́rez (2003, 2007).
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Figure 15: y⋆(t) (- -) and y(t) (–) with fault accommodation
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Figure 16: y⋆(t) (- -) and y(t) (–) without fault accommo-
dation

7 Perturbation attenuation

7.0.1 Linear case

Suppose we are given a linear perturbed second order sys-
tem

ÿ(t) + y(t) = u(t) − z(t) + C1(t − tI) (21)

where

• z(t) is an unknown perturbation input,

• 1(t) is the Heaviside step function, i.e.,

1(t) =

{

0 if t < 0
1 if t ≥ 0

• C is an unknown constant and thus C1(t − tI) is a
constant bias, of unknown amplitude, starting at time
tI ≥ 0.

Remark 7.1. The difference C1(t − tI) − z(t) is a ratio-
nally determinable variable according to Section 2.7.3.

The estimate ze(t) of z(t) is given up to a piecewise con-
stant error by

ze(t) = −ÿe(t) − ye(t) + u(t)

where ye(t) and ÿe(t) are the on-line estimated values
of y(t) and ÿ(t). We design a generalized-proportional-
integral (GPI) regulator, in order to track asymptotically
a given output reference trajectory y⋆(t), i.e.,

u(t) = ye(t) + ze(t) + ÿ⋆(t) + G ⋆ (ye(t) − y∗(t)) (22)

where

• G is defined via its rational transfer function
c2s2+c1s+c0

s(s+c3)
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• s4 + c3s
3 + c2s

2 + c1s + c0 is the characteristic poly-
nomial of the unperturbed closed-loop system. The
coefficients c0, c1, c2, c3 are chosen so that the imagi-
nary parts of its roots are strictly negative.

Like usual proportional-integral-derivative (PID) regula-
tors, this controller is robust with respect to un-modeled
piecewise constant errors

The computer simulations were performed with

z(t) =
10t3 sin(2t)

1 + t2 + t3

The unknown constant perturbation suddenly appears at
time tI = 4 with a permanent value C = 1.25. The coef-
ficients of the characteristic polynomial were forced to be
those of the desired polynomial Pd(s) = (s2+2ζωns+ω2

n)2,
with ζ = 0.81, ωn = 4. We have set y⋆(t) = sin ωt,
ω = 2.5[rad/s].
Figure 17 (resp. 18) shows the reference signal y⋆(t) and
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Figure 17: y⋆(t) (- -) and y(t) (–) without perturbation
attenuation

the output signal y(t) without estimating ze(t) (resp. with
the estimate ze(t)). We added in the simulations of Figure
18 a Gaussian white noise N(0; 0.025) to the measurement
y(t). The results are quite remarkable.

Remark 7.2. The same technique yields an efficient solu-
tion to fault tolerant linear control, which completes Fliess,
Join & Sira-Ramı́rez (2004). Just think at z(t) as a fault
variable.

7.0.2 Non-linear extension

Replace the term y(t) in system (21) by the product
y(t)ẏ(t):

ÿ(t) + y(t)ẏ(t) = u(t) − z(t) + C1(t − tI) (23)

The perturbations z(t) and C1(t − tI) are the same as
above. The estimate ze(t) of z(t) up to a piecewise constant

is given by

ze(t) = −ÿe(t) − yeẏe(t) + u(t)

where ye(t), ẏe(t) and ÿe(t) are the estimates of y(t), ẏ(t)
and ÿ(t). The feedback law (22) becomes

u = ye(t)ẏe(t) + ze(t) + ÿ⋆(t) + G ⋆ (ye(t) − y∗(t)) (24)

Remark 7.3. Rewrite system (23) via the following state
variable representation







ẋ1(t) = x2(t)
ẋ2(t) = −x1(t)x2(t) + u(t) − z(t) + C1(t − tI)
y(t) = x1(t)

Applying the feedback law (24) amounts possessing good
estimates of the two state variables.

Figures 19 and 20 depict the computer simulations with
the same numerical conditions as before. The results are
again excellent.
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Figure 19: y⋆(t) (- -) and y(t) (–) without perturbation
attenuation

8 Conclusion

We have proposed a new approach to non-linear estima-
tion, which is not of asymptotic nature and does not
necessitate any statistical knowledge of the corrupting
noises34. Promising results have already been obtained,
which will be supplemented in a near future by other theo-
retical advances (see, e.g., Barbot, Fliess & Floquet (2007)
on observers with unknown inputs) and several concrete
case-studies (see already Garćıa-Rodŕıguez & Sira-Ramı́rez
(2005); Nöthen (2007)). Further numerical improvements

34Let us refer to a recent book by Smolin (2006), which contains
an exciting description of the competition between various theories
in today’s physics. Similar studies do not seem to exist in control.

16



0 1 2 3 4 5 6 7 8
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Time (s)

Figure 18: y⋆(t) (- -) and y(t) (–) with perturbation attenuation

will also be investigated (see already Mboup, Join & Fliess
(2007)).
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Fliess, M., Lévine, J., Martin, P., and Rouchon, P. (1995)
‘Flatness and defect of non-linear systems: introductory
theory and examples’, Int. J. Control, Vol. 61, pp. 1327-
1361.
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