Non-linear estimation is easy

Michel Fliess 1 Cédric Join 1, 2 Hebertt Sira-Ramirez 3
1 ALIEN - Algebra for Digital Identification and Estimation
Inria Lille - Nord Europe, Inria Saclay - Ile de France, Ecole Centrale de Lille, Polytechnique - X, CNRS - Centre National de la Recherche Scientifique : UMR8146
Abstract : Non-linear state estimation and some related topics, like parametric estimation, fault diagnosis, and perturbation attenuation, are tackled here via a new methodology in numerical differentiation. The corresponding basic system theoretic definitions and properties are presented within the framework of differential algebra, which permits to handle system variables and their derivatives of any order. Several academic examples and their computer simulations, with on-line estimations, are illustrating our viewpoint.
Liste complète des métadonnées


https://hal.inria.fr/inria-00158855
Contributor : Michel Fliess <>
Submitted on : Wednesday, October 24, 2007 - 4:23:53 PM
Last modification on : Thursday, February 9, 2017 - 3:09:08 PM
Document(s) archivé(s) le : Tuesday, September 21, 2010 - 2:48:33 PM

Files

easy-arx.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Michel Fliess, Cédric Join, Hebertt Sira-Ramirez. Non-linear estimation is easy. Int. J. Modelling Identification and Control, Inderscience Enterprises Ltd., 2008, Special Issue on Non-Linear Observers, 4 (1), pp.12-27. <10.1504/IJMIC.2008.020996>. <inria-00158855v2>

Share

Metrics

Record views

1828

Document downloads

1019